Skip to main content

Pediatric Bone Disease

  • Chapter
Book cover Developmental Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

  • 153 Accesses

Abstract

Bone is a complex, dynamic tissue, composed of organic (osteoid, mainly collagen) and inorganic (crystalline calcium phosphate) material. Bones begin to form during the embryonic period as centers of endochondral or membranous ossification. Ossification accelerates during the third trimester of pregnancy. By the time of birth, a newborn has about 25 g of skeletal calcium. Bones then continue to model and remodel throughout childhood. Further periods of rapid growth during infancy and adolescence lead to the achievement of peak bone mineral content (BMC) by young adulthood, at which time the average individual has over 1000 g of skeletal calcium.

Nature is nowhere accustomed more openly to display her secret mysteries than in cases where she shows traces of her workings apart from the beaten path; nor is there any better way to advance the proper cause of medicine than to give our minds to the discovery of the usual law of Nature by careful investigation of cases of rarer forms of disease. For it has been found, in almost all things, that what they contain of useful or applicable nature is hardly perceived unless we are deprived of them, or they become deranged in some way.

William Harvey, 1657.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holick M. The use and interpretation of assays for vitamin D and its metabolites. J Nutr 1990;120(S11): 1464–1469.

    PubMed  CAS  Google Scholar 

  2. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001;344(19):1434–1441.

    PubMed  CAS  Google Scholar 

  3. Strewler GJ. The parathyroid hormone-related protein. Endocrinol Metab Clin North Am 2000;29(3): 629–645.

    PubMed  CAS  Google Scholar 

  4. Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 1996;93:10,240–10,245.

    Google Scholar 

  5. Massfelder T, Helwig JJ, Stewart AF. Parathyroid hormone-related protein as a cardiovascular regulatory peptide. Endocrinology 1996;1237:3151–3153.

    Google Scholar 

  6. Wysolmerski JJ, Philbrick WM, Dunbar ME, Lanske B, Kronenberg H, Karaplis A, et al. Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormonerelated protein is essential for mammary gland development. Development 1998;125(7):1285–1294.

    PubMed  CAS  Google Scholar 

  7. Holt EH, Broadus AE, Brines ML. Parathyroid hormone-related peptide is produced by cultured cerebellar granule cells in response to L-type voltage-sensitive Cat+ channel flux via a Ca2+/calmodulindenendent kinase pathway. J Biol Chem 1996;271:28,105–28,111.

    Google Scholar 

  8. Pondel M. Calcitonin and calcitonin receptors: bone and beyond. Int J Exp Pathol 2000;81(6):405–422.

    PubMed  CAS  Google Scholar 

  9. White KE, Jonnson KB, Carn G, Hampton G, Spector TD, Mannstadt M, et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab 2001;86(2):497–500.

    PubMed  CAS  Google Scholar 

  10. Rifas L. Bones and cytokines: beyond IL-1, IL-6, and TNF-alpha. Calcif Tissue Int 1999;64(1):1–7.

    PubMed  CAS  Google Scholar 

  11. Hofbauer LC, Heufelder AE. Osteoprotegerin: a novel local player in bone metabolism. Eur J Endocrinol 1997;137(4):345–346.

    PubMed  CAS  Google Scholar 

  12. Epstein DM, Dalinka MK, Kaplan FS, Arochick JM, Marinelli DL, Kundel HL. Observer variation in the detection of osteopenia. Skeletal Radiol 1986;1986(15):347–349.

    Google Scholar 

  13. Nelson DA, Koo WWK. Interpretation of absorptiometric bone mass measurements in the growing skeleton: issues and limitations. Calcif Tissue Int 1999;65(1):1–3.

    PubMed  CAS  Google Scholar 

  14. Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA. Bone densitometry in Canadian children 8–17 years of age. Calcif Tissue Int 1996;59:344–351.

    PubMed  CAS  Google Scholar 

  15. Bailey DA, Faulkner RA, McKay HA. Bone mineral acquisition during the adolescent growth spurt. J Bone Min Res 1996:11:S465.

    Google Scholar 

  16. McKay HA, Bailey DA, Mirwald RL, Davison KS, Faulkner RA. Peak bone mineral accrual and age at menarche in adolescent girls: a 6-year longitudinal study. J Pediatr 1998;133(5):682–687.

    PubMed  CAS  Google Scholar 

  17. Dyson K, Blimkie CJ, Davison KS, Webber CE, Adachi JD. Gymnastic training and bone density in pre-adolescent females. Med Sci Sports Exerc 1997;29(4):443–450.

    PubMed  CAS  Google Scholar 

  18. Hans D, Fuerst T, Uffmann M. Bone density and quality measurement using ultrasound. Curr Opin Rheumatol l996;8(4):370–375.;8(4):

    PubMed  CAS  Google Scholar 

  19. Gluer CC, Wu CY, Jergas M, Goldstein SA, Genant HK. Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 1994;55:46–52.

    PubMed  CAS  Google Scholar 

  20. Harrison HE, Harrison HC. Rickets and osteomalacia. Disorders of calcium and phosphate metabolism in childhood and adolescence. WB Saunders Company, Philadelphia, PA, 1979, pp. 230–249.

    Google Scholar 

  21. Kreiter SR, Schwartz RP, Kirkman HN Jr, Charlton PA, Calikoglu AS, Davenport ML. Nutritional rickets in African American breast-fed infants. J Pediatr 2000;137(2):153–157.

    PubMed  CAS  Google Scholar 

  22. Seino Y, Ishii T, Shimtsuji T, Ishida M, Yabuuchi H. Plasma active vitamin D concentrations in low birthweight infants with rickets and its response to vitamin D treatment. Arch Dis Child 1981;56:628–632.

    PubMed  CAS  Google Scholar 

  23. Steichen JJ, Tsang RC, Greer FR, Ho M, Hug G. Elevated serum 1,25 dihydroxy vitamin D concentrations in rickets of very low-birthweight infants. J Pediatr 1981;99:293–298.

    PubMed  CAS  Google Scholar 

  24. Ryan S. Nutritional aspects of metabolic bone disease in the newborn. Arch Dis Childhood: Fetal Neonatal Ed 1996:74(2):145F-148F.

    Google Scholar 

  25. Fraser D, Salter RB. The diagnosis and management of the various types of rickets. Pediatr Clin N Am 1958;5:417–441.

    Google Scholar 

  26. Wang JT, Lin C-J, Burridge SM, Fu GK, Labuda M, Portale AA, et al. Genetics of vitamin D 1-alphahydroxylase deficiency in 17 families. Am J Hum Genet 1998;63:1694–1702.

    PubMed  CAS  Google Scholar 

  27. Delvin EE, Glorieux FH, Marie PJ, Pettifor JM. Vitamin D deficiency: replacement therapy with calcitriol. J Pediatr 1981;99:26–34.

    PubMed  CAS  Google Scholar 

  28. Brooks MH, Bell NH, Love L, Stern PH, Orfei E, Queener SF, et al. Vitamin-D-dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med 1978;298:996–999.

    PubMed  CAS  Google Scholar 

  29. Hughes MR, Malloy PJ, Kieback DG, Kesterson RA, Pike JW, Feldman D, et al. Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets. Science 1988;242:1702–1705.

    PubMed  CAS  Google Scholar 

  30. Hochberg Z, Tiosano D, Even L. Calcium therapy for calcitriol-resistant rickets. J Pediatr 1992;121(5): 803–808.

    PubMed  CAS  Google Scholar 

  31. Davies M, Stanbury SW. The rheumatic manifestations of metabolic bone disease. Clin Rheum Dis 1981;7:595–646.

    Google Scholar 

  32. Econs MJ, Drezner MK. Bone disease resulting from inherited disorders of renal tubule transport and vitamin D metabolism. In: Favus M, Coe F, eds. Disorders of Bone and Mineral Metabolism. Raven Press, Ltd, New York, 1992, pp. 935–950.

    Google Scholar 

  33. Tenenhouse HS, Econs MJ. Mendelian hypophosphatemias. In: Scriver C, Beudet A, Sly W, Valle D, eds. The Metabolic and Molecular Basis of Inherited Disease. McGraw-Hill, New York, 2000, pp. 5039–5068.

    Google Scholar 

  34. Econs MJ, Feussner JR, Samsa GP, Effman EL, Vogler JB, Martinez S, et al. X-linked hypophosphatemic rickets without “rickets.„ Skeletal Radiol 1991;20:109–114.

    PubMed  CAS  Google Scholar 

  35. HY Pconsortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with Xlinked hypophosphatemic rickets. Nat Genet 1995;11:130–136.

    Google Scholar 

  36. Winters RW, Graham JB, Williams TF, McFalls VW, Burnett CH. A genetic study of familial hypophosphatemia and vitamin D resistant rickets with a review of the literature. Medicine 1958;37:97–142.

    PubMed  CAS  Google Scholar 

  37. Whyte MP, Schrank FW, Armamento-Villareal R. X-linked hypophosphatemia: a search for gender, race, anticipation, or parent of origin effects on disease expression in children. J Clin Endocrinol Metab 1996;81:4075–4080.

    PubMed  CAS  Google Scholar 

  38. Bianchine JW, Stambler AA, Harrison H. Familial hypophosphatemic rickets showing autosomal dominant inheritance. Birth Defects: Original Article Series 1971:7:287–295.

    CAS  Google Scholar 

  39. Econs MJ, McEnery PT. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate wasting disorder. J Clin Endocrinol Metab 1997;82:674–681.

    PubMed  CAS  Google Scholar 

  40. Tieder M, Modai D, Samuel R, Arie R, Halabe A, Bab I, et al. Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med 1985;312:611–617.

    PubMed  CAS  Google Scholar 

  41. Tieder M, Modai D, Shaked U, Samuel R, Arie R, Halabe A, et al. “Idiopathic„ hypercalciuria and a hereditary hypophosphatemic rickets. Two phenotypical expressions of a common genetic defect. N Engl J Med 1987;316:125–129

    PubMed  CAS  Google Scholar 

  42. Tieder M, Modai D, Shaked U, Samuel R, Arie R, Halabe A, et al. “Idiopathic„ hypercalciuria and a hereditary hypophosphatemic rickets. Two phenotypical expressions of a common genetic defect. N Engl J Med 1987;316:125–129

    PubMed  CAS  Google Scholar 

  43. Gazit D, Tieder M, Liberman UA, Passi-Even L, Bab IA. Osteomalacia in hereditary hypophosphatemic rickets with hypercalciuria: a correlative clinical-histomorphometric study. J Clin Endocrinol Metab 1991;72:229–235.

    PubMed  CAS  Google Scholar 

  44. Tieder M, Arie R, Bab I, MaorJ, Liberman UA. A new kindred with hereditary hypophosphatemic rickets with hypercalciuria: implications for correct diagnosis and treatment. Nephron 1992;62:176–181.

    PubMed  CAS  Google Scholar 

  45. Proesmans WC, Fabry G, Marchal GJ, Gillis PL, Boullian R. Autosomal dominant hypophosphataemia with elevated serum 1,25 dihydroxyvitamin D and hypercalciuria. Pediatr Nephrol 1987;1:479–484.

    PubMed  CAS  Google Scholar 

  46. Chong SS, Kozak CA, Liu L, Kristjansson K, Dunn ST, Bourdeau JE, et al. Cloning, genetic mapping, and expression analysis of a mouse renal sodium-dependent phosphate cotransporter. Am J Physiol 1995;268:F1038-F1045.

    Google Scholar 

  47. Kos CA, Tihy F, Econs MJ, Murer H, Lemieux N, Tenenhouse HS. Localization of a renal sodiumphos-phate cotransporter gene to human chromosome 5835. Genomics 1994;19:176–177.

    PubMed  CAS  Google Scholar 

  48. Rathbun J. Hypophosphatasia. Am J Dis Child 1948;75:822–831.

    PubMed  CAS  Google Scholar 

  49. Fraser D. Hypophosphatasia. Am J Med 1957;22:730–746.

    PubMed  CAS  Google Scholar 

  50. Garcia JV, Jones C, Miller AD. Localization of the amphotropic murine leukemia virus receptor gene to the pericentromeric region of human chromosome 8. J Virol 1991;65:6316–6139.

    PubMed  CAS  Google Scholar 

  51. Weiss MJ, Cole DEC, Ray K, Whyte MP, Lafferty MA, Mulivor RA, et al. A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci USA 1988857666–7669

    PubMed  CAS  Google Scholar 

  52. Whyte MP. Hypophosphatasia. In: Favus MJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Lippincott, Williams, & Wilkins, Philadelphia. PA. 1999. pp. 337–339.

    Google Scholar 

  53. Albright F, Reifenstein EC. The parathyroid glands and metabolic bone disease. William and Wilkins, Baltimore, MD, 1948.

    Google Scholar 

  54. Godang K, Ueland T, Bollerslev J. Decreased bone area, bone mineral content, formative markers, and increased bone resorptive markers in endogenous Cushing’s syndrome. Eur J Endocrinol 1999;141(2): 126–131.

    PubMed  CAS  Google Scholar 

  55. Diamond T, Vine J, Smart R, Butler P. Thyrotoxic bone disease in women: a potentially reversible disorder. Ann Intern Med 1994;120:8–11.

    PubMed  CAS  Google Scholar 

  56. Wüster C, Abs R, Bengtsson B, Bennmarker H, Feldt-Rasmussen U, Hernberg-Stâhl E, et al. The influence of growth hormone deficiency, growth hormone replacement therapy, and other aspects of hypopituitarism on fracture rate and bone mineral density. J Bone Min Res 2001;16(2):398–405.

    Google Scholar 

  57. Hillman L, Cassidy JT, Johnson L, Lee D, Allen SH. Vitamin D metabolism and bone mineralization in children with juvenile rheumatoid arthritis. J Pediatr 1994;124:910–916.

    PubMed  CAS  Google Scholar 

  58. Lettgen B, Jeken C, Reiners C. Influence of steroid medication on bone mineral density in children with nephrotic syndrome. Pediatric Nephrol 1994;8:667–670.

    CAS  Google Scholar 

  59. Issenman RM, Atkinson SA, Rodja C, Fraher L. Longitudinal assessment of growth, mineral metabolism, and bone mass in pediatric Crohn’s disease. J Pediatr Gastroenterol Nutr 1994;17:401–406.

    Google Scholar 

  60. Bachrach LK, Loutit CW, Moss RB, Marcus R. Osteopenia in adults with cystic fibrosis. Am J Med 1994;96:27–34.

    PubMed  CAS  Google Scholar 

  61. Stallings VA. Calcium and bone health in children: a review. Am J Therapeut 1997;4(7–8):259–273.

    CAS  Google Scholar 

  62. Hergenroeder AC. Bone mineralization, hypothalamic amenorrhea, and sex steroid therapy in female adolescents and young adults. J Pediatr 1995;126(5):683–689.

    PubMed  CAS  Google Scholar 

  63. Paterson CR. Osteogenesis imperfecta and other heritable disorders of bone. Balliere’ s Clin Endocrinol Metab 1997;11(1):195–213.

    CAS  Google Scholar 

  64. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 1979;16(2):101–116.

    PubMed  CAS  Google Scholar 

  65. Glorieux FH, Bishop NJ, Travers R, Roughley P, Chabot G, Lanoue G, et al. Type V osteogenesis imperfecta (abstract). J Bone Min Res 1997;12(1):S389.

    Google Scholar 

  66. Byers PH. Osteogenesis Imperfecta. In: Royce PM, Steinmann BU, eds. Connective Tissue and its Heritable Disorders: Molecular, Genetic, and Medical Aspects. Wyley-Liss, New York, 1993, pp. 317–350.

    Google Scholar 

  67. Prockop DJ, Colige A, Helminen H, Khillan JS, Pereira R, Vandenberg P. Mutations in type 1 procollagen that cause osteogenesis imperfecta: effects of the mutations on the assembly of collagen into fibrils, the basis of phenotypic variations, and potential antisense therapies. J Bone Min Res 8(Suppl)1993 2:489–492.

    Google Scholar 

  68. Minch CM, Kruse RW. Osteogenesis imperfecta: a review of basic science and diagnosis. Orthopedics 1998;21(5):558–567.

    PubMed  CAS  Google Scholar 

  69. Barsh GS, David KE, Byers PH. Type I osteogenesis imperfecta: a nonfunctional allele tor pro alpha 1 (I) chains of type I procollagen. Proc Natl Acad Sci USA 1982;79(12):3838–3842.

    PubMed  CAS  Google Scholar 

  70. Pope F, Nicholls AC, McPheat J, Talmud P, Owen R. Collagen genes and proteins in osteogenesis imperfecta. J Med Genet 1985;22:466–478.

    PubMed  CAS  Google Scholar 

  71. Shields ED, Bixler D, El-Kafrawy AM. A proposed classification for heritable human dentine defect with a description of a new entity. Arch Oral Biol 1973;18:543–553.

    PubMed  CAS  Google Scholar 

  72. Lukinmaa PL, Ranta H, Ranta K, Kaitila I. Dental findings in osteogenesis imperfecta: I. Occurrence and expression of type I dentinogenesis imperfecta. J Craniofacial Genet Dev Biol 1987;7:115–125.

    CAS  Google Scholar 

  73. Hartsfield JK Jr. Summary of dental concerns and care for persons with dentinogenesis imperfecta and osteogenesis imperfecta. “Breakthrough,„ The National Newsletter of the Osteogenesis Imperfecta Foundation, Inc, 1992, pp. 4–5.

    Google Scholar 

  74. Pedersen U. Hearing loss in patients with osteogenesis imperfecta. Scand Audiol 1984;13:67–74.

    PubMed  CAS  Google Scholar 

  75. Marini JC, Bordenick S, Heavner G, Rose S, Chrousos GP. Evaluation of growth hormone axis and responsiveness to growth stimulation of short children with osteogenesis imperfecta. Am J Med Genet 1993;45(2):261–264.

    PubMed  CAS  Google Scholar 

  76. Cropp GJ, Myers DN. Physiological evidence of hypermetabolism in osteogenesis imperfecta. Pediatrics 1972;49(3):375–391.

    PubMed  CAS  Google Scholar 

  77. Smith R. Idiopathic juvenile osteoporosis. Am J Dis Child 1979;133:894–900.

    Google Scholar 

  78. Krassas GE. Idiopathic juvenile osteoporosis. Ann NY Acad Sci 2000;900:409–412.

    PubMed  CAS  Google Scholar 

  79. Marder HK, Tsang RC, Hug G, Crawford AC. Calcitriol deficiency in idiopathic juvenile osteoporosis. Am J Dis Child 1982:136:914–917.

    PubMed  CAS  Google Scholar 

  80. Azria M, Copp DH, Zanelli JM. 25 years of salmon calcitonin: from synthesis to therapeutic use. Calcif Tissue Int 1995;57:405–408.

    PubMed  CAS  Google Scholar 

  81. Rodan GA. Mechanisms of action of bisphosphonates. Ann Rev Pharmacol Toxicol 1998;38:375–388.

    CAS  Google Scholar 

  82. Allgrove J. Bisphosphonates. Arch Dis Childhood 1997;76:73–75.

    CAS  Google Scholar 

  83. Rizzoli R, Fleisch H, Bonjour JP. Role of 1,25-dihydroxyvitamin D3 on intestinal phosphate absorption in rats with a normal vitamin D sunoly. J Clin Invest 1977;60:639.

    PubMed  CAS  Google Scholar 

  84. Vitte C, Fleisch H, Guenther H. Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated resorption. Endocrinology 1996;137:2324–2333.

    PubMed  CAS  Google Scholar 

  85. Albers-Schonberg HE. Projektions: Rontgenbilder einter seltenen Knochenerkrankung: Fortschr Geb Rontgenstrahlen 1903:7:158–159.

    Google Scholar 

  86. Stevenson AC. The load of hereditary defects in human populations. Radiat Res 1959;1:306.

    Google Scholar 

  87. Bollerslev J. Osteopetrosis. A genetic and epidemiological study. Clin Genet 1987;31:86–90.

    PubMed  CAS  Google Scholar 

  88. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, et al. Defects in TCIRG 1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 2000;25:343–346.

    PubMed  CAS  Google Scholar 

  89. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, et al. Loss of the C1C-7 chloride channel leads to osteopetrosis in mice and man. Cell 2001;104:205–215.

    PubMed  CAS  Google Scholar 

  90. Bollerslev J, Andersen PE Jr. Radiological, biochemical and hereditary evidence of two types of autosomal dominant osteopetrosis. Bone 1988;9(1):7–13.

    PubMed  CAS  Google Scholar 

  91. Bollerslev J, Andersen PE Jr. Fracture patterns in two types of autosomal-dominant osteopetrosis. Acta Orthop Scand 1989;60(1):110–112.

    PubMed  CAS  Google Scholar 

  92. Van Hul W, Bollerslev J, Gram J, Van Hul E, Wuyts W, Benichou O, et al. Localization of a gene for autosomal dominant osteopetrosis (Albers-Schonberg disease) to chromosome 1p21. Am J Human Genet 1997;61(2):363–369.

    Google Scholar 

  93. White KE, Koller DL, Takacs I, Buckwalter KA, Foroud T, Econs MJ. Locus heterogeneity of autosomal dominant osteopetrosis (ADO). J Clin Endocrinol Metab 1999;84(3):1047–1051.

    PubMed  CAS  Google Scholar 

  94. Sly WS, Whyte MP, Sundaram V, Tashian RE, Hewett-Emmett D, Guibaud P, et al. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med 1985;313:139–145.

    PubMed  CAS  Google Scholar 

  95. Maroteaux P, Lamy M. La pycnodysostose. Presse Med 1962;70:999–1002.

    PubMed  CAS  Google Scholar 

  96. Andren L, Dymling JF, Hogeman KE, Wendeberg B. Osteopetrosis acro-osteolytica: a syndrome of osteopetrosis, acro-osteolysis and open sutures of the skull. Acta Chir Scand 1962;124:496–507.

    Google Scholar 

  97. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 1996;273:1236–1238.

    PubMed  CAS  Google Scholar 

  98. Martinez-Frias ML, Cereijo A, Bermejo E, Lopez M, Sanchez M, Gonzalo C. Epidemiological aspects of mendelian syndromes in a Spanish population sample: I. Autosomal dominant malformation syndromes. Am J Med Genet 1991;38:622–625.

    PubMed  CAS  Google Scholar 

  99. Spranger J. Bone dysplasia families’ . Pathol Immunopathol Res 1988;7(1–2):76–80.

    PubMed  CAS  Google Scholar 

  100. Tavormina PL, Bellus GA, Webster MK, Bamshad MJ, Fraley AE, McIntosh I, et al. A novel skeletal dysplasia with developmental delay and acanthosis nigricans is caused by a Lys650Met mutation in the fibroblast growth factor receptor 3 gene. Am J Hum Genet 1999;64(3):722–731.

    PubMed  CAS  Google Scholar 

  101. Shiang R, Thompson LM, Zhu Y-Z, Church DM, Fielder TJ, Mocian M, et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 1994;78:335–342.

    PubMed  CAS  Google Scholar 

  102. Bellus GA, McIntosh I, Smith EAAAS, Kaitila I, Horton WA. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor 3 causes hypochondroplasia. Nat Genet 1995;10:357–359.

    PubMed  CAS  Google Scholar 

  103. Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet J-M, Maroteaux P, et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 1994;371:252–254.

    PubMed  CAS  Google Scholar 

  104. Nelson FW, Hecht JT, Horton WA, Butler IJ, Goldie WD, Miner M. Neurological basis of respiratory complications in achondroplasia. Ann Neurol 1988;24:89–93.

    PubMed  CAS  Google Scholar 

  105. Hecht JT, Francomano CA, Horton WA, Annegers JF. Mortality in achondroplasia. Am J Hum Genet 1987;41:454–464.

    PubMed  CAS  Google Scholar 

  106. Hunter AG, Hecht JT, Scott CI Jr. Standard weight for height curves in achondroplasia. Am J Med Genet 1996;62(3):255–261.

    PubMed  CAS  Google Scholar 

  107. Lemyre E, Azouz EM, Teebi AS, Glanc P, Chen MF. Bone dysplasia series. Achondroplasia, hypochondroplasia and thanatophoric dysplasia: review and update. Can Assoc Radiol J 1999;50(3):185–197.

    PubMed  CAS  Google Scholar 

  108. Arnott C, Hammond L. Deciding about leg-lengthening. Bull Med Ethics 1993;92:34–36.

    PubMed  Google Scholar 

  109. Patel MD, Filly RA. Homozygous achondroplasia: US distinction between homozygous, heterozygous, and unaffected fetuses in the second trimester. Radiology 1995;196(2):541–545.

    PubMed  CAS  Google Scholar 

  110. Lachman RS. Skeletal dysplasias. In: Taybi H, Lachman R, eds. Radiology of Syndromes, Metabolic Disorders. and Skeletal Dysplasias. Mosby, St. Louis. MO. 1996, po. 745–951.

    Google Scholar 

  111. Rousseau F, El Ghouzzi V, Delezoide A, Legeai-Mallet L, Le Merrer M, Munnich A, et al. Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I. Human Molecular Genetics 1996;5:509–512.

    PubMed  CAS  Google Scholar 

  112. Beighton P, de Paepe A, Danks D, Finidori G, Gedde-Dahl T, Goodman R, et al. International Nosology of Heritable Disorders of Connective Tissue, Berlin, 1986. Am J Med Genet 1988;29(3):581–594.

    PubMed  CAS  Google Scholar 

  113. Hecht JT, Nelson LD, Crowder E, Wang Y, Elder FFB, Harrison WR, et al. Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet 1995;10:325–329.

    PubMed  CAS  Google Scholar 

  114. Briggs MD, Hoffman SMG, King LM, Olsen AS, Mohrenweiser H, Leroy JG, et al. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet 1995;10:330–336.

    PubMed  CAS  Google Scholar 

  115. Stevens JW. Pseudoachondroplastic dysplasia: an Iowa review from human to mouse. Iowa Orthop J 1999;19:53.

    PubMed  CAS  Google Scholar 

  116. Briggs MD, Mortier GR, Cole WG, King LM, Golik SS, Bonaventure J, et al. Diverse mutations in the gene for cartilage oligomeric matrix protein in a pseudoachondroplasia-multiple epiphyseal dysplasia disease spectrum. Am J Hum Genet 1998;62:311–319.

    PubMed  CAS  Google Scholar 

  117. Van Mourik JB, Hamel BC, Mariman EC. A large family with multiple epiphyseal dysplasia linked to COL9A2 gene. Am J Med Genet 1998;77:234–240.

    PubMed  Google Scholar 

  118. Schipani E, Langman CB, Parfitt AM, Jensen GS, Kikuchi S, Kooh SW, et al. Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen’s metaphyseal chondrodysplasia. N Engl J Med 1996;335:708–714.

    PubMed  CAS  Google Scholar 

  119. Coley BL. Neoplasms of Bone and Related Conditions. 2nd ed. Paul Hocher Inc., New York, 1960.

    Google Scholar 

  120. Collins M, Shenker A. McCune-Albright Syndrome: New Insights. Curr Opin Endocrinol Diabetes 1999;6:119–125.

    Google Scholar 

  121. Albright F, Butler AM, Hamstra AJ, Smith R. Syndrome characterized by osteitis fibrosis disseminata, areas of pigmentation and endocrine dysfunction, with precocious puberty in females. N Engl J Med 1937;216:727–746.

    Google Scholar 

  122. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Freidman E, Spiegel MA. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 1991;325:1688–1695.

    PubMed  CAS  Google Scholar 

  123. Bianco P, Riminucci M, Majolagbe A, Kuznetsov SA, Collins MT, Mankani MH, et al. Mutations of the GNAS1 gene, stromal cell dysfunction, and osteomalacic changes in non-McCune-Albright fibrous dysplasia of bone. J Bone Min Res 2000:15:120–128.

    CAS  Google Scholar 

  124. Chapurlat RD, Delmas PD, Liens D, Meunier PJ. Long-term effects of intravenous pamidronate in fibrous dysplasia of bone. J Bone Min Res 1997;12(10):1746–1752.

    CAS  Google Scholar 

  125. Hopwood JJ, Morris CP. The mucopolysaccharidoses. Diagnosis, molecular genetics and treatment. Mol Biol Med 1990;7(5):381–404.

    PubMed  CAS  Google Scholar 

  126. Chen SJ, Li YW, Wang TR, Hsu JCY. Bony changes in common mucopolysaccharidoses. Acta Paed Sin 1996;37(3):178–184.

    CAS  Google Scholar 

  127. Connor JM, Evans DAP. Genetic aspects of fibrodysplasia ossificans progressiva. J Med Genet 1982; 19:35–39.

    PubMed  CAS  Google Scholar 

  128. Feldman G, Li M, Martin S, Urbanek M, Urtizberea A, Fardeau M, et al. Fibrodysplasia ossificans progressiva, a heritable disorder of severe heterotopic ossification, maps to human chromosome 4g2731. Am J Hum Genet 2000;66:128–135.

    PubMed  CAS  Google Scholar 

  129. Lucotte G, Bathelier C, Mercier G, Gerard N, Lenoir G, Semonin O, et al. Localization of the gene for fibrodysplasia ossificans progressiva (FOP) to chromosome 17q21–22. Genet Counsel 2000;11(4): 329–334.

    PubMed  CAS  Google Scholar 

  130. Connor JM, Evans DAP. Fibrodysplasia ossificans progressiva: the clinical features and natural history of 34 patients. J Bone Joint Surg 1982;64:76–83.

    CAS  Google Scholar 

  131. Smith R, Athanasou NA, Vipond SE. Fibrodysplasia (myositis) ossificans progressiva: clinicopathological features and natural history. Q J Med 1996;89:445–456.

    CAS  Google Scholar 

  132. Shafritz AB, Shore EM, Gannon FH, Zasloff MA, Taub R, Muenke M, et al. Overexpression of an osteogenic morphogen in fibrodysplasia ossificans progressiva. N Engl J Med 1996;335:555–561.

    PubMed  CAS  Google Scholar 

  133. NIH Consensus Development Panel on Optimal Calcium Intake. Optimal calcium intake. J Am Med Assoc 1994;272:1942–1948.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this chapter

Cite this chapter

DiMeglio, L.A. (2002). Pediatric Bone Disease. In: Eugster, E.A., Pescovitz, O.H. (eds) Developmental Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-156-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-156-5_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9663-5

  • Online ISBN: 978-1-59259-156-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics