Skip to main content

Ecology of Microbial Neurotoxins

  • Chapter
Handbook of Neurotoxicology
  • 450 Accesses

Abstract

Biosynthesis of toxins uses precious cellular energy and it would seem unlikely that evolution would be forgiving enough to tolerate wasted metabolism. Although there is much debate about this proposition in the guise of secondary vs primary metabolites (1,2), it is a reasonable hypothesis that toxins of all kinds should play some beneficial role. This return is apparent when one considers toxins used for prey capture or self-defense as occurs with venoms. For microbial neurotoxins, however, the identity of this biological profit remains a mystery. This is especially so when one considers that the microbes that manufacture these toxins, and those microorganisms that surround them, do not possess nerves nor many of the molecular systems that characterize nerves. The few exceptions to this rule are those microbial toxins that attack generic cellular systems common to many cell types, including nerve cells. An example is the dinoflagellate toxin okadaic acid, an inhibitor of certain serine-threonine protein phosphatases, enzymes that occur widely in different cell types in animals and plants as well as microorganisms (3–5). In fact, an okadaic acid sensitive form of this enzyme has been isolated from the dinoflagellate, Prorocentrum lima, an established producer of okadaic acid (6).One can hypothesize then that okadaic acid may act as a physiological regulator of this enzyme within the dinoflagellate itself or upon unrelated microbes in its vicinity. The larger mystery lies with microbial neurotoxins that attack cellular and molecular neural processes not present in microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vining, L. C. (1992) Secondary metabolism, inventive evolution and biochemical diversity: a review. Gene 115, 135–140.

    Article  PubMed  CAS  Google Scholar 

  2. Stone, M. J. and Williams, D. H. (1992) On the evolution of functional secondary metabolites (natural products). Mol. Microbiol. 6, 29–34

    Article  PubMed  CAS  Google Scholar 

  3. Takai, A., Murata, M., Torigoe, K., Isobe, M., Mieskes, G., and Yasumoto, T. (1992) Inhibitory effect of okadaic acid derivatives on protein phosphatases. Biochem. J. 284, 539–544.

    PubMed  CAS  Google Scholar 

  4. Haystead, T. A., Sim, A. T., Carling, D., Honnor, R. C., Tsukitani, Y., Cohen, P., and Hardie, D. G. (1989) Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 337, 78–81.

    Article  PubMed  CAS  Google Scholar 

  5. Solow, B., Young, J. C., and Kennelly, P. J. (1997) Gene cloning and expression and characterization of a toxin-sensitive protein phosphatase from the methanogenic archaeon Methanosarcina thermophila TM-1. J. Bacteriol. 179, 5072–5075.

    PubMed  CAS  Google Scholar 

  6. Boland, M. P., Taylor, M. F., and Holmes, C. F. (1993) Identification and characterisation of a type-1 protein phosphatase from the okadaic acid-producing marine dinoflagellate Prorocentrum lima. FEBS Lett. 334, 13–17.

    Article  CAS  Google Scholar 

  7. Sugiyama, H. (1980) Clostridium botulinum neurotoxin. Microbiol. Rev. 44, 419–448.

    PubMed  CAS  Google Scholar 

  8. Pellizzari, R., Rossetto, O., Schiavo, G., and Montecucco, C. (1999) Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354, 259–268.

    Article  PubMed  CAS  Google Scholar 

  9. Park, D. L. (1995) Surveillance programmes for managing risks from naturally occurring toxicants. Food Addit. Contam. 12, 361–371.

    Article  PubMed  CAS  Google Scholar 

  10. Margulis, L. and Schwartz, K. V. (1998) Five Kingdoms: An Illustrated Guide to the Phyla of Life of Earth. W. H. Freeman and Co., San Francisco, CA.

    Google Scholar 

  11. Llewellyn, L. E. (2000) Shellfish chemical poisoning, in Foodborne Diseases Handbook, vol. 4, Seafood and Environment Toxins ( Hui, Y. H., Kitts, D. D., and Stanfield, P. S., eds.), Marcel Dekker, New York, NY, pp. 77–108.

    Google Scholar 

  12. Lewis, R. J. and Holmes, M. J. (1993) Origin and transfer of toxins involved in ciguatera. Comp. Biochem. Physiol. C. 106, 615–628.

    CAS  Google Scholar 

  13. Baden, D. G. (1989) Brevetoxins: unique polyether dinoflagellate toxins. FASEB J. 3, 1807–1817.

    PubMed  CAS  Google Scholar 

  14. Humpage, A. R., Rositano, J., Bretag, A. H., Brown, R., Baker, P. D., Nicholson, B. C., and Steffensen, D. A. (1994) Paralytic shellfish poisons from Australian cyanobacterial blooms. Aust. J. Mar. Freshwat. Res. 45, 761–771.

    Article  CAS  Google Scholar 

  15. Schantz, E. J., Lynch, J. M., Vayvada, G., Matsumoto, K., and Rapoport, H. (1966) The purification and characterization of the poison produced by Gonyaulax catenella in axenic culture. Biochemistry 5, 1191–1195.

    Article  PubMed  CAS  Google Scholar 

  16. Kodama, M., Ogata, T., Sakamoto, S., Sato, S., Honda, T., and Miwatani, T. (1990) Production of paralytic shellfish toxins by a bacterium Moraxella sp. isolated from Protogonyaulax tamarensis. Toxicon 28, 707–714.

    Article  PubMed  CAS  Google Scholar 

  17. Kodama, M., Sato, S., Sakamoto, S., and Ogata, T. (1996) Occurrence of tetrodotoxin in Alexandrium tamerense, a causative dinoflagellate of paralytic shellfish poisoning. Toxicon 34, 1101–1105.

    Article  PubMed  CAS  Google Scholar 

  18. Noguchi, T., Jeon, J. K., Arakawa, O., Sugita, H., Deguchi, Y., Shida, Y., and Hashimoto, K. (1986) Occurrence of tetrodotoxin and anhydrotetrodotoxin in Vibrio sp. isolated from the intestines of a Xanthid crab, Atergatis floridus. J. Biochem. 99, 311–314.

    PubMed  CAS  Google Scholar 

  19. Devlin, J. P., Edwards, O. E., Gorham, P. R., Hunter, N. R., Pike, R. K., and Stravic, B. (1977) Anatoxin-a, a toxic alkaloid from Anabaena floc-aquae NRC-44h. Can. J. Chem. 55, 1367–1371.

    Article  CAS  Google Scholar 

  20. Matsunaga, S., Moore, R. E., Niemczura, W. P., and Carmichael, W. W. (1989) Anatoxin-a(s), a potent anticholinesterase from Anabaena floc-aquae. J. Am. Chem. Soc. 111, 8021–8023.

    Article  CAS  Google Scholar 

  21. Bates, S. S., Bird, J. C., De Freitas, A. S. W., Foxall, R., Gilgan, M., Hanic, L. A., et al. (1989) Pennate diatom Nitzschia pungens as the primary source of domoic acid, a toxin in shellfish from eastern Prince Edward Island, Canada. Can. J. Fish. Aquat. Sci. 46, 1203–1221.

    Article  CAS  Google Scholar 

  22. Do, H. K., Kogure, K., and Simidu, U. (1990) Identification of deep-sea-sediment bacteria which produce tetrodotoxin. Appl. Environ. Microbiol. 56, 1162–1163.

    PubMed  CAS  Google Scholar 

  23. Kodama, M., Ogata, T., Sato, S., and Sakamoto, S. (1990) Possible association of marine bacteria with paralytic shellfish toxicity of bivalves. Mar. Ecol. Prog. Ser. 61, 203–206.

    Article  CAS  Google Scholar 

  24. Matsui, T., Taketsugu, S., Kodama, K., Ishii, A., Yamamori, K., and Shimizu, C. (1989) Production of tetrodotoxin by the intestinal bacteria of a puffer fish Takifugu niphohles. Bull. Jap. Soc. Sci. Fish 55, 2199–2203.

    Article  CAS  Google Scholar 

  25. Kodama, M., Ogata, T., and Sato, S. (1988) Bacterial production of saxitoxin. Agric. Biol. Chem. 52, 1075–1077.

    Article  CAS  Google Scholar 

  26. Matsumura, K. (1995) Reexamination of tetrodotoxin production by bacteria. Appl. Environ. Microbiol. 61, 3468–3470.

    CAS  Google Scholar 

  27. Falconer, I. R. (1998) Algal toxins and human health, in Handbook of Environmental Chemistry, vol. 5, Part C, Quality and Treatment of Drinking Water II ( Hrubec, J., ed.), Springer Verlag, Berlin, Heidelberg, pp. 53–82.

    Google Scholar 

  28. Negri, A. P., Jones, G. J., and Hindmarsh, M. (1995) Sheep mortality associated with paralytic shellfish poisons from the cyanobacterium Anabaena circinalis. Toxicon 33, 1321–1329.

    Article  PubMed  CAS  Google Scholar 

  29. Sommer, H. and Meyer, K. F. (1937) Paralytic shellfish poisoning. Arch. Pathol. 24, 560–598.

    CAS  Google Scholar 

  30. Wright, J. L. C., Falk, M., McInnes, A. G., and Walter, J. A. (1990). Identification of isodomoic acid D and two new geometrical isomers of domoic acid in toxic mussels. Can. J. Chem. 68, 22–25.

    Article  CAS  Google Scholar 

  31. Schantz, E. J., Ghazarossian, V. E., Schnoes, H. K., Strong, F. M., Springer, J. P., Pezzanite, J. O., and Clardy, J. (1975) The structure of saxitoxin. J. Am. Chem. Soc. 97, 1238–1239.

    Article  PubMed  CAS  Google Scholar 

  32. Tsuda, K., Ikuma, S., Kawamura, M., Tachikawa, R., and Sakai, K. (1964) Tetrodotoxin. VII. On the structure of tetrodotoxin and its derivatives. Chem. Pharm. Bull. 12, 1357–1374.

    Article  PubMed  CAS  Google Scholar 

  33. Goto, T., Kishi, Y., Takahashi, S., and Hirata, Y. (1965) Tetrodotoxin. Tetrahedron 21, 2059–2088.

    Article  PubMed  CAS  Google Scholar 

  34. Woodward, R. B. (1964) The structure of tetrodotoxin. Pure Appl. Chem. 9, 49–74.

    Article  CAS  Google Scholar 

  35. Koskinen, A. M. P. and Rapaport, H. (1985) Synthetic and conformational studies on anatoxin-a: a potent acetylcholine agonist. J. Med. Chem. 28, 1301–1309.

    Article  PubMed  CAS  Google Scholar 

  36. Matsunaga, S., Moore, R. E., Niemczara, W. P., and Carmichael, W. W. (1989) Anatoxin-a(s), a potent anticholinesterase from Anabaena flos-aquae. J. Am. Chem. Soc. 111, 8021–8023.

    Article  CAS  Google Scholar 

  37. Lin, Y., Risk, M., Ray, S. M., van Engen, D., Clardy, J., Golik, J., James, J. C., and Nakanishi, K. (1981) Isolation and structure of brevetoxin B from “red tide” dinoflagellate Ptychodiscus brevis (Gymnodinium breve). J. Am. Chem. Soc. 103, 6773–6776.

    Article  CAS  Google Scholar 

  38. Murata, M., Legrand, A. M., Ishibashi, Y., and Yasumoto, T. (1989) Structures of ciguatoxin and its congener. J. Am. Chem. Soc. 111, 8929–8931.

    Article  CAS  Google Scholar 

  39. Chang, F. H., Anderson, D. M., Kulis, D. M., and Till, D. G. (1997) Toxin production of Alexandrium minutum (Dinophyceae) from the Bay of Plenty, New Zealand. Toxicon 35, 393–409.

    Article  PubMed  CAS  Google Scholar 

  40. Oshima, Y. (1995) Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins. J. AOAC Int. 78, 528–532.

    CAS  Google Scholar 

  41. Oshima, Y., Blackburn, S. I., and Hallegraeff, G. M. (1993) Comparative study on paralytic shellfish toxin profiles of the dinoflagellate Gymnodinium catenatum from three different countries. Mar. Biol. 116, 471–476.

    Article  CAS  Google Scholar 

  42. Betz, J. L., Brown, P. R., Smyth, M. J., and Clarke, P. H. (1974) Evolution in action. Nature 247, 261–264.

    Article  PubMed  CAS  Google Scholar 

  43. Satin, J., Limberis, J. T., Kyle, J. W., Rogart, R. B., and Fozzard, H. A. (1994) The saxitoxin/tetrodotoxin binding site on cloned rat brain IIa Na channels is in the trans-membrane electric field. Biophys. J. 67, 1007–1014.

    Article  PubMed  CAS  Google Scholar 

  44. Lipkind, G. M and Fozzard, H. A. (1994) A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys. J. 66, 1–13.

    Article  PubMed  CAS  Google Scholar 

  45. Strichartz, G. (1984) Structural determinants of the affinity of saxitoxin for neuronal sodium channels. Electrophysiological studies on frog peripheral nerve. J. Gen. Physiol. 84, 281–305.

    Article  PubMed  CAS  Google Scholar 

  46. Atchison, W. D., Luke, V. S., Narahashi, T., and Vogel, S. M. (1986) Nerve membrane sodium channels as the target site of brevetoxins at neuromuscular junctions. Br. J. Pharmacol. 189, 731–738.

    Article  Google Scholar 

  47. Lombet, A., Bidard, J. N., and Lazdunski, M. (1987) Ciguatoxin and brevetoxins share a common receptor site on the neuronal voltage-dependent Na+ channel. FEBS Lett. 219, 355–359.

    Article  PubMed  CAS  Google Scholar 

  48. Jeglitsch, G., Rein, K., Baden, D. G., and Adams, D. J. (1998) Brevetoxin-3 (PbTx-3) and its derivatives modulate single tetrodotoxin-sensitive sodium channels in rat sensory neurons. J. Pharmacol. Exp. Ther. 284, 516–525.

    PubMed  CAS  Google Scholar 

  49. Huang, J. M., Wu, C. H., and Baden, D. G. (1984) Depolarizing action of a red-tide dinoflagellate brevetoxin on axonal membranes. J. Pharmacol. Exp. Ther. 229, 615–621.

    PubMed  CAS  Google Scholar 

  50. Sheridan, R. E. and Adler, M. (1989) The actions of a red tide toxin from Ptychodiscus brevis on single sodium channels in mammalian neuroblastoma cells. FEBS Lett. 247, 448–452.

    Article  PubMed  CAS  Google Scholar 

  51. Biscoe, T. J., Evans, R. H., Headley, P. M., Martin, M., and Watkins, J. C. (1975) Domoic and quisqualic acids as potent amino acid excitants of frog and rat spinal neurones. Nature 255, 166–167.

    Article  PubMed  CAS  Google Scholar 

  52. Michaelis, E. K. (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 54, 369–415.

    Article  PubMed  CAS  Google Scholar 

  53. Ozawa, S., Kamiya, H., and Tsuzunki, K. (1998) Glutamate receptors in the mammalian central nervous sytem. Prog. Neurobiol. 54, 581–618.

    Article  PubMed  CAS  Google Scholar 

  54. Adams, D. J., Dwyer, T. M., and Hille, B. (1980) The permeability of endplate channels to monovalent and divalent metal cations. J. Gen. Physiol. 75, 493–510.

    Article  PubMed  CAS  Google Scholar 

  55. Sargent, P. B. (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu. Rev. Neurosci. 16, 403–443.

    Article  PubMed  CAS  Google Scholar 

  56. Swanson, K. L., Allen, C. N., Aronstam, R. S., Rapoport, H., and Albuquerque, E. X. (1986) Molecular mechanisms of the potent and stereospecific nicotinic receptor agonist (+)-anatoxin-a. Mol. Pharmacol. 29, 250–257.

    PubMed  CAS  Google Scholar 

  57. Hyde, E. G. and Carmichael, W. W. (1991) Anatoxin-a(s), a naturally occurring organo-phosphate, is an irreversible active site-directed inhibitor of acetylcholinesterase (EC 3.1.1.7). J. Biochem. Toxicol. 6, 195–201.

    Article  PubMed  CAS  Google Scholar 

  58. Dyer, J. R., Johnston, W. L., Castellucci, V. F., and Dunn, R. J. (1997) Cloning and tissue distribution of the Aplysia Na+ channel alpha-subunit cDNA. DNA Cell. Biol. 16, 347–356.

    Article  PubMed  CAS  Google Scholar 

  59. Spafford, J. D., Spencer, A. N., and Gallin, W. J. (1998) A putative voltage-gated sodium channel alpha subunit (PpSCN1) from the hydrozoan jellyfish, Polyorchis penicillatus: structural comparisons and evolutionary considerations. Biochem. Biophys. Res. Commun. 244, 772–780.

    Article  PubMed  CAS  Google Scholar 

  60. Jeziorski, M. C., Greenberg, R. M., and Anderson, P. A. (1997) Cloning of a putative voltage-gated sodium channel from the turbellarian flatworm Bdelloura candida. Parasitology 115, 289–296.

    Article  PubMed  CAS  Google Scholar 

  61. Guy, H. R. and Durell, S. R. (1995) Structural models of Nat Ca’, and K+ Fhannels. Soc. Gen. Physiol. Ser. 50, 1–16.

    PubMed  CAS  Google Scholar 

  62. Heinemann, S. H., Terlau, H., Stuhmer, W., Imoto, K., and Numa, S. (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441–443.

    Article  PubMed  CAS  Google Scholar 

  63. Lee, R. Y., Lobel, L., Hengartner, M., Horvitz, H. R., and Avery, L. (1997) Mutations in the alpha subunit of an L-type voltage-activated Cat+ channel cause myotonia in Caenorhabditis elegans. EMBO J. 16, 6066–6076.

    CAS  Google Scholar 

  64. Le Paslier, M. C., Pierce, R. J., Merlin, F., Hirai, H., Wu, W., Williams, D. L., et al. (2000) Construction and characterization of a Schistosoma mansoni bacterial artificial chromosome library. Genomics 65, 87–94.

    Article  PubMed  CAS  Google Scholar 

  65. Myler, P. J., Audleman, L., deVos, T., Hixson, G., Kiser, P., Lemley, C., et al. (1999) Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. Proc. Natl. Acad. Sci. USA 96, 2902–2906.

    Article  PubMed  CAS  Google Scholar 

  66. Mongan, N. P., Baylis, H. A., Adcock, C., Smith, G. R., Sansom, M. S., and Sattelle, D. B. (1998) An extensive and diverse gene family of nicotinic acetylcholine receptor alpha subunits in Caenorhabditis elegans. Receptors Channels 6, 213–228.

    PubMed  CAS  Google Scholar 

  67. Maricq, A. V., Peckol, E., Driscoll, M., and Bargmann, C. I. (1995) Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor. Nature 378, 78–81.

    Article  PubMed  CAS  Google Scholar 

  68. Maclntyre, J. G., Cullen, J. J., and Cembella, A. D. (1997) Vertical migration, nutrition and toxicity in the dinoflagellate Alexandrium tamarense Mar. Ecol. Prog, Ser. 148, 201–216.

    Article  Google Scholar 

  69. Ogata, T., Ishimura, T., and Kodama, M. (1987) Effect of water temperature and light intensity on growth rate and toxicity change in Protogonyaulax tamarensis. Mar. Biol. 95, 217–220.

    Article  CAS  Google Scholar 

  70. Selvin, R. C., Lewis, C. M., Yentsch, C. M., and Hurst, J. W. (1984) Seasonal persistence of resting cyst toxicity in the dinoflagellate Gonyaulax tamarensis var. excavata. Toxicon 22, 817–820.

    Article  PubMed  CAS  Google Scholar 

  71. Oshima, Y., Bolch, C. J., and Hallegraeff, G. M. (1992) Toxin composition of resting cysts of Alexandrium tamarense (Dinophyceae). Toxicon 30, 1539–1544.

    Article  PubMed  CAS  Google Scholar 

  72. Stevens, D. K. and Krieger, R. I. (1991) Stability studies on the cyanobacterial nicotinic alkaloid anatoxin-A. Toxicon 29, 167–179.

    Article  PubMed  CAS  Google Scholar 

  73. Boczar, B. A., Beitler, M. K., Liston, J., Sullivan, J. J., and Cottolico, R. A. (1988) Paralytic shellfish toxins in Protogonyaulax tamarensis and Protogonyaulax catanella in axenic culture. Plant Physiol. 88, 1285–1290.

    Article  PubMed  CAS  Google Scholar 

  74. Subba Rao, D. V., De Freitas, A. S. W., Quilliam, M. A., Pocklington, R., and Bates, S. S. (1990) Rates of production of domoic acid, a neurotoxin amino acid in the pennate marine diatom Nitzschia pungens, in Toxic Marine Phytoplankton ( Graneli, E., Sundstrom, B., Edler, L., and Anderson, D. M. eds.), Elsevier, New York, NY, pp. 413–417.

    Google Scholar 

  75. Fersht, A. (1985) Enzyme Structure and Mechanism. W.H. Freeman, New York.

    Google Scholar 

  76. Herbert, R. A. (1999) Nitrogen cycling in coastal marine ecosystems FEMS Microbiol. Rev. 23, 563–590.

    Article  PubMed  CAS  Google Scholar 

  77. Rapala, J., Sivonen, K., Luukkainen, R., and Niemala, S. I. (1993) Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and cornparison of growth by toxic and non-toxic Anabaena-strains: a laboratory study. 1 Appl. Phycol. 5, 581–591.

    Article  CAS  Google Scholar 

  78. Bumke-Vogt, C., Mailahn, W., Rotard, W., and Chorus, I. (1996) A highly sensitive analytical method for the neurotoxin anatoxin-a, using GC-ECD, and first application to laboratory cultures. Phycologia 35 (Suppl. 6), 51–56.

    Article  Google Scholar 

  79. Anderson, D. M. and Cheng, T. P. (1988) Intracellular localization of saxitoxins in the dinoflagellate Gonyaulax tamarensis. J. Phycol. 24, 17–22.

    Article  CAS  Google Scholar 

  80. Hallegraeff, G. M. (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32, 79–99.

    Article  Google Scholar 

  81. Teegarden, G. J. (1999) Copepod grazing selection and particle discrimination on the basis of PSP toxin content. Mar. Ecol. Prog. Ser. 181, 163–176.

    Article  CAS  Google Scholar 

  82. Teegarden, G. J. and Cembella, A. D. (1996) Grazing of toxic dinoflagellates, Alexandrium spp., by adult copepods of coastal Maine: implications for the fate of paralytic shellfish toxins in marine food webs. J. Exp. Mar. Biol. Ecol. 196, 145–176.

    Article  Google Scholar 

  83. Haney, J. F., Sasner, J. J., and Ikawa, M. (1995) Effects of products released by Aphanizomenonflos-aquae and purified saxitoxin on the movements ofDaphnia carinata feeding appendages. Limnol. Oceanogr. 40, 263–272.

    Article  CAS  Google Scholar 

  84. Ishida, H., Muramatsu, N., Kosuge, T., and Tsuji, K. (1996) Study of neurotoxic shellfish poisoning involving New Zealand shellfish, Crassostrea gigas, in Harmful and Toxic Algal Blooms ( Yasumoto, T., Oshima, Y., and Fukuyo, Y., eds.). UNESCO, Paris, pp. 491–494.

    Google Scholar 

  85. Trudeau, L. E. and Castellucci, V. F. (1993) Excitatory amino acid neurotransmission at sensory-motor and interneuronal synapses of Aplysia californica. J. Neurophysiol. 70, 1221–1230.

    CAS  Google Scholar 

  86. Fieber, L. A. (1998) Characterization of Na+ and Cat+ currents in bag cells of sexually immature Aplysia californica. J. Exp. Biol. 201, 745–754.

    CAS  Google Scholar 

  87. Twarog, B. M., Hidaka, T., and Yamaguchi, H. (1972) Resistance to tetrodotoxin and saxitoxin in nerves of bivalve molluscs. A possible correlation with paralytic shellfish poisoning. Toxicon 10, 273–278.

    Article  PubMed  CAS  Google Scholar 

  88. Kvitek, R. G. and Beitler, R. M. (1991) Relative insensitivity of butter clam neurons to saxitoxin: a pre-adaptation for sequestering paralytic shellfish poisoning toxins as a chemical defense. Mar. Ecol. Prog. Ser. 69, 47–54.

    Article  Google Scholar 

  89. Satin, J., Kyle, J. W., Chen, M., Bell, P., Cribbs, L. L., Fozzard, H. A., and Rogart, R. B. (1992) A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science 256, 1202–1205.

    Article  PubMed  CAS  Google Scholar 

  90. Wohlgeschaffen, G. D., Mann, K. H., Subba Rao, D. V., and Pocklington, R. (1992) Dynamics of the phycotoxin domoic acid: accumulation and excretion in two commercially important bivalves. J. Appl. Phycol. 4, 297–310.

    Article  CAS  Google Scholar 

  91. Sheumack, D. D., Howden, M. E., Spence, I., and Quinn, R. J. (1978) Maculotoxin: a neurotoxin from the venom glands of the octopus Hapalochlaena maculosa identified as tetrodotoxin. Science 199, 188–189.

    Article  PubMed  CAS  Google Scholar 

  92. Sheumack, D. D., Howden, M. E., and Spence, I. (1984) Occurrence of a tetrodotoxinlike compound in the eggs of the venomous blue-ringed octopus (Hapalochlaena maculosa). Toxicon 22, 811–812.

    Article  PubMed  CAS  Google Scholar 

  93. Flachsenberger, W. and Kerr, D. I. (1985) Lack of effect of tetrodotoxin and of an extract from the posterior salivary gland of the blue-ringed octopus following injection into the octopus and following application to its brachial nerve. Toxicon 23, 997–999.

    Article  PubMed  CAS  Google Scholar 

  94. Hwang, D. F., Arakawa, O., Saito, T., Noguchi, T., Simidu, U., Tsukamoto, K.,et al. (1989) Tetrodotoxin-producing bacteria from the blue-ringed octopus Octopus maculosus. Mar. Biol. 100, 327–332.

    Article  CAS  Google Scholar 

  95. Sommer, H. (1932) The occurrence of the paralytic shellfish poison in the common sand crab. Science 76, 574–575.

    Article  PubMed  CAS  Google Scholar 

  96. Noguchi, T., Konosu, S., and Hashimoto, Y. (1969) Identity of the crab toxin with saxitoxin. Toxicon 7, 325–326.

    Article  PubMed  CAS  Google Scholar 

  97. Noguchi, T., Uzu, A., Koyama, K., Maruyama, J., Nagashima, Y., and Hashimoto, K. (1983) Occurrence of tetrodotoxin as the major toxin in a Xanthid crab Atergatis floridus. Bull. Jpn. Soc. Sci. Fish. 49, 1887–1892.

    Article  CAS  Google Scholar 

  98. Daigo, K., Noguchi, T., Miwa, A., Kawai, N., and Hashimoto, K. (1988) Resistance of nerves from certain toxic crabs to paralytic shellfish poison and tetrodotoxin. Toxicon 26, 485–490.

    Article  PubMed  CAS  Google Scholar 

  99. Yamamori, K., Yamaguchi, S., Maehara, E., and Matsui, T. (1992) Tolerance of shore crabs to tetrodotoxin and saxitoxin and antagonistic effect of their body fluid against the toxins. Bull. Jap. Soc. Sci. Fish. 58, 1157–1162.

    Article  CAS  Google Scholar 

  100. Llewellyn, L. E. (1997) Haemolymph protein in xanthid crabs: its selective binding of saxitoxin and possible role in toxin bioaccumulation. Mar. Biol. 128, 599–606.

    Article  CAS  Google Scholar 

  101. Noguchi, T., Hwang, D. F., Arakawa, O., Sugita, H., Deguchi, Y., Shida, Y., and Hashimoto, K. (1987) Vibrio alginolyticus, a tetrodotoxin-producing bacterium, in the intestines of the fish Fugu vermicularis vermicularis. Mar. Biol. 94, 625–630.

    Article  CAS  Google Scholar 

  102. Yotsu, M., Yamazaki, T., Meguro, Y., Endo, A., Murata, M., Naoki, H., and Yasumoto, T. (1987) Production of tetrodotoxin and its derivatives by Pseudomonas sp. isolated from the skin of a pufferfish. Toxicon 25, 225–228.

    Article  PubMed  CAS  Google Scholar 

  103. Matsumura K. (1995) Tetrodotoxin as a pheromone. Nature 378, 563–564.

    Article  PubMed  CAS  Google Scholar 

  104. Kodama, M., Sato, S., Ogata, T., Suzuki, Y., Kaneko, T., and Aida, K. (1986) Tetrodotoxin secreting glands in the skin of puffer fishes. Toxicon 24, 819–829.

    Article  PubMed  CAS  Google Scholar 

  105. Fritz, L., Quilliam, M. A., and Wright, J. L. C. (1992) An outbreak of domoic acid poisoning attributed to the pennate diatom Pseudonitzschia australis. J. Phycol. 28, 439–442.

    Article  Google Scholar 

  106. Scholin, C. A., Gulland, F., Doucette, G. J., Benson, S., Busman, M., Chavez, F. P., et al. (2000) Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403, 80–84.

    Article  PubMed  CAS  Google Scholar 

  107. Geraci, J. R., Anderson, D. M. Timperi, R. J., St. Aubin, D. J., Early, G. A., Prescott, J. H., and Mayo, C. A. (1989) Humpback whales (Megaptera novaeangliae) fatally poisoned by dinoflagellate toxin. Can. J. Fish. Aquat. Sci. 46, 1895–1898.

    Google Scholar 

  108. Davis, C. G. (1947) Gymnodinium breve, n. Sp. A cause of discolored water and animal mortality in the Gulf of Mexico. Bot. Gaz. 109, 358–360.

    Article  Google Scholar 

  109. Bossart, G. D., Baden, D. G., Ewing, R. Y., Roberts, B., and Wright, S. D. (1998) Brevetoxicosis in manatees (Trichechus manatus latirostris) from the 1996 epizootic: gross, histologic, and immunohistochemical features. Toxicol. Pathol. 26, 276–282.

    Article  PubMed  CAS  Google Scholar 

  110. Saimi, Y., Martinac, B., Delcour, A. H., Minorsky, P. V., Gustin, M. C., Culbertson, M. R., et al. (1992) Patch clamp studies of microbial ion channels. Methods Enzymol. 207, 681–691.

    Article  PubMed  CAS  Google Scholar 

  111. Oami, K., Naitoh, Y., and Sibaoka, T. (1995) Voltage-gated ion conductances correspoding to regenerative positive and negative spikes in the dinoflagellate Noctiluca miliaris. J. Comp. Physiol. A 176, 625–633.

    Article  Google Scholar 

  112. Andrivon, C. (1988) Membrane control of ciliary movement in ciliates. Biol. Cell 63, 133–142.

    Article  PubMed  CAS  Google Scholar 

  113. Liu, J. Z., Dapice, M., and Khan, S. (1990) Ion selectivity of the Vibrio alginolyticus flagellar motor. J. Bacteriol. 172, 5236–5244.

    PubMed  CAS  Google Scholar 

  114. Hirota, N. and Imae, Y. (1983) Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1. J. Biol. Chem. 258, 10577–10581.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Llewellyn, L.E. (2002). Ecology of Microbial Neurotoxins. In: Massaro, E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-132-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-132-9_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-193-6

  • Online ISBN: 978-1-59259-132-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics