Skip to main content

Hypoxic Signaling Pathways as Targets for Anticancer Therapy

  • Chapter
  • 118 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Solid tumors, which account for more than 90% of all human cancers, are poorly oxygenated compared to normal tissues; needle oxygen probe measurements show a range of 1.3% to 3.9% median oxygen concentrations in tumors compared to 3.1% to 8.7% in normal tissues (for review see 1). In up to 82% of readings taken from tumors, oxygen concentrations are less than 0.3%, that is, they show regions of hypoxia (generally defined as oxygen concentrations less than 1%), a phenomenon rare in normal tissues. Hypoxia arises when tumor cells proliferate out of the diffusion zone of the local vascular supply by cells growing around the vascular core; cells in these areas are more acidic and nutrient-starved than those in well-vascularized areas. The relative distance from a vessel at which hypoxia develops is also dependent on the metabolic activity of the tumor. Some oncogenes, myc and ras, for example, will stimulate tumors to proliferate more rapidly than other transformation pathways and hence increase oxygen consumption.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vaupel PW, Hockel, M. Oxygenation status of human tumours: a reappraisal using computerised p02 histography. In: Vaupel PW, et al., eds. Tumour Oxygenation. Gustav Fisher Verlag, 1995, pp. 219 - 232.

    Google Scholar 

  2. Brown JM. Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 2000; 6: 157 - 162.

    Article  PubMed  CAS  Google Scholar 

  3. Mercadante S, Gebbia V, Marrazzo A, Filosto S. Anaemia in cancer: pathophysiology and treatment. Cancer Treat Rev 2000; 26: 303 - 311.

    Article  PubMed  CAS  Google Scholar 

  4. Rofstad EK, Sundfor K, Lyng H, Trope CG. Hypoxia-induced treatment failure in advanced squamous cell carcinoma of the uterine cervix is primarily due to hypoxia-induced radiation resistance rather than hypoxia-induced metastasis. Br J Cancer 2000; 83: 354 - 359.

    Article  PubMed  CAS  Google Scholar 

  5. Reynolds TY, Rockwell S, Glazer PM. Genetic instability induced by the tumour microenvironment. Cancer Res 1996; 56: 5754 - 5757.

    PubMed  CAS  Google Scholar 

  6. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ. Hypoxiamediated selection of cells with diminished apoptotic potential in solid tumours [see comments]. Nature 1996; 379: 88 - 91.

    Article  PubMed  CAS  Google Scholar 

  7. Yuan J, Narayanan L, Rockwell S, Glazer PM. Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 2000; 60: 4372 - 4376.

    PubMed  CAS  Google Scholar 

  8. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupek P. Association between tumour hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996; 56: 4509 - 4515.

    PubMed  CAS  Google Scholar 

  9. Hockel M, Schlenger K, Hockel S, Vaupel P. Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 1999; 59: 4525 - 4528.

    PubMed  CAS  Google Scholar 

  10. Vaupel P, Schlenger K, Knoop C, Hockel M. Oxygenation of human tumours: evaluation of tissue oxygen distribution in breast cancers by computerised 02 tension measurements. Cancer Res 1991; 51: 3316 - 3322.

    PubMed  CAS  Google Scholar 

  11. Nordsmark M, Maxwell RJ, Horsman MR, Bentzen SM, Overgaard J. The effect of hypoxia and hyperoxia on nucleoside triphosphate/inorganic phosphate, pO2 and radiation response in an experimental tumour model. Br J Cancer 1997; 76: 1432 - 1439.

    Article  PubMed  CAS  Google Scholar 

  12. Stone HB, Brown JM, Phillips TL, Sutherland RM. Oxygen in human tumours: correlations between methods of measurement and response to radiotherapy. Radia Res 1993; 136: 422 - 434.

    Article  CAS  Google Scholar 

  13. Hill SA, Pigott KH, Saunders MI, Powell MEB, Arnold S, Obeid A, Ward G, Leathy M, Hoskin PJ, Chaplin DJ. Microregional blood flow in murine and human tumours assessed using laser Doppler microprobes. Br J Cancer 1996; 74: 5260.

    Google Scholar 

  14. Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 1988; 242: 1412 - 1415.

    Article  PubMed  CAS  Google Scholar 

  15. Gorlach A, Holtermann G, Jelkmann W, Hanock JT, Jones SA, Jones OTG, Acker H. Photometric characteristics of haem proteins in erythropoietin-producing hepatoma cells (HepG2). Biochem J 1993; 290: 771 - 776.

    PubMed  Google Scholar 

  16. Fandrey J, Frede S, Jelkmann W. Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem J 1994; 303: 507 - 510.

    PubMed  CAS  Google Scholar 

  17. Knies U, Harris AL. Hypoxia signalling in tumour angiogenesis. Emerging Therapeutic Targets 2000; 4: 361 - 375.

    Article  CAS  Google Scholar 

  18. Gu Y-Z, Moran SM, Hogenesch JB, Wartman L, Bradfield CA. Molecular characterisation and chromosomal localisation of a third a-class hypoxia inducible factor subunit, HIF3a. Gene Exp 1998; 7: 205 - 213.

    CAS  Google Scholar 

  19. Ferrara N, Davis-Smyth TD. The biology of vascular endothelial growth factor. Endocr Rev 1997; 10: 4 - 25.

    Article  Google Scholar 

  20. Gleadle JM, Ebert BL, Firth JD, Ratcliffe PJ. Regulation of angiogenic growth factor expression by hypoxia, transition metals and chelating agents. Am JPhysiol 1995; 268: C1362 - C1368.

    Google Scholar 

  21. Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604 - 4613.

    PubMed  CAS  Google Scholar 

  22. Blancher C, Harris AL. The molecular basis of the hypoxia response pathway: tumour hypoxia as a therapy target. Cancer Met Rev 1998; 17: 187 - 194.

    Article  CAS  Google Scholar 

  23. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis and proliferation of human colon cancer. Cancer Res 1995; 55: 3964 - 3968.

    PubMed  CAS  Google Scholar 

  24. Leenders WP. Targeting VEGF in anti-angiogenic and anti-tumour therapy: where are we now? Int J Exp Pathol 1998; 79: 339 - 346.

    Article  PubMed  CAS  Google Scholar 

  25. Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 1995; 64: 375 - 401.

    Article  PubMed  CAS  Google Scholar 

  26. Ivanov SV, Kuzmin I, Wei M-H, Pack S, Geil L, Johnson BE, Stanbridge EJ, Lerman MI. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci USA 1998; 95:12, 596-12, 601.

    Google Scholar 

  27. Wykoff CC, Beasley NJP, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks K, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL. Hypoxia inducible expression of tumor-associated carbonic anhydrases. Cancer Res 2000, in press.

    Google Scholar 

  28. Parkkila S, Rajaniemi H, Parkkila A-K, Kivela J, Waheed A, Pastorekova S, Pastorek J, Sly W. Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc Natl Acad Sci USA 2000; 97: 2220 - 2224.

    Article  PubMed  CAS  Google Scholar 

  29. Teicher B, Liu SD, Liu JT, Holden SA, Herman TS. A carbonic anhydrase inhibitor as a potential modulator of cancer therapies. Anticancer Res 1993; 13: 1549 - 1556.

    PubMed  CAS  Google Scholar 

  30. Barnes PJ, Karin M. Nuclear factor-k-A pivotal transcription factor in chronic inflammatory disease. N Engl J Med 1997; 336: 1066 - 1071.

    Article  PubMed  CAS  Google Scholar 

  31. Collins T, Read MA, Neish AS, Whitely MZ, Thaws D, Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF-kB and cytokine-inducible enhancers. FASEB J 1995; 9: 899 - 909.

    PubMed  CAS  Google Scholar 

  32. Wang CY, Guttridge DC, Mayo MW, Baldwin AS. NF-kappaB induces expression of the Bc1-2 homologue A1Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 1999; 19: 5923 - 5929.

    PubMed  CAS  Google Scholar 

  33. Wang CY, Cusack JC, Liu R, Baldwin AS. Control of inducible chemoresistance: enhanced anti-tumour therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 1999; 5: 412 - 417.

    Article  PubMed  Google Scholar 

  34. Montminy M. Transcriptional regulation by cyclic AMP. Annu Rev Biochem 1997; 66: 807822.

    Google Scholar 

  35. Taylor CT, Colgan SP. Therapeutic targets for hypoxia-elicited pathways. Pharmaceut Res 1999; 16: 1498 - 1505.

    Article  CAS  Google Scholar 

  36. Taylor CT, Fueki N, Agah A, Hershberb RM, Colgan SP. Critical role of cAMP response element binding protein expression in hypoxia-elicited induction of epithelial tumour necrosis factor-la. J Biol Chem 1999; 274:19, 447-19, 454.

    Google Scholar 

  37. Kvietkova I, Wenger RH, Marti HH, Gassmann M. The hypoxia-inducible factor-1 DNA recognition site is cAMP responsive. Kid Int 1997; 51: 564 - 566.

    Article  Google Scholar 

  38. Yan SF, Zou YS, Gao Y, Zhai C, Mackman N, Lee SL, Milbrandt J, Pinsky D, Kisiel W, Stern D. Tissue factor transcription driven by egr-1 is a critical mechanism of murine pulmonary fibrin deposition in hypoxia. Proc Natl Acad Sci USA 1998; 95: 8298 - 8303.

    Article  PubMed  CAS  Google Scholar 

  39. Bae SK, Bae MH, Ahn MY, Son MJ, Lee YM, Bae MK, Lee OH, Park BC, Kim KW. Egr-1 mediates transcriptional activation of IGF-II gene in response to hypoxia. Cancer Res 1999; 59: 598, 599.

    Google Scholar 

  40. Dachs GU, Stratford U. The molecular response of mammalian cells to hypoxia and the potential for exploitation in cancer therapy. B J Cancer 1996; 74: S126 - S132.

    Google Scholar 

  41. Ratcliffe PJ, O’Rourke JF, Maxwell PH, Pugh CW. Oxygen sensing, hypoxia-inducible factor 1 and the regulation of mammalian gene expression. J Exp Biol 1998; 201: 1153 - 1162.

    PubMed  CAS  Google Scholar 

  42. Semenza GL. Regulation of mammalian 02 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dey Biol 1999; 15: 551 - 578.

    Article  CAS  Google Scholar 

  43. Wenger RH. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 2000; 203: 1253 - 1263.

    PubMed  CAS  Google Scholar 

  44. Wykoff CW, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ. Identification of novel hypoxia dependent and independent target gene of the von Hippel-Lindau (VHL)tumor suppressor by mRNA differential expression profiling. Oncogene 2000; 19: 6297 - 6305.

    Article  PubMed  CAS  Google Scholar 

  45. Walton HL, Corjay MH, Mohamed SN, Mousa SA, Santomenna LD, Reilly TM. Hypoxia induces differential expression of the integrin receptors alpha(vbeta3) and alpha(vbeta5) in cultured human endothelial cells. J Cell Biochem 2000; 78: 674 - 680.

    Article  PubMed  CAS  Google Scholar 

  46. Krikun G, Schatz F, Finlay T, Kadner S, Mesia A, Gerrets R, Lockwood CJ. Expression of angiopoietin-2 by human endometrial endothelial cells: regulation by hypoxia and inflammation. Biochem Biophys Res Commun 2000; 275: 159 - 163.

    Article  PubMed  CAS  Google Scholar 

  47. William C, Koehne P, Jurgensen JS, Grafe M, Wagner KD, Bachman S, Frei U, Eckardt KU. Tie2 receptor expression is stimulated by hypoxia and proinflammatory cytokines in human endothelial cells. Circ Res 2000; 87: 370 - 377.

    Article  Google Scholar 

  48. Bruik RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 2000; 97: 9082 - 9087.

    Article  Google Scholar 

  49. Felderhoff-Mueser U, Taylor DL, Greenwood K, Kozma M, Stibenz D, Joashi UC, Edwards AD, Mehmet H. Fas/CD95/APO-1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic-ischemic injury to the developing rat brain. Brain Pathol 2000; 10: 17 - 29.

    Article  PubMed  CAS  Google Scholar 

  50. Xu L, Xie K, Mukaida N, Matshushima K, Fidler IJ. Hypoxia-induced elevation in interleukin8 expression by human ovarian carcinoma cells. Cancer Res 1999; 59: 5822 - 5829.

    PubMed  CAS  Google Scholar 

  51. Seimiya H, Tanji M, Oh-hara T, Tomida A, Naasani I, Tsuruo T. Hypoxia up-regulates telomerase activity via mitogen-activated protein kinase signalling in human solid tumour cells. Biochem Biophys Res Commun 1999; 260: 365 - 370.

    Article  PubMed  CAS  Google Scholar 

  52. Lewis JS, Lee JA, Underwood JCE, Harris AL, Lewis CE. Macrophage responses to hypoxia: relevance to disease mechanisms. J Leukocyte Biol 1999; 66: 889 - 900.

    PubMed  CAS  Google Scholar 

  53. Turner L, Scotton C, Negus R, Balkwill F. Hypoxia inhibits macrophage migration. Eur J Immunol 1999; 29: 2280 - 2287.

    Article  PubMed  CAS  Google Scholar 

  54. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 1996; 56: 4625 - 4629.

    PubMed  CAS  Google Scholar 

  55. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL. The expression and distribution of the hypoxia-inducible factors HIF-la and HIF-2a in normal human tissues, cancers and tumour-associated macrophages. Am J Pathol 2000; 157:41 l-421.

    Google Scholar 

  56. Chaplin DJ, Horsman MR, Aoki DS. Nicotinamide, Fluosol DNA and carbogen: a strategy to reoxygenate acutely and chronic hypoxic cells in vivo. Br J Cancer 1991; 63: 109-1 13.

    Google Scholar 

  57. Nordsmark M, Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head. Radiother Oncol 1996; 41: 31 - 40.

    PubMed  CAS  Google Scholar 

  58. Brown JM. SR 4233 (Tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br J Cancer 1993; 67: 1163 - 1170.

    Article  PubMed  CAS  Google Scholar 

  59. Brown JM, Lemmon MJ. Potentiation by the hypoxic cytotoxin SR 4233 of cell killing produced by fractionated irradiation of mouse tumours. Cancer Res 1990; 50: 7745 - 7749.

    PubMed  CAS  Google Scholar 

  60. von Pawel J, von Roemeling R. Survival benefit from tirazone (tirapazamine) and cisplatin in advanced non-small cell lung cancer (NSCLC) patients: final results from international phase III CATAPULT 1 trial. Proc Am Soc Clin Oncol 1998; 17: 454a (Abstra. 1749).

    Google Scholar 

  61. Rockwell S, Kennedy KA, Sartorelli AC. Mitomycin-C as a prototype bioreductive alkylating agent: in vitro studies of metabolism and cytotoxicity. lnt JRad Oncol Biol Phys 1982; 8: 753-755.

    CAS  Google Scholar 

  62. Brown JM, Siim BG. Hypoxia-specific cytotoxins in cancer therapy. Semin Radiat Oncol 1996; 6: 46 - 58.

    Article  Google Scholar 

  63. Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM. Suppression of tumour growth through disruption of hypoxia-inducible transcription. Nat Med 2000; 6: 1335 - 1340.

    Article  PubMed  CAS  Google Scholar 

  64. Shibata T, Giaccia AJ, Brown JM. Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Ther 2000; 7: 493 - 498.

    Article  PubMed  CAS  Google Scholar 

  65. Binley K, Iqball S, Kingsman A, Kingsman S, Naylor S. An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer. Cancer Res 1999; 59: 4882 - 4889.

    Google Scholar 

  66. Dachs GU, Patterson AV, Firth JD, Ratcliffe PJ, Townsend KMS, Stratford IJ, Harris AL. Targeting gene expression to hypoxic tumour cells. Nat Med 1996; 3: 515 - 520.

    Article  Google Scholar 

  67. Koshikawa N, Takenaga K, Tagawa M, Sakiyama S. Therapeutic efficacy of the suicide gene driven by the promoter of vascular endothelial growth factor gene against hypoxic tumor cells. Br J Cancer 2000; 82: 1984 - 1990.

    Article  Google Scholar 

  68. Kimura H, Braun RD, Edgardo TO, Ong ET, Hsu R, Secomb TW, Papahadjopoulos D, Hong KL, Dewirst MW. Fluctuations in red cell flux in tumour microvessels can lead to transient hypoxia and reoxygenation in tumour parenchyma. Cancer Res 1996; 56: 5522 - 5528.

    PubMed  CAS  Google Scholar 

  69. Dachs GU, Coralli C, Hart SL, Tozer GM. Gene delivery to hypoxic cells in vitro. Br J Cancer 2000; 83:662-667.

    Article  PubMed  CAS  Google Scholar 

  70. Griffiths L, Binley K, Iqball S, Kan O, Maxwell P, Ratcliffe P, Lewis C, Harris A, Kingsman S, Naylor S. The macrophage — a novel system to deliver gene therapy to pathological hypoxia. Semin Radiat Oncol 1996; 6: 22 - 36.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sowter, H.M., Harris, A.L. (2002). Hypoxic Signaling Pathways as Targets for Anticancer Therapy. In: La Thangue, N.B., Bandara, L.R. (eds) Targets for Cancer Chemotherapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-153-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-153-4_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-263-6

  • Online ISBN: 978-1-59259-153-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics