Skip to main content

Transcriptional Control of the Development and Function of the Hypothalamic-Pituitary Axis

  • Chapter
Developmental Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

  • 152 Accesses

Abstract

The hypothalamic-pituitary (H-P) axis regulates many aspects of mammalian endocrine physiology by the controlled secretion of hormones. The hypothalamus is part of the diencephalon at the base of the brain beneath the third ventricle (1). It is physically located posterior to the optic chiasm and rostral to the mammillary bodies. The pituitary gland (or hypophysis) is a small organ located beneath the hypothalamus that weighs about 0.5 g in humans (2). The posterior pituitary lobe (or neurohypophysis or pars nervosa) develops directly from the brain (see below) and is connected to the hypothalamus by the infundibulum (or pituitary stalk). The anterior lobe (or adenohypophysis or pars distalis) and intermediate lobe (or pars intermedia) of the pituitary have distinct embryological origins. In the mature gland, these structures are fused to the posterior pituitary, and some cells of the anterior pituitary proliferate up and around the pituitary stalk to form the pars tuberalis. The intermediate lobe is a poorly developed structure in adult humans and is absent in birds (2). A vascular link called the portal system arises from the median eminence at the base of the hypothalamus and provides a connection for the passage of neurosecretory hormones from the hypothalamus to the anterior pituitary gland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Romer AS. The Vertebrate Body. 4th ed. (Shorter version) WB Saunders, Philadelphia, PA, 1971, pp. 554–559.

    Google Scholar 

  2. Mikimi SI. Hypophysis. In: Matsumoto A, Ishi S, eds. Atlas of Endocrine Organs: Vertebrates and Invertebrates. Springer-Verlag, New York, 1992, pp. 39–62.

    Google Scholar 

  3. Wynick D, Small CJ, Bacon A, Holmes FE, Norman M, Ormandy CJ, et al. Galanin regulates prolactin release and lactotroph proliferation. Proc Natl Acad Sei USA 1998;95:12,671–12,676.

    Google Scholar 

  4. Rinehart JF, Farquhar MG. The fine vascular organization of the pituitary gland. An electron microscopic study with histochemical correlations. Anat Rec 1955;121:207–240.

    Article  PubMed  CAS  Google Scholar 

  5. Coates P, Doniach I. Development of folliculo-stellate cells in the human pituitary. Acta Endocrinología 1988;119:16–20.

    CAS  Google Scholar 

  6. Hatton GL., Pituicytes, glia and control of terminal secretion. J Exp Biol 1988;139:67–79.

    PubMed  CAS  Google Scholar 

  7. Dubois P, El Amraoui A, Heritier A. Development and differentiation of pituitary cells. Microsc Res Tech 1997;38:98–113.

    Article  Google Scholar 

  8. Schwind J. The development of the hypophysis cerebri of the albino rat. Am J Anat 1928;41:295–319.

    Article  Google Scholar 

  9. Jacobson A, Miyamoto D, Mai S. Rathke’s pouch morphogenesis in the chick embryo. J Exp Zool 1979;207:351–366.

    Article  Google Scholar 

  10. Couly G, Le Douarin N. Mapping of the early neural primordium in quail-chick chimeras. I. Developmental relationships between placodes, facial ectoderm, and prosencephalon. Dev Biol 1985; 110:422–439.

    Article  PubMed  CAS  Google Scholar 

  11. Couly G, Le Douarin N. Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev Biol 1987;120:198–214.

    Article  PubMed  CAS  Google Scholar 

  12. Couly G, Le Douarin N. The fate map of the neural primordium at the presomitic to the 3-somite stage in the avian embryo. Development 1988;103:101–113.

    PubMed  Google Scholar 

  13. Eagleson G, Harris W. Mapping of the presumptive brain regions in the neural plate of Xenopus laevis. J Neurobiol 1990;21:427–140.

    Article  PubMed  CAS  Google Scholar 

  14. Dubois P, Hemming F. Fetal development and regulation of pituitary cell types. J Electron Microsc Tech 1991;19:2–20.

    Article  PubMed  CAS  Google Scholar 

  15. Couly G, Coltey P, Le Douarin N. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 1992;114:1–15.

    PubMed  CAS  Google Scholar 

  16. Osumi-Yamashita N, Ninomiya Y, Doi H, Eto K. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev Biol 1994;164:409–419.

    Article  PubMed  CAS  Google Scholar 

  17. Dubois P, El Amraoui A. Embryology of the pituitary gland. Trends Endo Metab 1995;6:1–7.

    Article  CAS  Google Scholar 

  18. Ikeda H, Suzuki J, Sasano N, Niizuma H. The development and morphogenesis of the human pituitary gland. AnatEmbryol 1988;178:327–336.

    Article  PubMed  CAS  Google Scholar 

  19. Rhodes S J, DiMattia GE, Rosenfeld MG. Transcriptional mechanisms in anterior pituitary cell differentiation. Curr Opin Genet Dev 1994;4:709–717.

    Article  PubMed  CAS  Google Scholar 

  20. Rhodes SJ, Rosenfeld MG. Molecular involvement of the pit-1 gene in pituitary cell commitment. J Animal Sei 1996;74/2:94–106.

    Google Scholar 

  21. Sloop KW, McCutchan Schiller A, Blanton JR Jr, Meier BC, Rohrer G, Smith TPL, Rhodes SJ. Biochemical and genetic characterization of the porcine Prophet of Pit-1 pituitary transcription factor. Mol Cell Endocrinol 2000;168:77–87.

    Article  PubMed  CAS  Google Scholar 

  22. Watanabe YG. Effects of brain and mesenchyme upon the cytogenesis of rat adenohypophysis in vitro. Cell Tissue Res 1982;227:257–266.

    Article  PubMed  CAS  Google Scholar 

  23. Watanabe YG. An organ culture study of the site of determination of ACTH and LH cells in the rat adenohypophysis. Cell Tissue Res 1982;227:267–275.

    Article  PubMed  CAS  Google Scholar 

  24. Daikoku S, Chikamori M, Adachi T, Maki Y. Effect of the basal diencephalon on the development of Rathke’s pouch in rats: a study in combined organ cultures. Dev Biol 1982;90:198–202.

    Article  PubMed  CAS  Google Scholar 

  25. Daikoku S, Chikamori M, Adachi T, Okamura Y, Nishiyama T, Tsuruo Y. Ontogenesis of hypothalamic immunoreactive ACTH cells in vivo and in vitro: role of Rathke’s pouch. Dev Biol 1983;97:81–88.

    Article  PubMed  CAS  Google Scholar 

  26. Gleiberman A, Fedtsova N, Rosenfeld MG. Tissue interactions in the induction of anterior pituitary: role of the ventral diencephalon, mesenchyme, and notochord. Dev Biol 1999;213:340–353.

    Article  PubMed  CAS  Google Scholar 

  27. Grainger R, Henry J, Saha M, Servetnick M. Recent progress on the mechanisms of embryonic lens formation. Eye 1992;6:117–122.

    Article  PubMed  Google Scholar 

  28. Takuma N, Sheng H, Furuta Y, Ward J, Sharma K, Hogan B, et al. Formation of Rathke’s pouch requires dual induction from the diencephalon. Development 1998;125:4835–4840.

    PubMed  CAS  Google Scholar 

  29. Treier M, Gleiberman A, O’Connell S, Szeto D, McMahon J, McMahon A, Rosenfeld MG. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 1998;12:1691–1704.

    Article  PubMed  CAS  Google Scholar 

  30. Ericson J, Norlin S, Jessell T, Edlund T. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 1998;125:1005–1015.

    PubMed  CAS  Google Scholar 

  31. Dasen J, O’Connell SM, Flynn S, Treier M, Gleiberman A, Szeto D, et al. Reciprocal interactions of Pitl and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell 1999;97: 587–598.

    Article  PubMed  CAS  Google Scholar 

  32. Kioussi C, O’Connell S, St-Onge L, Treier M, Gleiberman AS, Gruss P, Rosenfeld MG. Pax6 is essential for establishing ventral-dorsal cell boundaries in pituitary gland development. Proc Natl Acad Sei USA 1999;96:14,378–14,382.

    Google Scholar 

  33. Begeot M, Dubois M, Dubois P. Growth hormone and ACTH in the pituitary of normal and anencepha-lic human fetuses: immunocytochemical evidence for hypothalamic influences during development. Neuroendocrinology 1977;24:208–220.

    Article  PubMed  CAS  Google Scholar 

  34. Osamura R. Functional prenatal development of anencephalic and normal anterior pituitary glands. Acta Path Jap 1977;27:495–509.

    PubMed  CAS  Google Scholar 

  35. Pilavdzic D, Kovacs K, Asa S. Pituitary morphology in anencephalic human fetuses. Neuroendocrinology 1997;65:164–172.

    Article  PubMed  CAS  Google Scholar 

  36. Lin SC, Li S, Drolet DW, Rosenfeld MG. Pituitary ontogeny of the Snell dwarf mouse reveals Pit-1-independent and Pit-1-dependent origins of the thyrotrope. Development 1994;120:515–522.

    PubMed  CAS  Google Scholar 

  37. Nakai S, Kawano H, Yudate T, Nishi M, Kuno J, Nagata A, et al. The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev 1995;9:3109–3121.

    Article  PubMed  CAS  Google Scholar 

  38. Schonemann MD, Ryan AK, McEvilly RJ, O’Connell SM, Arias CA, Kalla KA, et al. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev 1995;9:3122–3135.

    Article  PubMed  CAS  Google Scholar 

  39. Laurent-Huck FM, Egles C, Kienlen P, Stoeckel ME, Felix JM. Expression of the c-etsl gene in the hypothalamus and pituitary during rat development. Brain Res Dev Brain Res 1996;97:107–117.

    Article  PubMed  CAS  Google Scholar 

  40. Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 1994;372:635–641.

    Article  PubMed  CAS  Google Scholar 

  41. Muscatelli F, Strom TM, Walker AP, Zanaria E, Recan D, Meindl A, et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 1994;372:672–676.

    Article  PubMed  CAS  Google Scholar 

  42. Swain A, Zanaria E, Hacker A, Lovell-Badge R, Camerino G. Mouse Daxl expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genet 1996; 12: 404–409.

    Article  PubMed  CAS  Google Scholar 

  43. Goodfellow PN, Camerino G. DAX-1, an ’antitestis’ gene. Cell Mol Life Sei 1999;55:857–863.

    CAS  Google Scholar 

  44. Li H, Zeitler P, Valerius M, Smal, K, Potter S. Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO J 1996;15:714–724.

    PubMed  CAS  Google Scholar 

  45. Labosky PA, Winnier GE, Jetton TL, Hargett L, Ryan AK, Rosenfeld MG, et al. The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milk-ejection reflex. Development 1997;124:1263–1274.

    PubMed  CAS  Google Scholar 

  46. Good DJ, Porter FD, Mahon KA, Parlow AF, Westphal H, Kirsch IR. Hypogonadism and obesity in mice with a targeted deletion of the Nhlh2 gene. Nat Genet 1997;15:397–401.

    Article  PubMed  CAS  Google Scholar 

  47. Acampora D, Postiglione MP, Avantaggiato V, Di Bonito M, Vaccarino FM, Michaud J, Simeone A. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev 1999;13:2787–2800.

    Article  PubMed  CAS  Google Scholar 

  48. Luo X, Ikeda Y, Parker K. A cell specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994;77:481–490.

    Article  PubMed  CAS  Google Scholar 

  49. Ingraham HA, Lala D, Ikeda Y, Luo X, Shen W, Nachtigal M, et al. The nuclear receptor steroidogenic factor 1 acts as multiple levels of the reproductive axis. Genes Dev 1994;8:2302–2312.

    Article  PubMed  CAS  Google Scholar 

  50. Nomura M, Bartsch S, Nawata H, Omura T, Morohashi K. An E box element is required for the expression of the ad4bp gene, a mammalian homologue of ftz-f 1 gene, which is essential for adrenal and gonadal development. J Biol Chem 1995;270:7453–7461.

    Article  PubMed  CAS  Google Scholar 

  51. Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 1999;22:125–126.

    Article  PubMed  CAS  Google Scholar 

  52. Michaud JL, Rosenquist T, May NR, Fan CM. Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM 1. Genes Dev 1998;12:3264–3275.

    Article  PubMed  CAS  Google Scholar 

  53. Oliver G, Mailhos A, Wehr R, Copeland NG, Jenkins NA, Gruss P. Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 1995;121:4045–4055.

    PubMed  CAS  Google Scholar 

  54. Wallis DE, Roessler E, Hehr U, Nanni L, Wiltshire T, Richieri-Costa A, et al. Mutations in the homeo-domain of the human SIX3 gene cause holoprosencephaly. Nat Genet 1999;22:196–198.

    Article  PubMed  CAS  Google Scholar 

  55. Kimura S, Hará Y, Pineau T, Fernandez-Salguero P, Fox C, Ward J, Gonzalez F. The T/ebp null mouse: thyroid-specific enhancer binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain and pituitary. Genes Dev 1996;10:60–69.

    Article  PubMed  CAS  Google Scholar 

  56. Price M, Lazzaro D, Pohl T, Matte MG, Rüther U, Olivo JC, et al. Regional expression of the homeobox gene Nkx-2.2 in the developing mammalian forebrain. Neuron 1992;8:241–255.

    Article  PubMed  CAS  Google Scholar 

  57. Schonemann MD, Ryan AK, Erkman L, McEvilly RJ, Bermingham J, Rosenfeld MG. POU domain factors in neural development. Adv Exp Med Biol 1998;449:39–53.

    Article  PubMed  CAS  Google Scholar 

  58. Jacobson EM, Li P, Leon-del-Rio A, Rosenfeld MG, Aggarwal AK. Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. Genes Dev 1997;11:198–212.

    Article  PubMed  CAS  Google Scholar 

  59. Wegner M, Drolet DW, Rosenfeld MG. POU-Domain proteins: structure and function of developmental regulators. Curr Op Cell Biol 1993;5:488.

    Article  PubMed  CAS  Google Scholar 

  60. Ojeda SR, Hill J, Hill DF, Costa ME, Tapia V, Cornea A, Ma YJ. The Oct-2 POU domain gene in the neuroendocrine brain: A transcriptional regulator of mammalian puberty. Endocrinology 1999; 140: 3774–3789.

    Article  PubMed  CAS  Google Scholar 

  61. Wierman ME, Xiong X, Kepa JK, Spaulding AJ, Jacobsen BM, Fang Z, et al. Repression of gonado-tropin-releasing hormone promoter activity by the POU homeodomain transcription factor SCIP/Oct-6/ Tst-1: a regulatory mechanism of phenotype expression? Mol Cell Biol 1997;17:1652–1665.

    PubMed  CAS  Google Scholar 

  62. Valerius MT, Li H, Stock JL, Weinstein M, Kaur S, Singh G, Potter SS. Gsh-1: a novel murine homeobox gene expressed in the central nervous system. Dev Dyn 1995;203:337–351.

    Article  PubMed  CAS  Google Scholar 

  63. Li H, Schrick JJ, Fewell GD, MacFarland KL, Witte DP, Bodenmiller DM, et al. Novel strategy yields candidate Gsh-1 homeobox gene targets using hypothalamus progenitor cell lines. Dev Bio 1999;211: 64–76.

    Article  CAS  Google Scholar 

  64. Li CM, Yan RT, Wang SZ. Misexpression of a bHLH gene, cNSCLl, results in abnormal brain development. Dev Dyn 1999;215:238–247.

    Article  PubMed  CAS  Google Scholar 

  65. Lala DS, Ikeda Y, Luo X, Baity LA, Meade JC, Parker KL. A cell-specific nuclear receptor regulates the steroid hydroxylases. Steroids 1995;60:10–14.

    Article  PubMed  CAS  Google Scholar 

  66. Ikeda Y, Luo X, Abbud R, Nilson JH, Parker KL. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol Endocrinol 1995;9:478–486.

    Article  PubMed  CAS  Google Scholar 

  67. Barnhart KM, Mellon PL. The orphan nuclear receptor, steroidogenic factor-1, regulates the glycoprotein hormone alpha-subunit gene in pituitary gonadotropes. Mol Endocrinol 1994;8:878–885.

    Article  PubMed  CAS  Google Scholar 

  68. Ikeda Y, Swain A, Weber TJ, Hentges KE, Zanaria E, Lalli E, et al. Steroidogenic factor 1 and Dax-1 colocalize in multiple cell lineages: potential links in endocrine development. Mol Endocrinol 1996; 10:1261–1272.

    Article  PubMed  CAS  Google Scholar 

  69. Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD, Ingraham HA. Wilm’ s tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex specific gene expression. Cell 1998;93:445–454.

    Article  PubMed  CAS  Google Scholar 

  70. Merke DP, Tajima T, Baron J, Cutler GB Jr. Hypogonadotropic hypogonadism in a female caused by an X-linked recessive mutation in the DAX1 gene. N Engl J Med 1999;340:1248–1252.

    Article  PubMed  CAS  Google Scholar 

  71. Bovolenta P, Mallamaci A, Puelles L, Boncinelli E. Expression pattern of cSix3, a member of the Six/ sine oculis family of transcription factors. Mech Dev 1998;70:201–203.

    Article  PubMed  CAS  Google Scholar 

  72. Leppert GS, Yang JM, Sundin OH. Sequence and location of SIX3, a homeobox gene expressed in the human eye. Ophthalmic Genet 1999;20:7–21.

    Article  PubMed  CAS  Google Scholar 

  73. Lee SL, Sadovsky Y, Swirnoff AH, Polish JA, Goda P, Gavrilina G, Milbrandt J. Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science 1996;273:1219–1221.

    Article  PubMed  CAS  Google Scholar 

  74. Topilko P, Schneider-Maunoury S, Levi G, Trembleau A, Gourdji D, Driancourt MA, et al. Multiple pituitary and ovarian defects in Krox-24 (NGFI-A, Egr-1)-targeted mice. Mol Endocrinol 1998; 12: 107–122.

    Article  PubMed  CAS  Google Scholar 

  75. Scully KM, Gleiberman AS, Lindzey J, Lubahn DB, Korach KS, Rosenfeld MG. Role of estrogen receptor-alpha in the anterior pituitary gland. Mol Endocrinol 1997;11:674–681.

    Article  PubMed  CAS  Google Scholar 

  76. Gordon DF, Lewis SR, Haugen BR, James RA, McDermott MT, Wood WM, Ridgway EC. Pit-1 and GATA-2 interact and functionally cooperate to activate the thyrotropin beta-subunit promoter. J Biol Chem 1997;272:24,339–24,347.

    Google Scholar 

  77. Thor S, Ericson J, Brannstrom T, Edlund T. The homeodomain LIM protein Isl-1 is expressed in subsets of neurons and endocrine cells in the adult rat. Neuron 1991;7:881–889.

    Article  PubMed  CAS  Google Scholar 

  78. Varela-Echavarria A, Pfaff SL, Guthrie S. Differential expression of LIM homeobox genes among motor neuron subpopulations in the developing chick brain stem. Mol Cell Neurosci 1996;8:242–257.

    Article  PubMed  CAS  Google Scholar 

  79. Sheng HZ, Zhadanov AB, Mosinger B Jr, Fujii T, Bertuzzi S, Grinberg A, et al. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 1996;272:1004–1007.

    Article  PubMed  CAS  Google Scholar 

  80. Sheng HZ, Moriyama K, Yamashita T, Li H, Potter SS, Mahon KA, Westphal H. Multistep control of pituitary organogenesis. Science 1997;278:1809–1812.

    Article  PubMed  CAS  Google Scholar 

  81. Netchine I, Sobrier ML, Krude H, Schnabel D, Maghnie M, Marcos E, et al. Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat Genet 2000;25:182–186.

    Article  PubMed  CAS  Google Scholar 

  82. Sarapura VD, Strouth HL, Gordon DF, Wood WM, Ridgway EC. Msxl is present in thyrotropic cells and binds to a consensus site on the glycoprotein hormone alpha-subunit promoter. Mol Endocrinol 1997;11:1782–1794.

    Article  PubMed  CAS  Google Scholar 

  83. Poulin G, Turgeon B, Drouin J. NeuroDl/beta2 contributes to cell-specific transcription of the proopiomelanocortin gene. Mol Cell Biol 1997;17:6673–6682.

    PubMed  CAS  Google Scholar 

  84. Jiang Y, Yu VC, Buchholz F, O’Connell S, Rhodes SJ, Candeloro C, et al. A novel family of Cys-Cys, His-Cys zinc finger transcription factors expressed in developing nervous system and pituitary gland. J Biol Chem 1996;271:10,723–10,730.

    Google Scholar 

  85. Acampora D, Mazan S, Tuorto F, Avantaggiato V, Tremblay JJ, Lazzaro D, et al. Transient dwarfism and hypogonadism in mice lacking Otxl reveal prepubescent stage-specific control of pituitary levels of GH, FSH and LH. Development 1998;125:1229–1239.

    PubMed  CAS  Google Scholar 

  86. Li S, Crenshaw EB III, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 1990; 347:528–533.

    Article  PubMed  CAS  Google Scholar 

  87. Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O’Connell SM, et al. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 1996;384: 327–333.

    Article  PubMed  CAS  Google Scholar 

  88. Lanctot C, Moreau A, Chamberland M, Tremblay ML, Drouin J. Hindlimb patterning and mandible development require the Ptxl gene. Development 1999;126:1805–1810.

    PubMed  CAS  Google Scholar 

  89. Szeto DP, Rodriguez-Esteban C, Ryan AK, O’Connell SM, Liu F, Kioussi C, et al. Role of the Bicoid-related homeodomain factor Pitxl in specifying hindlimb morphogenesis and pituitary development. Genes Dev 1999;13:484–494.

    Article  PubMed  CAS  Google Scholar 

  90. Ryan AK, Blumberg B, Rodriguez-Esteban C, Yonei-Tamura S, Tamura K, Tsukui T, et al. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 1998;394:545–551.

    Article  PubMed  CAS  Google Scholar 

  91. Logan M, Pagan-Westphal SM, Smith DM, Paganessi L, Tabin CJ. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 1998;94:307–317.

    Article  PubMed  CAS  Google Scholar 

  92. Piedra ME, Icardo JM, Albajar M, Rodriguez-Rey JC, Ros MA. Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 1998;94:319–324.

    Article  PubMed  CAS  Google Scholar 

  93. Yoshioka H, Meno C, Koshiba K, Sugihara M, Itoh H, Ishimaru Y, et al. Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 1998;94: 299–305.

    Article  PubMed  CAS  Google Scholar 

  94. Lu MF, Pressman C, Dyer R, Johnson RL, Martin JF. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 1999;401:276–278.

    Article  PubMed  CAS  Google Scholar 

  95. Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, Liu F, et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 1999;401:279–282.

    Article  PubMed  CAS  Google Scholar 

  96. Rhodes SJ, Chen R, DiMattia GE, Scully KM, Kalla KA, Lin SC, et al. A tissue-specific enhancer confers Pit-1-dependent morphogen inducibility and autoregulation on the pit-1 gene. Genes Dev 1993; 7:913–932.

    Article  PubMed  CAS  Google Scholar 

  97. Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Martensson IL, et al. Mutations in the homeobox gene HESX 1/Hesx 1 associated with septo-optic dysplasia in human and mouse. Nat Genet 1998;19:125–133.

    Article  PubMed  CAS  Google Scholar 

  98. Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Wales JK, et al. HESX1: a novel gene implicated in a familial form of septo-optic dysplasia. Acta Paediatr Suppl 1999;88:49–54.

    Article  PubMed  CAS  Google Scholar 

  99. Gothe S, Wang Z, Ng L, Kindblom JM, Barros AC, Ohlsson C, et al. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev 1999;13:1329–1341.

    Article  PubMed  CAS  Google Scholar 

  100. Drolet DW, Scully KM, Simmons DM, Wegner M, Chu KT, Swanson LW, Rosenfeld MG. TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis, defines a new class of leucine zipper proteins. Genes Dev 1991;5:1739–1753.

    Article  PubMed  CAS  Google Scholar 

  101. Lipkin SM, Naar AM, Kalla KA, Sack RA, Rosenfeld MG. Identification of a novel zinc finger protein binding a conserved element critical for Pit-1 -dependent growth hormone gene expression. Genes Dev 1993;7:1674–1687.

    Article  PubMed  CAS  Google Scholar 

  102. Van der Heyden TC, Wojtkiewicz PW, Voss TC, Mangin TM, Harrelson Z, Ahlers KM, et al. Mouse growth hormone transcription factor Zn-16: unique bipartite structure containing tandemly repeated zinc finger domains not reported in rat Zn-15. Mol Cell Endocrinol 2000;159:89–98.

    Article  Google Scholar 

  103. Gage PJ, Suh H, Camper SA. The bicoid-related Pitx gene family in development. Mamm Genome 1999;10:197–200.

    Article  PubMed  CAS  Google Scholar 

  104. Drouin J, Lamolet B, Lamonerie T, Lanctot C, Tremblay JJ. The PTX family of homeodomain transcription factors during pituitary development. Mol Cell Endocrinol 1998;140:31–36.

    Article  PubMed  CAS  Google Scholar 

  105. Lamonerie T, Tremblay JJ, Lanctot C, Therrien M, Gauthier Y, Drouin J. Ptx 1, a bicoid-related horneo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev 1996; 10:1284–1295.

    Article  PubMed  CAS  Google Scholar 

  106. Szeto DP, Ryan AK, O’Connell SM, Rosenfeld MG. P-OTX: a PIT-1-interacting homeodomain factor expressed during anterior pituitary gland development. Proc Natl Acad Sei USA 1996;93:7706–7710.

    Article  CAS  Google Scholar 

  107. Lanctot C, Lamolet B, Drouin J. The bicoid-related homeoprotein Ptxl defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development 1997; 124:2807–2817.

    PubMed  CAS  Google Scholar 

  108. Lanctot C, Gauthier Y, Drouin J. Pituitary homeobox 1 (Ptxl) is differentially expressed during pituitary development. Endocrinology 1999;140:1416–1422.

    Article  PubMed  CAS  Google Scholar 

  109. Tremblay JJ, Lanctot C, Drouin J. The pan-pituitary activator of transcription, Ptx 1 (pituitary homeobox 1), acts in synergy with SF-1 and Pitl and is an upstream regulator of the Lim-homeodomain gene Lim3/Lhx3. Mol Endocrinol 1998;12:428–441.

    Article  PubMed  CAS  Google Scholar 

  110. Poulin G, Lebel M, Chamberland M, Paradis FW, Drouin J. Specific protein-protein interaction between basic helix-loop-helix transcription factors and homeoproteins of the Pitx family. Mol Cell Biol 2000; 20:4826–4837.

    Article  PubMed  CAS  Google Scholar 

  111. Tremblay JJ, Goodyer CG, Drouin J. Transcriptional properties of ptx 1 and ptx2 isoforms. Neuroendo-crinology 2000;71:277–286.

    Article  CAS  Google Scholar 

  112. Gage P, Camper S. Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum Mol Genet 1991;6:457–464.

    Article  Google Scholar 

  113. Tremblay JJ, Drouin J. Egr-1 is a downstream effector of GnRH and synergizes by direct interaction with Ptxl and SF-1 to enhance luteinizing hormone beta gene transcription. Mol Cell Biol 1999; 19: 2567–2576.

    PubMed  CAS  Google Scholar 

  114. Hobert O, Westphal H. Functions of LIM-homeobox genes. Trends Genet 2000;16:75–83.

    Article  PubMed  CAS  Google Scholar 

  115. Seidah NG, Barale JC, Marcinkiewicz M, Mattei MG, Day R, Chretien M. The mouse homeoprotein mLIM-3 is expressed early in cells derived from the neuroepithelium and persists in adult pituitary. DNA Cell Biol 1994;13:1163–1180.

    Article  PubMed  CAS  Google Scholar 

  116. Zhadanov AB, Bertuzzi S, Taira M, Dawid IB, Westphal H. Expression pattern of the murine LIM class homeobox gene Lhx3 in subsets of neural and neuroendocrine tissues. Dev Dyn 1995;202: 354–364.

    Article  PubMed  CAS  Google Scholar 

  117. Bach I, Rhodes SJ, Pearse RV II, Heinzel T, Gloss B, Scully KM, et al. P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sei USA 1995;92:2720–2724.

    Article  CAS  Google Scholar 

  118. Meier BC, Price JR, Parker GE, Bridwell JL, Rhodes SJ. Characterization of the porcine Lhx3/LIM-3/P-Lim LIM homeodomain transcription factor. Mol Cell Endocrinol 1999;147:65–74.

    Article  PubMed  CAS  Google Scholar 

  119. Sloop KW, Meier BC, Bridwell JL, Parker GE, Schiller AM, Rhodes SJ. Differential activation of pituitary hormone genes by human Lhx3 isoforms with distinct DNA binding properties. Mol Endocrinol 1999;13:2212–2225.

    Article  PubMed  CAS  Google Scholar 

  120. Glasgow E, Karavanov A A, Dawid IB. Neuronal and neuroendocrine expression of lim3, a LIM class homeobox gene, is altered in mutant zebrafish with axial signaling defects. Dev Biol 1997; 192:405–419.

    Article  PubMed  CAS  Google Scholar 

  121. Thor S, Andersson SGE, Tomlinson A, Thomas JB. A LIM-homeodomain combinatorial code for motor neuron pathway selection. Nature 1999;397:76–80.

    Article  PubMed  CAS  Google Scholar 

  122. Bach I, Carriére C, Ostendorff HP, Anderson B, Rosenfeld MG. A family of LIM domain-associated cofactors confer transcriptional synergism between LIM and Otx homeodomain proteins. Genes Dev 1997;11:1370–1380.

    Article  PubMed  CAS  Google Scholar 

  123. Howard PW, Maurer RA. Identification of a conserved protein that interacts with specific LIM homeodomain transcription factors. J Biol Chem 2000;275:13,336–13,342.

    Google Scholar 

  124. Glenn DJ, Maurer RA. MRG1 binds to the LIM domain of Lhx2 and may function as a coactivator to stimulate glycoprotein hormone alpha-subunit gene expression. J Biol Chem 1999;274:36,159–36,167.

    Google Scholar 

  125. Roberson MS, Schoderbek WE, Tremml G, Maurer RA. Activation of the glycoprotein hormone oc-subunit promoter by a LIM-homeodomain transcription factor. Mol Cell Biol 1994;14:2985–2993.

    PubMed  CAS  Google Scholar 

  126. Brinkmeier ML, Gordon DF, Dowding JM, Saunders TL, Kendall SK, Sarapura VD, et al. Cell-specific expression of the mouse glycoprotein hormone-alpha subunit gene requires multiple interacting DNA elements in transgenic mice and cultured cells. Mol Endocrinol 1998;12:622–633.

    Article  PubMed  CAS  Google Scholar 

  127. Simmons DM, Voss JW, Ingraham HA, Holloway JM, Broide RS, Rosenfeld MG, Swanson LW. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other transcription factors. Genes Dev 1990;4:695–711.

    Article  PubMed  CAS  Google Scholar 

  128. Malagon MM, Garrido JC, Dieulois C, Hera C, Castrillo JL, Dobado-Berrios PM, Gracia-Navarro F. Expression of the pituitary transcription factor GHF-l/PIT-1 in cell types of the adult porcine adeno-hypophysis. J Histochem Cytochem 1996;44:621–627.

    Article  PubMed  CAS  Google Scholar 

  129. Fofanova O, Takamura N, Kinoshita E, Yoshimoto M, Tsuji Y, Peterkova V, et al. Rarity of Pit-1 involvement in children from Russia with combined hormone deficiency. Am J Med Genet 1998;77: 360–365.

    Article  PubMed  CAS  Google Scholar 

  130. Ohta K, Nobukuni Y, Mitsubuchi H, Fujimoto S, Matsuo N, Inagaki H, et al. Mutations in the Pit-1 gene in children with combined pituitary hormone deficiency. Biochem Biophys Res Commun 1992; 189: 851–855.

    Article  PubMed  CAS  Google Scholar 

  131. Pellegrini-Bouiller I, Belicar P, Barlier A, Gunz G, Charvet J, Jaquet P, et al. A new mutation of the gene encoding the transcription factor Pit-1 is responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab 1996;81:2790–2796.

    Article  PubMed  CAS  Google Scholar 

  132. Pfäffle R, DiMattia G, Parks J, Brown M, Wit J, Jansen M, et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 1992;257:1118–1121.

    Article  PubMed  Google Scholar 

  133. Tatsumi K, Miyai K, Notomi T, Kaibe K, Amino N, et al. Cretinism with combined hormone deficiency caused by a mutation in the Pit-1 gene. Nat Genet 1992;1:56–58.

    Article  PubMed  CAS  Google Scholar 

  134. Brown M, Parks J, Adess M, Rich B, Rosenthal I, Voss T, et al. Central hypothyroidism reveals compound heterozygous mutations in the Pit-1 gene. Horm Res 1998;49:98–102.

    Article  PubMed  CAS  Google Scholar 

  135. Bakker B, Jansen M, Hendriks-Stegeman B. A new mutation in the Pit-1 gene, discovered by the neonatal congenital hypothyroidism (CH) screening program. Horm Res 1997;201:161.

    Google Scholar 

  136. Botero D, Brue T, Cohen L, Hashimoto Y, Zanger K, Radovick S. Defective interaction of a mutant Pit-1, K216E, with CBP inhibits human prolactin gene expression. Abstracts of 2000 Endocrine Society Meeting, p. 168, The Endocrine Society Press, Bethesda, MD.

    Google Scholar 

  137. Pernasetti F, Milner R, Al Ashwal A, Zegher F, Chavez V, Müller M, Martial J. Proser: a novel recessive mutation of the Pit-1 gene in seven middle eastern children with growth hormone, prolactin, and thyrotropin deficiency. J Clin Endocrinol Metab 1998;83:2079–2083.

    Article  PubMed  CAS  Google Scholar 

  138. Irie Y, Tatsumi K, Ogawa M, Kamijo T, Preeyasombat C, Suprasongsin C, Amino N. A novel E250X mutation of the Pit-1 gene in a patient with combined pituitary hormone deficiency. Endocr J 1995; 42:351–354.

    Article  PubMed  CAS  Google Scholar 

  139. Radovick S, Nations M, Du Y, Berg L, Weintraub B, Wondisford F. A mutation in the POU-homeo-domain of Pit-1 responsible for combined pituitary hormone deficiency. Science 1992;257:1115–1118.

    Article  PubMed  CAS  Google Scholar 

  140. Aarskog D, Eiken H, Bjerknes R, Myking O. Pituitary dwarfism in the R271W Pit-1 gene mutation. Eur J Pediatr 1997;156:829–834.

    Article  PubMed  CAS  Google Scholar 

  141. Ward L, Chavez M, Huot C, Lecocq P, Collu R, Decarie J, et al. Severe congenital hypopituitarism with low prolactin levels and age-dependent anterior pituitary hypoplasia: a clue to a Pit-1 mutation. J Pediatr 1998;132:1036–1038.

    Article  PubMed  CAS  Google Scholar 

  142. Arnhold I, Nery M, Brown M, Voss T, Van der Heyden T, Adess M, et al. Clinical and molecular characterization of a Brazilian patient with Pit-1 deficiency. J Pediatr Endocrinol Metab 1998; 11:623–630.

    Article  PubMed  CAS  Google Scholar 

  143. Martineli A, Braga M, De Lacerda L, Raskin S, Graf H. Description of a Brazilian patient bearing the R271W Pit-1 gene mutation. Thyroid 1998;8:299–304.

    Article  Google Scholar 

  144. Holl R, Pfäffle R, Kim C, Sorgo W, Teller W, Heimann G. Combined pituitary deficiencies of growth hormone, thyroid stimulating hormone and prolactin due to Pit-1 gene mutation: a case report. Eur J Pediatr 1997;156:835–837.

    Article  PubMed  CAS  Google Scholar 

  145. Okamoto N, Wada Y, Ida S, Koga R, Ozono K, Chiyo H, et al. Monoallelic expression of normal mRNA in the Pit-1 mutation heterozygotes with normal phenotype and biallelic expression in the abnormal phenotype. Hum Mol Genet 1994;3:1565–1568.

    Article  PubMed  CAS  Google Scholar 

  146. Sakamoto S, Kitagawa Y, Muraki T, Inoue K, Sakai T. Immunohistochemical Evidence of Two Independent Thyrotrope Cell Lineages. Abstracts of 2000 Endocrine Society Meeting, p. 385.

    Google Scholar 

  147. Duquesnoy P, Roy A, Dastot F, Ghali I, Teinturier C, Netchine I, et al. Human Prop-1: cloning, mapping, genomic structure. Mutations in familial combined pituitary hormone deficiency. FEBS Lett 1998;437:216–220.

    Article  PubMed  CAS  Google Scholar 

  148. Deladoey J, Fliick C, Büyükgebiz A, Kuhlmann BV, Eblé A, Hindmarsh PC, et al. “Hotspot” in the PROP 1 gene responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab 1999;84: 1645–1650.

    Article  PubMed  CAS  Google Scholar 

  149. Fofanova O, Takamura N, Kinoshita E, Parks JS, Brown M, Peterkova V, et al. A mutational hot spot in the PROP-1 gene in Russian children with combined pituitary hormone deficiency. Pituitary 1998; 1:45–49.

    Article  PubMed  CAS  Google Scholar 

  150. Fofanova O, Takamura N, Kinoshita E, Parks JS, Brown M, Peterkova V, et al. Compound heterozygous deletion of the PROP-1 gene in children with combined pituitary hormone deficiency. J Clin Endocrinol Metab 1998;83:2601–2604.

    Article  PubMed  CAS  Google Scholar 

  151. Fofanova O, Takamura N, Kinoshita E, Vorontsov A, Vladimirova V, Dedov I, et al. MR imaging of the pituitary gland in children and young adults with congenital combined pituitary hormone deficiency associated with PROPl mutations. AJR Am J Roentgenol 2000;174:555–559.

    PubMed  CAS  Google Scholar 

  152. Krzisnik C, Kolacio Z, Battelino T, Brown M, Parks JS, Laron Z. The “little people” of the island of Krk-revisited. Etiology of hypopituitarism revealed. J Endo Genet 1999;1:9–19.

    Google Scholar 

  153. Vallette-Kasic S, Barlier A, Manavela M, Teinturier C, Brue T. Two hot spots in the PROPl gene of patients with multiple pituitary hormone deficiency. Abstracts of 2000 Endocrine Society Meeting, p. 448, The Endocrine Society Press, Bethesda, MD.

    Google Scholar 

  154. Osorio M, Kopp P, Marui S, Latronico A, Mendonca B, Arnhold I. A novel mutation of a highly conserved residue (F88S) in the homeodomain of Prop 1 impairs DNA-binding and causes combined pituitary hormone deficiency. Abstracts of 2000 Endocrine Society Meeting, p. 510, The Endocrine Society Press, Bethesda, MD.

    Google Scholar 

  155. Vieira TC, Silva M, Cerutti J, Borges M, Brunner E, Abucham J. A novel mutation Arg99Gln in the hot spot region of Prop-1 gene causing familial combined pituitary hormone deficiency. Abstracts of 2000 Endocrine Society Meeting, p. 538, The Endocrine Society Press, Bethesda, MD.

    Google Scholar 

  156. Wu W, Cogan J, Pfäffle R, Dasen J, Frisch H, O’Connell S, et al. Mutations in PROPl cause familial combined pituitary hormone deficiency. Nat Genet 1998;18:147–149.

    Article  PubMed  CAS  Google Scholar 

  157. Pernasetti F, Toledo S, Vasilyev V, Hayashida C, Cogan J, Ferrari C, et al. Impaired adrenocorticotro-pin-adrenal axis in combined pituitary hormone deficiency caused by a two-base pair deletion (301–302delAG) in the prophet of Pit-1 gene. J Clin Endocrinol Metab 2000;85:390–397.

    Article  PubMed  CAS  Google Scholar 

  158. Takamura N, Fofanova O, Kinoshita E, Yamashita S. Gene analysis of PROPl in dwarfism with combined pituitary hormone deficiency. Growth Horm IGF Res 1999;9:12–17.

    Article  PubMed  CAS  Google Scholar 

  159. Nogueira C, Sabacan L, Jameson J, Medeiros-Neto G, Kopp P. Combined pituitary hormone deficiency in an inbred Brazilian kindred associated with a mutation in the PROP-1 gene. Mol Genet Metab 1999;67:58–61.

    Article  PubMed  CAS  Google Scholar 

  160. Rosenbloom AL, Almonte AS, Brown MR, Fisher DA, Baumbach L, Parks JS. Clinical and biochemical phenotype of familial anterior hypopituitarism from mutation of the PROP 1 gene. J Clin Endocrinol Metab 1999;84:50–57.

    Article  PubMed  CAS  Google Scholar 

  161. Cogan J, Wu W, Phillips J III, Arnhold I, Agapito A, Fofanova O, et al. The PROPl 2-base pair deletion is a common cause of combined pituitary hormone deficiency. J Clin Endocrinol Metab 1998;83: 3346–3349.

    Article  PubMed  CAS  Google Scholar 

  162. Mendonca BB, Osorio MG, Latronico AC, Estefan V, Lo LS, Arnhold IJ. Longitudinal hormonal and pituitary imaging changes in two females with combined pituitary hormone deficiency due to deletion of A301,G302 in the PROPl gene. J Clin Endocrinol Metab 1999;84:942–945.

    Article  PubMed  CAS  Google Scholar 

  163. Fliick C, Deladoey J, Rutishauser K, Eble A, Marti U, Wu W, Mullis P. Phenotypic variability in familial combined pituitary hormone deficiency caused by a PROPl gene mutation resulting in the substitution of Arg—>Cys at codon 120(R120C). J Clin Endocrinol Metab 1998;83:3727–3734.

    Article  Google Scholar 

  164. Tang K, Bartke A, Gardiner CS, Wagner TE, Yun JS. Gonadotropin secretion, synthesis, and gene expression in human growth hormone transgenic mice and in Ames dwarf mice. Endocrinology 1993; 132:2518–2524.

    Article  PubMed  CAS  Google Scholar 

  165. Andersen B, Pearse II RV, Jenne K, Sornson M, Lin SC, Bartke A, Rosenfeld MG. The Ames dwarf gene is required for Pit-1 gene activation. Dev Biol 1995;172:495–503.

    Article  PubMed  CAS  Google Scholar 

  166. Gage PJ, Lossie AC, Scarlett LM, Lloyd RV, Camper SA. Ames dwarf mice exhibit somatotrope commitment but lack growth hormone-releasing factor response. Endocrinology 1995; 136:1161–1167.

    Article  PubMed  CAS  Google Scholar 

  167. Gage PJ, Roller ML, Saunders TL, Scarlett LM, Camper SA. Anterior pituitary cells defective in the cell-autonomous factor, df, undergo cell lineage specification but not expansion. Development 1996; 122:151–160.

    PubMed  CAS  Google Scholar 

  168. Gage PJ, Brinkmeier ML, Scarlett LM, Knapp LT, Camper SA, Mahon KA. The Ames dwarf gene, df, is required early in pituitary ontogeny for the extinction of Rpx transcription and initiation of lineage-specific cell proliferation. Mol Endocrinol 1996;10:1570–1581.

    Article  PubMed  CAS  Google Scholar 

  169. Thomas PQ, Johnson BV, Rathjen J, Rathjen PD. Sequence, genomic organization, and expression of the novel homeobox gene Hesxl. J Biol Chem 1995;270:3869–3875.

    Article  PubMed  CAS  Google Scholar 

  170. Hermesz E, Mackem S, Mahon KA. Rpx: a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke’s pouch of the mouse embryo. Development 1996;122:41–52.

    PubMed  CAS  Google Scholar 

  171. Gehring WJ, Ikeo K. Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 1999; 15: 371–377.

    Article  PubMed  CAS  Google Scholar 

  172. Terzic J, Saraga-Babic M. Expression pattern of PAX3 and PAX6 genes during human embryogenesis. Int J Dev Biol 1999;43:501–508.

    PubMed  CAS  Google Scholar 

  173. Bentley CA, Zidehsarai MP, Grindley JC, Parlow AF, Barth-Hall S, Roberts VJ. Pax6 is implicated in murine pituitary endocrine function. Endocrine 1999;10:171–177.

    Article  PubMed  CAS  Google Scholar 

  174. Dohrmann C, Gruss P, Lemaire L. Pax genes and the differentiation of hormone-producing endocrine cells in the pancreas. Mech Dev 2000;92:47–54.

    Article  PubMed  CAS  Google Scholar 

  175. Liu M, Pleasure SJ, Collins AE, Noebels JL, Naya FJ, Tsai MJ, Lowenstein DH. Loss of BETA2/ NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc Natl Acad Sei USA 2000;97:865–870.

    Article  CAS  Google Scholar 

  176. Pelletier G, Labrie C, Labrie F. Localization of oestrogen receptor alpha, oestrogen receptor beta and androgen receptors in the rat reproductive organs. J Endocrinol 2000;165:359–370.

    Article  PubMed  CAS  Google Scholar 

  177. Semina E, Reiter R, Leysens N, Lee W, Alward M, Small K, et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 1996;14:392–399.

    Article  PubMed  CAS  Google Scholar 

  178. Doward W, Perveen R, Lloyd IC, Ridgway AE, Wilson L, Black GC. A mutation in the RIEG1 gene associated with Peters’ anomaly. J Med Genet 1999;36:152–155.

    PubMed  CAS  Google Scholar 

  179. Kulak SC, Kozlowski K, Semina EV, Pearce WG, Walter MA. Mutation in the RIEG1 gene in patients with iridogoniodysgenesis syndrome. Hum Mol Genet 1998;7:1113–1117.

    Article  PubMed  CAS  Google Scholar 

  180. Alward WL, Semina EV, Kalenak JW, Heon E, Sheth BP, Stone EM, Murray JC. Autosomal dominant iris hypoplasia is caused by a mutation in the Rieger syndrome (RIEG/PITX2) gene. Am J Ophthalmol 1998;125:98–100.

    Article  PubMed  CAS  Google Scholar 

  181. Amendt B, Sutherland L, Semina E, Russo A. The molecular basis of Rieger syndrome. J Biol Chem 1998;273:20,066–20,072.

    Google Scholar 

  182. Sloop KW, Showalter AD, Von Kap-Herr C, Pettenati MJ, Rhodes SJ. Analysis of the human LHX3 neuroendocrine transcription factor gene and mapping to the subtelomeric region of chromosome 9. Gene 2000;245:237–243.

    Article  PubMed  CAS  Google Scholar 

  183. Sloop KW, Walvoord EC, Showalter AD, Pescovitz OH, Rhodes SJ. Molecular analysis of LHX3 and PROP-1 in pituitary hormone deficiency patients with posterior pituitary ectopia. J Clin Endo Metab 2000;85:2701–2708.

    Article  CAS  Google Scholar 

  184. Ohta K, Nobukuni Y, Mitsubuchi H, Ohta T, Tohma T, Jinno Y, et al. Characterization of the gene encoding human pituitary-specific transcription factor, Pit-1. Gene 1992;122:387–388.

    Article  PubMed  CAS  Google Scholar 

  185. Cohen LE, Wondisford FE, Salvatoni A, Maghnie M, Brucker-Davis F, Weintraub BD, Radovick S. A “hotspot” in the Pit-1 gene responsible for combined pituitary hormone deficiency: clinical and molecular correlates. J Clin Endocrinol Metab 1995;80:679–684.

    Article  PubMed  CAS  Google Scholar 

  186. Cohen LE, Hashimoto Y, Zanger K, Wondisford F, Radovick S. CREB-independent regulation by CBP is a novel mechanism of human growth hormone gene expression. J Clin Invest 1999; 104:1123–1130.

    Article  PubMed  CAS  Google Scholar 

  187. Nakamura Y, Usui T, Mizuta H, Murabe H, Muro S, Suda M, et al. Characterization of Prophet of Pit-1 gene expression in normal pituitary and pituitary adenomas in humans. J Clin Endocrinol Metab 1999;84:1414–1419.

    Article  PubMed  CAS  Google Scholar 

  188. Essner J, Branford W, Zhang J, Yost H. Mesendoderm and left-right brain and gut development are differentially regulated by pitx2 isoforms. Development 2000;127:1081–1093.

    PubMed  CAS  Google Scholar 

  189. Schanke JT, Conwell CM, Durning M, Fisher JM, Golos TG. Pit-1/growth hormone factor 1 splice variant expression in the rhesus monkey pituitary gland and the rhesus and human placenta. J Clin Endocrinol Metab 1997;82:800–807.

    Article  PubMed  CAS  Google Scholar 

  190. Kurima K, Weatherly KL, Sharova L, Wong EA. Synthesis of turkey Pit-1 mRNA variants by alternative splicing and transcription initiation. DNA Cell Biol 1998;17:93–103.

    Article  PubMed  CAS  Google Scholar 

  191. Majumdar S, Irwin DM, Elsholtz HP. Selective constraints on the activation domain of transcription factor Pit-1. Proc Natl Acad Sei USA 1996;93:10,256–10,261.

    Google Scholar 

  192. Voss JV, Wilson L, Rhodes SJ, Rosenfeld MG. An alternative RNA splicing product reveals modular binding and non-modular transcriptional activities of the Pit-1 POU-specific domain. Mol Endocrinol 1993;7:1551–1560.

    Article  PubMed  CAS  Google Scholar 

  193. Voss JW, Yao TP, Rosenfeld MG. Alternative translation initiation site usage results in two structurally distinct forms of Pit-1. J Biol Chem 1991;266:12,832–12,835.

    Google Scholar 

  194. Zhadanov AB, Copeland NG, Gilbert DJ, Jenkins NA, Westphal H. Genomic structure and chromosomal localization of the mouse LIM/homeobox gene Lhx3. Genomics 1995;27:27–32.

    Article  PubMed  CAS  Google Scholar 

  195. Kapiloff MS, Farkash Y, Wegner M, Rosenfeld MG. Variable effects of phosphorylation of Pit-1 dictated by the DNA response elements. Science 1991;253:786–789.

    Article  PubMed  CAS  Google Scholar 

  196. Fischberg DJ, Chen XH, Bancroft C. A Pit-1 phosphorylation mutant can mediate both basal and induced prolactin and growth hormone promoter activity. Mol Endocrinol 1994;8:1566–1573.

    Article  PubMed  CAS  Google Scholar 

  197. Okimura Y, Howard PW, Maurer RA. Pit-1 binding sites mediate transcriptional responses to cyclic adenosine 32019’,5’-monophosphate through a mechanism that does not require inducible phosphorylation of Pit-1. Mol Endocrinol 1994;8:1559–1565.

    Article  PubMed  CAS  Google Scholar 

  198. Gaddy-Kurten D, Vale WW. Activin increases phosphorylation and decreases stability of the transcription factor Pit-1 in MtTW15 somatotrope cells. J Biol Chem 1995;270:28,733–28,739.

    Google Scholar 

  199. Caelles C, Hennemann H, Karin M. M-phase-specific phosphorylation of the POU transcription factor GHF-1 by a cell cycle-regulated protein kinase inhibits DNA binding. Mol Cell Biol 1995; 15:6694–6701.

    PubMed  CAS  Google Scholar 

  200. Cohen LE, Zanger K, Brue T, Wondisford FE, Radovick S. Defective retinoic acid regulation of the Pit-1 gene enhancer: a novel mechanism of combined pituitary hormone deficiency. Mol Endocrinol 1999;13:476–484.

    Article  PubMed  CAS  Google Scholar 

  201. Xu L, Lavinsky RM, Dasen JS, Flynn SE, Mclnerney EM, Mullen TM, et al. Signal-specific co-activator domain requirements for Pit-1 activation. Nature 1998;395:301–306.

    Article  PubMed  CAS  Google Scholar 

  202. Wolffe AP, Hayes JJ. Chromatin disruption and modification. Nucleic Acids Res 1999;27:711–720.

    Article  PubMed  CAS  Google Scholar 

  203. Lemon BD, Freedman LP. Nuclear receptor cofactors as chromatin remodelers. Curr Opin Genet Dev 1999;9:499–504.

    Article  PubMed  CAS  Google Scholar 

  204. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000;14:121–141.

    PubMed  CAS  Google Scholar 

  205. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 1997;389:194–198.

    Article  PubMed  CAS  Google Scholar 

  206. Xu J, Qui Y, DeMayo FJ, Tsai SY, Tsai MJ, O’Malley BW. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 1998;279:1922–1925.

    Article  PubMed  CAS  Google Scholar 

  207. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996;85:403–414.

    Article  PubMed  CAS  Google Scholar 

  208. Korzus E, Torchia J, Rose DW, Xu L, Kurokawa R, Mclnerney EM, et al. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 1998;279:703–707.

    Article  PubMed  CAS  Google Scholar 

  209. Chen H, Lin RJ, Schütz RL, Chakravarti D, Nash A, Nagy L, et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/ p300. Cell 1997;90:569–580.

    Article  PubMed  CAS  Google Scholar 

  210. Heinzel T, Lavinsky RM, Mullen TM, Soderstrom M, Laherty CD, Torchia J, et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 1997;387: 43–48.

    Article  PubMed  CAS  Google Scholar 

  211. Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 1997;387:677–684.

    Article  PubMed  CAS  Google Scholar 

  212. Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A, et al. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 1998;394:498–502.

    Article  PubMed  CAS  Google Scholar 

  213. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, et al. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sei USA 1998;95:2920–2925.

    Article  CAS  Google Scholar 

  214. Smith CL, Onate SA, Tsai MJ, O’Malley BW. CREB binding protein acts synergistically with steroid receptor coactivator-1 to enhance steroid receptor-dependent transcription. Proc Natl Acad Sei USA 1996;93:8884–8888.

    Article  CAS  Google Scholar 

  215. Kawasaki H, Eckner R, Yao TP, Taira K, Chiu R, Livingston DM, Yokoyama KK. Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature 1998;393:284–289.

    Article  PubMed  CAS  Google Scholar 

  216. Perissi V, Dasen JS, Kurokawa R, Wang Z, Korzus E, Rose DW, et al. Factor-specific modulation of CREB-binding protein acetyltransferase activity. Proc Natl Acad Sei USA 1999;96:3652–3657.

    Article  CAS  Google Scholar 

  217. Zanger K, Cohen LE, Hashimoto K, Radovick S, Wondisford FE. A novel mechanism for cyclic adenosine 3’,5’-monophosphate regulation of gene expression by CREB-binding protein. Mol Endocrinol 1999;13:268–275.

    Article  PubMed  CAS  Google Scholar 

  218. Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 1999;97:17–27.

    Article  PubMed  CAS  Google Scholar 

  219. Bach I. The LIM domain: regulation by association. Mech Dev 2000;91:5–17.

    Article  PubMed  CAS  Google Scholar 

  220. Torigoi E, Bennani-Baiti IM, Rosen C, Gonzalez K, Morcillo P, Ptashne M, Dorsett D. Chip interacts with diverse homeodomain proteins and potentiates bicoid activity in vivo. Proc Natl Acad Sei USA 2000;97:2686–2691.

    Article  CAS  Google Scholar 

  221. Watkins-Chow DE, Camper SA. How many homeobox genes does it take to make a pituitary gland? Trends Genet 1998;14:284–290.

    Article  PubMed  CAS  Google Scholar 

  222. Burrows HL, Douglas KR, Seasholtz AF, Camper SA. Genealogy of the anterior pituitary gland: tracing a family tree. Trends Endocrinol Metab 2000;10:343–352.

    Google Scholar 

  223. Bach I, Rodríguez-Esteban C, Carriere C, Bhushan A, Krones A, Rose DW, et al. RLIM inhibits functional activity of LIM homeodomain transcription factors via recruitment of the histone deacetylase complex. Nat Genet 1999;22:394–399.

    Article  PubMed  CAS  Google Scholar 

  224. Fey EG, Wan J, Penman S. Epithelial cy toskeletal framework and nuclear matrix-intermediate filament scaffold: three-dimensional organization and protein composition. J Cell Biol 1984;19:1973–1984.

    Article  Google Scholar 

  225. Merdes A, Cleveland DW. The role of NuMA in the interphase nucleus. J Cell Sei 1998; 111:71–79.

    CAS  Google Scholar 

  226. Bidwell JP, Alvarez M, Feister H, Onyia J, Hock J. Nuclear matrix proteins and osteoblast gene expression. J Bone Min Res 1998;13:155–167.

    Article  CAS  Google Scholar 

  227. Mancini MG, Liu B, Sharp ZD, Mancini MA. Subnuclear partitioning and functional regulation of the Pit-1 transcription factor. J Cell Biochem 1999;72:322–338.

    Article  PubMed  CAS  Google Scholar 

  228. Parker GE, Sandoval RM, Feister HA, Bidwell JP, Rhodes SJ. The homeodomain coordinates nuclear entry of the Lhx3 neuroendocrine transcription factor and association with the nuclear matrix. J Biol Chem 2000;275:23,891–23,898.

    Google Scholar 

  229. Kim MK, Lesoon-Wood LA, Weintraub BD, Chung JH. A soluble transcription factor, Oct-1, is also found in the insoluble nuclear matrix and possesses silencing activity in its alanine-rich domain. Mol Cell Biol 1996;16:4366–4377.

    PubMed  CAS  Google Scholar 

  230. Holloway JM, Szeto DP, Scully KM, Glass CK, Rosenfeld MG. Pit-1 binding to specific DNA sites as a monomer or dimer determines gene-specific use of a tyrosine-dependent synergy domain. Genes Dev 1995;9:1992–2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this chapter

Cite this chapter

Parker, G.E., Sloop, K.W., Rhodes, S.J. (2002). Transcriptional Control of the Development and Function of the Hypothalamic-Pituitary Axis. In: Eugster, E.A., Pescovitz, O.H. (eds) Developmental Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-156-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-156-5_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9663-5

  • Online ISBN: 978-1-59259-156-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics