Skip to main content

Genetic Control of Parathyroid Gland Development and Molecular Insights into Hypoparathyroidism

  • Chapter
  • 151 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Normal mineral metabolism and skeletal development depend on an intricate interplay of parathyroid, renal, and skeletal factors. Crucial in this respect is parathyroid hormone (PTH), which is synthesized and secreted from the parathyroid glands and at a rate inversely proportional to the serum-ionized calcium concentration. Hormone secretion is tightly regulated through the interaction of extracellular calcium with specific calciumsensing receptors (CaSRs) (1–3) that are present on the surface of the parathyroid cell. In turn, PTH regulates mineral metabolism and skeletal homeostasis through its actions on specialized target cells in bone and kidney that express the PTH/parathyroid hormonerelated peptide (PTHrP) or type 1 PTH receptor. The integrated actions of PTH and 1,25–dihydroxyvitamin D on these target tissues provide a precise system of control and maintain the serum-ionized calcium concentration within a narrow range that is critical for many physiological processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hebert SC, Brown EM. The extracellular calcium receptor. [Review] [64 refs]. Curr Opin Cell Biol 1995;7:484–492.

    Article  PubMed  CAS  Google Scholar 

  2. Brown EM, Gamba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 1993;366:575–580.

    Article  PubMed  CAS  Google Scholar 

  3. Chattopadhyay N, Mithal A, Brown EM. The calcium-sensing receptor: a window into the physiology and pathophysiology of mineral ion metabolism. Endocr Rev 1996;17:289–307.

    PubMed  CAS  Google Scholar 

  4. Ahn TG, Antonarakis SE, Kronenberg HM, Igarashi T, Levine MA. Familial isolated hypoparathyroidism: a molecular genetic analysis of 8 families with 23 affected persons. Medicine 1986;65:73–81.

    Article  PubMed  CAS  Google Scholar 

  5. Neer EJ. Heterotrimeric G Proteins: organizers of transmembrane signals. Cell 1995;80:249–257.

    Article  PubMed  CAS  Google Scholar 

  6. Gudermann T, Nurnberg B, Schultz G. Receptors and G proteins as primary components of transmembrane signal transduction. Part 1. G-protein-coupled receptors: structure and function. J Mol Med 1995; 73:51–63.

    Article  PubMed  CAS  Google Scholar 

  7. Nurnberg B, Gudermann T, Schultz G. Receptors and G proteins as primary components of transmembrane signal transduction. Part 2. G proteins: structure and function. J Mol Med 1995;73:123–132.

    Article  PubMed  CAS  Google Scholar 

  8. Yamaguchi T, Chattopadhyay N, Brown EM. G protein-coupled extracellular Ca2+ (Ca2+o)-sensing receptor (CaR): roles in cell signaling and control of diverse cellular functions. Adv Pharmacol 2000; 47:209–53.:209–253.

    Article  PubMed  CAS  Google Scholar 

  9. Schipani E, Karga H, Karaplis AC, et al. Identical complementary deoxyribonucleic acids encode a human renal and bone parathyroid hormone (PTH)/PTH-related peptide receptor. Endocrinology 1993; 132:2157–2165.

    Article  PubMed  CAS  Google Scholar 

  10. Abou Samra AB, Juppner H, Force T, et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci USA 1992;89:2732–2736.

    Article  PubMed  Google Scholar 

  11. Juppner H, Abou Samra AB, Freeman M, et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 1991;254:1024–1026.

    Article  PubMed  CAS  Google Scholar 

  12. Adams AE, Pines M, Nakamoto C, et al. Probing the bimolecular interaction of parathyroid hormone (PTH) and the human PTH/PTHrP receptor. II. Cloning, characterization of, and photoaffinity crosslinking to the recombinant human PTH/PTHrP receptor. Biochemistry 1995;34:10,553–10,559.

    Google Scholar 

  13. Behar V, Pines M, Nakamoto C, et al. The human PTH2 receptor: binding and signal transduction properties of the stably expressed recombinant receptor. Endocrinology 1996;137:2748–2757.

    Article  PubMed  CAS  Google Scholar 

  14. Usdin TB, Gruber C, Bonner TI. Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2. J Biol Chem 1995;270:15,455–15,458.

    Article  CAS  Google Scholar 

  15. Usdin TB. Evidence for a parathyroid hormone-2 receptor selective ligand in the hypothalamus. Endocrinology 1997;138:831–834.

    Article  PubMed  CAS  Google Scholar 

  16. Hoare SR, Clark JA, Usdin TB. Molecular determinants of tuberoinfundibular peptide of 39 residues (TIP39) selectivity for the parathyroid hormone-2 (PTH2) receptor. N-terminal truncation of TIP39 reverses PTH2 receptor/PTH1 receptor binding selectivity. J Biol Chem 2000;275:27,274–27,283.

    Google Scholar 

  17. Schwindinger WF, Fredericks J, Watkins L, et al. Coupling of the PTH/PTHrP receptor to multiple G-proteins. Direct demonstration of receptor activation of Gs, Gq/11, and Gi(1) by [alpha- 32P]GTPgamma-azidoanilide photoaffinity labeling. Endocrine 1998;8:201–209.

    Article  PubMed  CAS  Google Scholar 

  18. Melson GL, Chase LR, Aurbach GD. Parathyroid hormone-sensitive adenyl cyclase in isolated renal tubules. Endocrinology 1970;86:511–518.

    Article  PubMed  CAS  Google Scholar 

  19. Chase LR, Fedak SA, Aurbach GD. Activation of skeletal adenyl cyclase by parathyroid hormone in vitro. Endocrinology 1969;84:761–768.

    Article  PubMed  CAS  Google Scholar 

  20. Civitelli R, Reid IR, Westbrook S, Avioli LV, Hruska KA. PTH elevates inositol polyphosphates and diacylglycerol in a rat osteoblast-like cell line. Am J Physiol 1988;255:E660-E667.

    PubMed  CAS  Google Scholar 

  21. Dunlay R, Hruska K. PTH receptor coupling to phospholipase C is an alternate pathway of signal transduction in bone and kidney. Am J Physiol 1990;258:F223–F231.

    PubMed  CAS  Google Scholar 

  22. Gupta A, Martin KJ, Miyauchi A, Hruska KA. Regulation of cytosolic calcium by parathyroid hormone and oscillations of cytosolic calcium in fibroblasts from normal and pseudohypoparathyroid patients. Endocrinology 1991;128:2825–2836.

    Article  PubMed  CAS  Google Scholar 

  23. Civitelli R, Martin TJ, Fausto A, Gunsten SL, Hruska KA, Avioli LV. Parathyroid hormone-related peptide transiently increases cytosolic calcium in osteoblast-like cells: comparison with parathyroid hormone. Endocrinology 1989;125:1204–1210.

    Article  PubMed  CAS  Google Scholar 

  24. Reid IR, Civitelli R, Halstead LR, Avioli LV, Hruska KA. Parathyroid hormone acutely elevates intracellular calcium in osteoblastlike cells. Am J Physiol 1987;253:E45-E51.

    PubMed  CAS  Google Scholar 

  25. Yamaguchi DT, Hahn TJ, Iida-Klein A, Kleeman CR, Muallem S. Parathyroid hormone-activated calcium channels in an osteoblast-like clonal osteosarcoma cell line. J Biol Chem 1987;262:7711–7718.

    PubMed  CAS  Google Scholar 

  26. Norris EH. Anatomical evidence of prenatal function of the human parathyroid glands. Anat Rec 1946; 96:129–141.

    Article  PubMed  CAS  Google Scholar 

  27. Parfitt AM. Parathyroid growth: normal and abnormal. In: Bilezikian JP, Marcus R, Levine MA, eds. The Parathyroids: Basic and Clinical Concepts. Raven Press, New York, 1994, pp. 373–405.

    Google Scholar 

  28. Kovacs CS, Kronenberg HM. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium and lactation. Endocr Rev 1997;18:832–872

    Article  PubMed  CAS  Google Scholar 

  29. Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM. Parathyroid hormonerelated peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci USA 1996;93:15,233–15,238.

    CAS  Google Scholar 

  30. Kovacs CS, Manley NR, Moseley JM, Martin TJ, Kronenberg HM. Fetal parathyroids are not required to maintain placental calcium transport. J Clin Invest 2001;107:1007–1015.

    Article  PubMed  CAS  Google Scholar 

  31. Akerstrom G, Grimelius L, Johansson H, Lundqvist H, Pertoft H, Bergstrom R. The parenchymal cell mass in normal human parathyroid glands. Acta Pathol Microbiol Scand [A] 1981;89:367–375.

    CAS  Google Scholar 

  32. Wang Q, Palnitkar S, Parfitt AM. The basal rate of cell proliferation in normal human parathyroid tissue: implications for the pathogenesis of hyperparathyroidism. Clin Endocrinol (Oxf) 1997;46:343–349.

    Article  CAS  Google Scholar 

  33. Wright N, Alison M. The Biology of Epithelial Cell Populations. Clarendon Press, Oxford, 1984.

    Google Scholar 

  34. Ahonen P. Autoimmune polyendocrinopathy-candidosis-ectodermal dystrophy (APECED): autosomal recessive inheritance. Clin Genet 1985;27:535–542.

    Article  PubMed  CAS  Google Scholar 

  35. Ahonen P, Myllarniemi S, Sipila I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 1990;322:1829–1836.

    Article  PubMed  CAS  Google Scholar 

  36. Scott HS, Heino M, Peterson P, et al. Common mutations in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients of different origins. Mol Endocrinol 1998;12:1112–1119.

    Article  PubMed  CAS  Google Scholar 

  37. Obermayer-Straub P, Manns MP. Autoimmune polyglandular syndromes. Baillieres Clin Gastroenterol 1998;12:293–315.

    Article  PubMed  CAS  Google Scholar 

  38. Greig F, Paul E, DiMartino-Nardi J, Saenger P. Transient congenital hypoparathyroidism: resolution and recurrence in chromosome 22q11 deletion. J Pediatr 1996;128:563–567.

    Article  PubMed  CAS  Google Scholar 

  39. Hur H, Kim YJ, Noh CI, Seo JW, Kim MH. Molecular genetic analysis of the DiGeorge syndrome among Korean patients with congenital heart disease. Mol Cells 1999;9:72–77.

    PubMed  CAS  Google Scholar 

  40. Monaco G, Pignata C, Rossi E, et al. DiGeorge anomaly associated with 10p deletion. Am J Med Genet 1991;19:215–216.

    Article  Google Scholar 

  41. Daw SC, Taylor C, Kraman M, et al. A common region of 10p deleted in DiGeorge and velocardiofacial syndromes. Nat Genet 1996;13:458–460.

    Article  PubMed  CAS  Google Scholar 

  42. Yamagishi H, Garg V, Matsuoka R, Thomas T, Srivastava D. A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science 1999;283:1158–1161.

    Article  PubMed  CAS  Google Scholar 

  43. Van Esch H, Groenen P, Nesbit MA, et al. GATA3 haplo-insufficiency causes human HDR syndrome. Nature 2000;406:419–422.

    Article  PubMed  Google Scholar 

  44. Thakker RV. The molecular genetics of hypoparathyroidism. In: Bilezikian JP, Marcus R, Levine MA, eds. The Parathyroids: Basic and Clinical Concepts. Academic Press, San Diego, CA, 2001, pp. 779–790.

    Google Scholar 

  45. Arnold A, Horst SA, Gardella TJ, Baba H, Levine MA, Kronenberg HM. Mutation of the signal peptideencoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J Clin Invest 1990;86:1084–1087.

    Article  PubMed  CAS  Google Scholar 

  46. Karaplis AC, Lim SK, Baba H, Arnold A, Kronenberg HM. Inefficient membrane targeting, translocation, and proteolytic processing by signal peptidase of a mutant preproparathyroid hormone protein. J Biol Chem 1995;270:1629–1635.

    Article  PubMed  CAS  Google Scholar 

  47. Sunthornthepvarakul T, Churesigaew S, Ngowngarmratana S. A novel mutation of the signal peptide of the preproparathyroid hormone gene associated with autosomal recessive familial isolated hypoparathyroidism. J Clin Endocrinol Metab 1999;84:3792–3796.

    Article  PubMed  CAS  Google Scholar 

  48. Parkinson DB, Thakker RV. A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism. Nat Genet 1992;1:149–152.

    Article  PubMed  CAS  Google Scholar 

  49. Pearce SH, Williamson C, Kifor O, et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor [see comments]. N Engl J Med 1996;335:1115–1122.

    Article  PubMed  CAS  Google Scholar 

  50. Bai M, Quinn S, Trivedi S, et al. Expression and characterization of inactivating and activating mutations in the human Ca2+o-sensing receptor. J Biol Chem 1996;271:19,537–19,545.

    Google Scholar 

  51. Chou YH, Pollak MR, Brandi ML, et al. Mutations in the human Ca(2+)-sensing-receptor gene that cause familial hypocalciuric hypercalcemia. Am J Hum Genet 1995;56:1075–1079.

    PubMed  CAS  Google Scholar 

  52. Pollak MR, Chou YH, Marx SJ, et al. Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Effects of mutant gene dosage on phenotype. J Clin Invest 1994;93:1108–1112.

    Article  PubMed  CAS  Google Scholar 

  53. de la Chapelle A., Herra R, Kiovisto M, Aula P. A deletion in chromosome 22 can cause DiGeorge syndrome. Hum Genet 1981;57:253–256.

    Article  PubMed  Google Scholar 

  54. Kelley RI, Zackai FH, Emanuel BS. The association of the DiGeorge anomalad with partial monosomy of chromosome 22. J Pediatr 1982;101:197.

    Article  PubMed  CAS  Google Scholar 

  55. Driscoll DA, Budarf ML, Emanuel BS. A genetic etiology for DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am J Hum Genet 1991;50:924.

    Google Scholar 

  56. Matsuoka R, Kimura M, Scambler PJ, et al. Molecular and clinical study of 183 patients with conotruncal anomaly face syndrome. Hum Genet 1998;103:70–80.

    Article  PubMed  CAS  Google Scholar 

  57. Berend SA, Spikes AS, Kashork CD, et al. Dual-probe fluorescence in situ hybridization assay for detecting deletions associated with VCFS/DiGeorge syndrome I and DiGeorge syndrome II loci. Am J Med Genet 2000;91:313–317.

    Article  PubMed  CAS  Google Scholar 

  58. Scambler PJ. The 22q11 deletion syndromes. Hum Mol Genet 2000;9:2421–2426.

    Article  PubMed  CAS  Google Scholar 

  59. Lai MMR, Scriven PN, Ball C, Berry AC. Simultaneous partial monosomy 10p and trisomy 5q in a case of hypoparathyroidism. J Med Genet 1992;29:586–588.

    Article  PubMed  CAS  Google Scholar 

  60. Kelly D, Goldberg R, Wilson D, et al. Confirmation that the velo-cardio-facial syndrome is associated with haplo-insufficiency of genes at chromosome 22q11. Am J Med Genet 1993;45:308–312.

    Article  PubMed  CAS  Google Scholar 

  61. Shprintzen RJ. Velocardiofacial syndrome and DiGeorge sequence. J Med Genet 1994;31:423–424.

    Article  PubMed  CAS  Google Scholar 

  62. Wilson DI, Cross IE, Goodship JA, et al. DiGeorge syndrome with isolated aortic coarctation and isolated ventricular septal defect in three sibs with a 22q11 deletion of maternal origin. Br Heart J 1991;66: 308–312.

    Article  PubMed  CAS  Google Scholar 

  63. De Silva D, Duffty P, Booth P, Auchterlonie I, Morrison N, Dean JC. Family studies in chromosome 22q11 deletion: further demonstration of phenotypic heterogeneity. Clin Dysmorphol 1995;4:294–303.

    Article  PubMed  Google Scholar 

  64. Lindsay EA, Botta A, Jurecic V, et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 1999;401:379–383.

    PubMed  CAS  Google Scholar 

  65. Guris DL, Fantes J, Tara D, Druker BJ, Imamoto A. Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet 2001;27:293–298.

    Article  PubMed  CAS  Google Scholar 

  66. Manley NR, Capecchi MR. The role ofHoxa-3 in mouse thymus and thyroid development. Development 1995;121:1989–2003.

    PubMed  CAS  Google Scholar 

  67. Lindsay EA, Vitelli F, Su H, et al. Tbx 1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001;410:97–101.

    Article  PubMed  CAS  Google Scholar 

  68. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx l . Nat Genet 2001;27:286–291.

    Article  PubMed  CAS  Google Scholar 

  69. Manley NR, Capecchi MR. Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev Biol 1998;195:1–15.

    Article  PubMed  CAS  Google Scholar 

  70. Barakat AY, D’Albora JB, Martin MM, Jose PA. Familial nephrosis, nerver deafness, and hypoparathyroidism. J Pediatr 1977;91:61–64.

    Article  PubMed  CAS  Google Scholar 

  71. Lakshmanan G, Lieuw KH, Lim KC, et al. Localization of distant urogenital system-, central nervous system-, and endocardium-specific transcriptional regulatory elements in the GATA-3 locus. Mol Cell Biol 1999;19:1558–568.

    PubMed  CAS  Google Scholar 

  72. Debacker C, Catala M, Labastie MC. Embryonic expression of the human GATA-3 gene. Mech Dev 1999;85:183–187.

    Article  PubMed  CAS  Google Scholar 

  73. Pandolfi PP, Roth ME, Karis A, et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 1995;11:40–44.

    Article  PubMed  CAS  Google Scholar 

  74. Gunther T, Chen ZF, Kim J, et al. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 2000;406:199–203.

    Article  PubMed  CAS  Google Scholar 

  75. Hosoya T, Takizawa K, Nitta K, Hotta Y. Glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 1995;82:1025–1036.

    Article  PubMed  CAS  Google Scholar 

  76. Wegner M, Riethmacher D. Chronicles of a switch hunt: gcm genes in development. Trends Genet 2001; 17:286–290.

    Article  PubMed  CAS  Google Scholar 

  77. Kim J, Jones BW, Zock C, et al. Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. Proc Natl Acad Sci USA 1998;95:12,364–12,369.

    Google Scholar 

  78. Jones BW, Fetter RD, Tear G, Goodman CS. Glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 1995;82:1013–1023.

    Article  PubMed  CAS  Google Scholar 

  79. Altshuller Y, Copeland NG, Gilbert DJ, Jenkins NA, Frohman MA. Gcm1, a mammalian homolog of Drosophila glial cells missing. FEBS Lett 1996;393:201–204.

    Article  PubMed  CAS  Google Scholar 

  80. Kammerer M, Pirola B, Giglio S, Giangrande A. GCMB, a second human homolog of the fly glide/gcm gene. Cytogenet Cell Genet 1999;84:43–47.

    Article  PubMed  CAS  Google Scholar 

  81. Kanemura Y, Hiraga S, Arita N, et al. Isolation and expression analysis of a novel human homologue of the Drosophila glial cells missing (gcm) gene. FEBS Lett 1999;442:151–156.

    Article  PubMed  CAS  Google Scholar 

  82. Schreiber J, Riethmacher-Sonnenberg E, Riethmacher D, et al. Placental failure in mice lacking the mammalian homolog of glial cells missing, GCMa. Mol Cell Biol 2000;20:2466–2474.

    Article  PubMed  CAS  Google Scholar 

  83. Ding CL, Buckingham B, Levine MA. Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB. J Clin Invest 2001;108:1215–1220.

    PubMed  CAS  Google Scholar 

  84. Thakker RV. Molecular basis of PTH underexpression. In: Bilezikian JP, Raisz LG, Rodan GA, eds. Principles of Bone Biology. Academic Press, San Diego, CA, 1996, pp. 837–851.

    Google Scholar 

  85. Franceschini P, Testa A, Bogetti G, et al. Kenny-Caffey syndrome in two sibs born to consanguineous parents: evidence for an autosomal recessive variant. Am J Med Genet 1992;42:112–116.

    Article  PubMed  CAS  Google Scholar 

  86. Sanjad SA, Sakati NA, Abu-Osba YK, Kaddoura R, Milner RD. A new syndrome of congenital hypoparathyroidism, severe growth failure, and dysmorphic features. Arch Dis Child 1991;66:193–196.

    Article  PubMed  CAS  Google Scholar 

  87. Diaz GA, Gelb BD, Ali F, et al. Sanjad-Sakati and autosomal recessive Kenny-Caffey syndromes are allelic: evidence for an ancestral founder mutation and locus refinement. Am J Med Genet 1999;85: 48–52.

    Article  PubMed  CAS  Google Scholar 

  88. Kelly TE, Blanton S, Saif R, Sanjad SA, Sakati NA. Confirmation of the assignment of the Sanjad-Sakati (congenital hypoparathyroidism) syndrome (OMIM 241410) locus to chromosome 1q42–43. J Med Genet 2000;37:63–64.

    Article  PubMed  CAS  Google Scholar 

  89. Dahlberg PJ, Borer WZ, Newcomer KL, Yutac WR. Autosomal or X-linked recessive syndrome of congenital lymphedema, hypoparathyroidism, nephropathy, prolapsing mitral valve, and brachytelephalangy. Am J Med Genet 1983;16:99–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this chapter

Cite this chapter

Levine, M.A. (2002). Genetic Control of Parathyroid Gland Development and Molecular Insights into Hypoparathyroidism. In: Eugster, E.A., Pescovitz, O.H. (eds) Developmental Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-156-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-156-5_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9663-5

  • Online ISBN: 978-1-59259-156-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics