Skip to main content

An Overview of Clostridial Neurotoxins

  • Chapter

Abstract

Neurotoxins produced by the anaerobic bacteria Clostridium botulinum and C. tetani are some of the most potent naturally occurring compounds known. Their exquisite toxicity coupled with their highly specific mechanism of action render them both highly dangerous but yet quite useful to medical science. Tetanus toxin (TeNT) is usually encountered as a wound contaminant and is a significant health problem in developing countries. Botulinum neurotoxins (BoNTs) are typically encountered in food poisoning, although they also occur as a result of wound infection (wound botulism) or as a colonizing infection in the neonatal intestinal tract (infant botulism). Tetanus intoxication, known for thousands of years, is effectively controlled in developed countries via childhood vaccination. In contrast, botulism became a common public health threat only after the advent of food preservation in the 19th century. Modern food-preparation practices have rendered botulism a rare occurrence from commercially prepared foods, although a small but significant number of cases occur annually from eating home-canned foods. Because the incidence of botulism is low, the general populace has not been vaccinated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Middlebrook, J. L. and Franz, D. R. (1997) Botulinum toxins, in Textbook of Military Medicine, Part 1: Medical Aspects of Chemical and Biological Warfare ( Sidell, F. R, Takafuji, E. T., and Franz, D. R., eds.), Office of the Surgeon General, US Army, Falls Church, VA, pp. 643–654.

    Google Scholar 

  2. Smart, J. K. (1997) History of chemical and biological warfare: an American perspective, in Textbook of Military Medicine, Part 1: Medical Aspects of Chemical And Biological Warfare ( Sidell, F. R., Takafuji, E. T., and Franz, D.R., eds.), Office of the Surgeon General, US Army, Falls Church, VA, pp. 9–86.

    Google Scholar 

  3. Jankovic, J. (1994) Botulinum toxin in movement disorders. Curr. Opin. Neurol. 7, 358–366.

    Article  PubMed  CAS  Google Scholar 

  4. Dutton, J. J. (1996) Botulinum-A toxin in the treatment of craniocervical musclespasms: short-and long-term, local, and systemic effects. Surv. Opthamol. 41, 51–65.

    Article  CAS  Google Scholar 

  5. Schiavo, G., Rosseto, O., and Montecucco, C. (1994) Clostridial neurotoxins as tools to investigate the molecular events of neurotransmitter release. Sem. Cell Biol. 5, 221–229.

    Article  CAS  Google Scholar 

  6. Pellizari, R., Rossetto, O., Schiavo, G., and Montecucco, C. (1999) Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354, 259–268.

    Article  Google Scholar 

  7. Kessler, K. R. and Benecke, R. (1997) Botulinum toxin: from poison to remedy. Neurotoxicology 18, 761–770.

    PubMed  CAS  Google Scholar 

  8. Singh, B. R., Li, B., and Read, D. (1995) Botulinum versus tetanus neurotoxins: why botulinum neurotoxin but not tetanus neurotoxin a food poison? Toxicon 33, 1541–1547.

    Article  PubMed  CAS  Google Scholar 

  9. Hatheway, C. L. (1995) Botulism: the present status of the disease. Curr. Top. Microbiol. Immunol. 195, 55–75.

    Article  PubMed  CAS  Google Scholar 

  10. Smith, L. D. and Sugiyama, H. (1988) Botulism: The Organism, Its Toxins, The Disease, 2nd ed. Thomas, Springfield, IL.

    Google Scholar 

  11. Ferrari, N. D. and Weisse, M. E. (1995) Botulism, in Advances in Pediatric Infectious Diseases, vol. l0, Mosby Year Book, Inc., NY, pp. 81–91.

    Google Scholar 

  12. Hughes, J. M., Blumenthal, J. R., Merson, M. H., Lombard, G. L., Dowell, V. R., and Gangarosa, E. J. (1981) Clinical features of type A and B food-borne botulism. Ann. Intern. Med. 95, 442 445.

    Google Scholar 

  13. Thompson, J. A., Glascow, L. A., and Warpinski, J. R. (1980) Infant botulism: clinical spectrum and epidemiology. Pediatrics 66, 936–942.

    PubMed  CAS  Google Scholar 

  14. Arnon, S. S. (1992) Infant botulism, in Textbook of Pediatric Infectious Diseases, 3rd ed. ( Feigen, R. D and Cherry, J. D., eds.), W.B. Saunders, Philadelphia, PA.

    Google Scholar 

  15. Brown, L. (1984) Infant botulism. Ped. Ann. 13, 139–148.

    Google Scholar 

  16. Schreiner, M. S., Field, E., and Ruddy, R. (1991) Infant botulism: a review of 12 years experience at the Children’s Hospital of Philadelphia. Pediatrics 66, 159–165.

    Google Scholar 

  17. Bleck, T.P. (1995) Clostridium botulinum, in Principles and Practice of Infectious Disease ( Mandell, G. L., Bennett, J. E., and Dolin, R., eds.), Churchill Livingstone, NY, pp. 2178–2182.

    Google Scholar 

  18. Keller, J. E., Neale, E. A., Oyler, G., and Adler, M. (1999) Persistence of botulinum neuro-toxin action in cultured spinal cord cells. FEBS Lett. 456, 137–142.

    Article  PubMed  CAS  Google Scholar 

  19. O’Sullivan, G. A., Mohammed, N., Foran, P. G., Lawrence, G. W., and Dolly, J. O. (1999) Rescue of exocytosis in botulinum toxin A-poisoned chromaffin cells by expression of cleavage-resistant SNAP-25. J. Biol. Chem. 274, 36897–36904.

    Article  PubMed  Google Scholar 

  20. Nicolaier, A. (1884) Über infectiösen tetanus. Dtsch. Med. Wochenschr. 10, 842–844.

    Article  Google Scholar 

  21. Behring, E. and Kitasato, S. (1890) Über das Zustandekommen der Diptherie-Immunität and der Tetanus-Immunität bei Thieren. Dtsch. Med. Wochenschr. 16, 1113–1114.

    Article  Google Scholar 

  22. Bleck, T. P. (1995) Clostridium botulinum, in Principles and Practice of Infectious Disease ( Mandell, G. L., Bennett, J. E., and Dolin, R. eds.), Churchill Livingstone, NY, pp. 2173–2178.

    Google Scholar 

  23. Edmonton, R. S. and Flowers, M. M. W. (1979) Intensive care in tetanus: management, complications, and mortality in 100 patients. BMJ 1979, 1401–1404.

    Article  Google Scholar 

  24. Traverso, H., Bennett, J.V., and Kahn, A. J. (1989) Ghee application to the umbilical cord: a risk factor for neonatal tetanus. Lancet 1, 486–488.

    Article  PubMed  CAS  Google Scholar 

  25. Bleck, T. P. (1989) Clinical aspects of tetanus, in Botulinum Neurotoxin and Tetanus Toxin (Simpson, L. L., ed.), Academic Press, San Diego, CA, pp. 379–398.

    Google Scholar 

  26. Anlar, B., Yalaz, K., and Dizman, R. (1989) Long-term prognosis after neonatal tetanus. Dev. Med. Child. Neurol. 31, 76–80.

    Article  PubMed  CAS  Google Scholar 

  27. Daniels-Holgate, P. U. and Dolly, J. O. (1996) Productive and nonproductive binding of botulinum neurotoxin A to motor nerve endings are distinguished by its heavy chain. J. Neurosci. Res. 44, 263–271.

    Article  PubMed  CAS  Google Scholar 

  28. Atassi, M. Z. and Oshima, M. (1999) Structure, activity, and immune (T and B cell) recognition of botulinum neurotoxins. Crit. Rev. Immunol. 19, 219–260.

    PubMed  CAS  Google Scholar 

  29. Montecucco, C. and Schiavo, G. (1994) Mechanism of action of tetanus and botulinum neurotoxins. Mol. Microbiol. 13, 1–8.

    Article  PubMed  CAS  Google Scholar 

  30. Lebeda, F. J. and Singh, B. R. (1999) Membrane channel activity and translocation of tetanus and botulinum neurotoxins. J. Toxicol. Tox. Rev. 18 (1), 45–76.

    CAS  Google Scholar 

  31. Donovan, J. J. and Middlebrook, J. L. (1986) Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochemistry 5, 2872–2876.

    Article  Google Scholar 

  32. Williamson, L. C., Halpern, J. L., Montecucco, C., Brown, J. E., and Neale, E. A. (1996) Clostridial neurotoxins and substrate proteolysis in intact neurons. J. Biol. Chem. 271, 7694–7699.

    Article  PubMed  CAS  Google Scholar 

  33. Foran, P., Lawrence, G. W., Shone, C. C., Foster, K. A., and Dolly, J. O. (1996) Botulinum neurotoxin Cl cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 35, 2630–2636.

    Article  PubMed  CAS  Google Scholar 

  34. Dreyer, F. (1989) Peripheral actions of tetanus toxin, in Botulinum Neurotoxin and Tetanus Toxin ( Simpson, L. L., ed.), Academic Press, San Diego, CA, pp. 179–203.

    Google Scholar 

  35. Bizzini, B. (1989) Axoplasmic transport and transsynaptic movement of tetanus toxin, in Botulinum Neurotoxin and Tetanus Toxin ( Simpson, L. L., ed.) Academic Press, San Diego, CA, pp. 204–231.

    Google Scholar 

  36. Collingridge, G. L. and Herron, C. E. (1985) Effects of tetanus toxin on GABA synapses in the mammalian central nervous system, in Seventh International Conference on Tetanus ( Nistico, G., Mastroeni, P., and Pitzurra, M., eds.), Gangemi, Rome, pp. 127–142.

    Google Scholar 

  37. Umland, T. C., Wingert, L. M., Swaminathan, S., Furey, W. F., Schmidt, J. J., and Sax, M. (1997) The structure of the receptor binding fragment He of tetanus neurotoxin. Nature Struct. Biol. 4, 788–792.

    Article  PubMed  CAS  Google Scholar 

  38. Lacey, D. B., Tepp, W., Cohen, A. C., DasGupta, B. R., and Stevens, R. C. (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nature Struct. Biol. 5, 898–902.

    Article  Google Scholar 

  39. Lacey, D. B. and Stevens, R. C. (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J. Mol. Biol. 291, 1091–1104.

    Article  Google Scholar 

  40. Jongeneel, C. V., Bouvier, J., and Bairoch, A. (1989) A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 242, 211–214.

    Article  PubMed  CAS  Google Scholar 

  41. Schiavo, G., Poulain, B., Rossetto, O., Benfenati, F., Tauc, L., and Montecucco, C. (1992) Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J. 11, 3577–3583.

    PubMed  CAS  Google Scholar 

  42. Schmidt, J. J. and Bostian, K. A. (1995) Proteolysis of synthetic peptides by type A botulinum neurotoxin. J. Prot. Chem. 14, 703–708.

    Article  CAS  Google Scholar 

  43. Lacey, D. B. and Stevens, R. C. (1998) Unraveling the structures and modes of action of bacterial toxins Curr. Opin. Struc. Biol. 8, 778–784.

    Article  Google Scholar 

  44. Obrdlik, P., Neuhaus, G., and Merkle, T. (2000) Plant heterotrimeric G protein subunit is associated with membranes via protein interactions involving coiled coil formation. FEBS Lett. 476, 208–212.

    Article  PubMed  CAS  Google Scholar 

  45. Eisel, U., Jarausch, W., Foretzki, K., Henschen, A., Engels, J., Weller, U., et al. (1986) Tetanus toxin: primary structure, expression in E. coli, and homology with botulinum toxins. EMBO J. 5, 2495–2501.

    PubMed  CAS  Google Scholar 

  46. Singh, B. R. and Be, X. (1992) Use of sequence hydrophobic moment to analyze membrane interacting domains of botulinum, tetanus, and other toxins, in Techniques in Protein Chemistry III ( Angeletti, R. H., ed.), Academic Press, Orlando, FL, pp. 373–383.

    Google Scholar 

  47. Lebeda, F. J. and Olsen, M. A. (1994) Secondary structural predictions for the clostridial neurotoxins. Proteins Struc. Func. Gen. 20, 293–300.

    Article  CAS  Google Scholar 

  48. Lebeda, F. J. and Olsen, M. A. (1995) Structural predictions of the channel-forming region of the botulinum neurotoxin heavy chain. Toxicon 35, 559–567.

    Article  Google Scholar 

  49. Montal, M. S., Blewitt, R., Tomich, J. M., and Montai, M. (1992) Identification of an ion channel-forming motif in the primary structure of tetanus and botulinum neurotoxins. FEBS Lett. 313, 12–18.

    Article  PubMed  CAS  Google Scholar 

  50. Oblatt-Montal, M., Yamazaki, M., Nelson, R., and Montal, M. (1995) Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A. Prot. Sci. 4, 1490–1497.

    Article  CAS  Google Scholar 

  51. Hoch, D. H., Romero-Mira, M., Ehrlich, B. E., Finkelstein, A., DasGupta, B. R., and Simpson, L. L. (1985) Channels formed by botulinum, tetanus, and diptheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc. Nat. Acad. Sci. USA 82, 1692–1696.

    Article  PubMed  CAS  Google Scholar 

  52. Byrne, M. P., Montai, M., Canaves, J., and Lebeda, F. J. (1998) Conformational changes of a channel-forming peptide from the translocation domain of botulinum neurotoxin as directed by circular dichroism. Prot. Sci. 7(Suppl. 1), 361-T.

    Google Scholar 

  53. Swaminathan, S. and Eswaramoothy, S. (1999) Crystal structure of botulinum neurotoxin type B. Abstract presented at The Movement Disorder Society’s International Conference 1999: Basic Therapeutic Aspects of Botulinum and Tetanus Toxins, Orlando, FL.

    Google Scholar 

  54. Martin, L., Cornille, F., Turcaud, S., Muedal, H., Roques, B. P., and Fournie-Zaluski, M-C. (1999) Metallopeptidase inhibitors of tetanus toxin: a combinatorial approach. J. Med. Chem. 42, 515–525.

    Article  PubMed  CAS  Google Scholar 

  55. Christine, A., Turcaud, S., Comille, F., Fournie-Zaluski, M. C., and Roques, B. P. (1999) Structure-based design of the first highly-potent inhibitors of botulinum B neurotoxin. Abstract presented at The Movement Disorder Society’s International Conference 1999: Basic and Therapeutic Aspects of Botulinum and Tetanus Toxins, Orlando, FL.

    Google Scholar 

  56. Singh, B. R., Cai, S., LI, L., Sharma, S. K., Shukla, H. D., Lomneth, R., and Sarkar, H. K. (1999) Molecular basis of the unique endopeptidase activity of botulinum neurotoxin: role of dynamic protein structure. Abstract presented at The Movement Disorder Society’s International Conference 1999: Basic and Therapeutic Aspects of Botulinum and Tetanus Toxins, Orlando, FL.

    Google Scholar 

  57. Halpern, J. L. and Neale, E. A. (1995) Neurospecific binding, internalization, and retrograde axonal transport. Curr. Top. Microbiol. Immunol 195, 221–241.

    Article  PubMed  CAS  Google Scholar 

  58. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics. J. Mol. Graphics 14, 1091–1104.

    Article  Google Scholar 

  59. Varshney, A., Brooks, F. P., and Wright, W. V. (1994) Linearly scalable computation of smooth molecular surfaces. IEEE Comp. Graphics Applic. 14, 19.

    Article  Google Scholar 

  60. Persistence of Vision Ray Tracer’ (POV-RayTM) (http://www.povray.org).

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poli, M.A., Lebeda, F.J. (2002). An Overview of Clostridial Neurotoxins. In: Massaro, E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-132-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-132-9_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-193-6

  • Online ISBN: 978-1-59259-132-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics