Advertisement

Manganese in Health and Disease

From Transport to Neurotoxicity
  • Michael Aschner
  • James R. Connor
  • David C. Dorman
  • Elise A. Malecki
  • Kent E. Vrana
Chapter
  • 324 Downloads

Abstract

Manganese (Mn) is a mineral that is required in small amounts to manufacture enzymes necessary for the metabolism of proteins and fats. A partial list of Mn-dependent enzyme families includes oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases. Mn is involved in the function of numerous organ systems and is needed for normal immune function, regulation of blood sugars, production of cellular energy, reproduction, digestion, and bone growth. Mn works with vitamin K to support clotting of the blood. As a vital component of superoxide dismutase (SOD), Mn has important antioxidant properties since MnSOD is one of the body’s main frontline defense mechanisms against damaging free radicals.

Keywords

Choroid Plexus Inhalation Exposure Methylcyclopentadienyl Manganese Tricarbonyl Manganese Neurotoxicity Methylcyclopentadienyl Manganese Tricarbonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kawamura, R., Ikuta, H., Fukuzumi, S., Yamada, R., Tsubaki, S., Kodama, T., and Kurata, S. (1941) Intoxication by manganese in well water. Kitasato Arch. Exp. Med. 18, 145–169.Google Scholar
  2. 1a.
    la. Keen, C. L. and Zidenberg-Cherr, S. (1994) Manganese toxicity in humans and experimental animals, in Manganese in Health and Disease, ( Klimis-Tavantzis, D. J., ed.), CRC Press, Boca Raton, pp. 193–205.Google Scholar
  3. 2.
    Ferraz, H. B., Bertolucci, P. H. F., Pereira, J. S., Lima, J. G. C., and Andrade, L. A. F. (1988) Chronic exposure to the fungicide maneb may produce symptoms and signs of CNS manganese intoxication. Neurology 38, 550–553.PubMedGoogle Scholar
  4. 3.
    Ensing, J. G. (1985) Bazooka: cocaine-base and manganese carbonate.. 1. Anal. Toxicol. 9, 45–46.Google Scholar
  5. 4.
    Davis, D. W., Hsiao, K., Ingels, R., and Shikiya, J. (1988) Origins of manganese in air particulates in California. JAPCA 38, 1152–1157.PubMedGoogle Scholar
  6. 5.
    Chandra, S. V., Shukla, G. S., Srivastawa, R. S., Singh, H., and Gupta, V. P. (1981) An exploratory study of manganese exposure to welders. Clin. Toxicol. 18, 407–418.PubMedGoogle Scholar
  7. 6.
    Roels, H., Lauwerys, R., Buchet, J. P., Genet, P., Sarhan, M. J., Hanotiau, I., et al. (1987) Epidemiological survey among workers exposed to manganese: effects on lung, central nervous system, and some biological indices. Am. J. Ind. Med. 11, 307–327.PubMedGoogle Scholar
  8. 7.
    Wang, J. D, Huang, C. C., Hwang, Y. H., Chiang, J. R., Lin, J. M., and Chen, J. S. (1989) Manganese induced parkinsonism: an outbreak due to un-repaired ventilation control system in a ferromaganese smelter. Br. J. Ind. Med. 46, 856–859.PubMedGoogle Scholar
  9. 8.
    Lynam, D. R., Roos, J. W., Pfeifer, G. D., Fort, B. F., and Pullin, T. G. (1999) Environmental effects and exposure to manganese from use of methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline. Neurotoxicology 20, 145–150.PubMedGoogle Scholar
  10. 9.
    Zayed, J., Hong, B., and L’Esperance, G. (1999) Characterization of manganese-containing particles collected from the exhaust emissions of automobiles running with MMT additive. Env. Sci. Technol. 33, 3341–3346.Google Scholar
  11. 10.
    Loranger, S. and Zayed, J. (1997) Environmental contamination and human exposure to airborne total and respirable manganese in Montreal. J. Air Waste Manag. Assoc. 47, 983–989.PubMedGoogle Scholar
  12. 11.
    Pellizazari, E. D., Clayton, C. A., Rodes, C. Mason, R. E., Piper, L., Fort, B. F., et al. (1 999) Particulate matter and manganese exposures in Toronto, Canada. Atmos. Environ 33, 721–734.Google Scholar
  13. 12.
    Zayed, J., Thibault, C., Gareau, L., and Kennedy, G. (1999b) Airborne manganese particulates and methylcyclopentadienyl manganese tricarbonyl (M MT) at selected outdoor sites in Montreal. Neurotoxicology 20, 151–157.PubMedGoogle Scholar
  14. 13.
    Andersen, M. E., Gearhart, J. M., and Clewell 111, H. J. (1999). Pharmacokinetic data needs to support risk assessments for inhaled and ingested manganese. Neurotoxicology 20, 161–171.PubMedGoogle Scholar
  15. 14.
    Roels, H., Meiers, G., Delos, M., Ortega, I., Lauwerys, R., Buchet, J. P., and Lison, D. (1997) Influence of the route of administration and the chemical form (MnC12, MnO2) on the absorption and cerebral distribution of manganese in rats. Arch. Toxicol. 71, 223–230.PubMedGoogle Scholar
  16. 15.
    Ulrich, C. E., Rinehart, W., and Brandt, M. (1979) Evaluation of the chronic inhalation toxicity of a manganese oxide aerosol. III. Pulmonary function, electromyograms, limb tremor, and tissue manganese data. Am. Ind. Hyg. Assoc. J. 40, 349–353.PubMedGoogle Scholar
  17. 16.
    Vitarella D, Wong, B. A., Moss, O. R., and Dorman, D. C. (2000) Pharmacokinetics of inhaled manganese phosphate in male Sprague-Dawley rats following subacute (14-day) exposure. Toxicol. Appl. Pharmacol. 163, 279–285.PubMedGoogle Scholar
  18. 17.
    Gibbons, R. A., Dixon, S. N., Hallisk, K., Russell, A. M., Sansom, B. F., and Symonds, H. W. (1976) Manganese metabolism in cows and goats. Biochim Biophvs Acta 444, 1–10.Google Scholar
  19. 17a.
    a.Morganti, J. B., Lown, B. A., Stineman, C. H., D’Agostino, R. B., and Massaro, E. J. (1985) Uptake, distribution and behavioral effects of inhalation exposure to manganese (MnO2) in the adult mouse. Neurotoxicology 6, 1–16.PubMedGoogle Scholar
  20. 18.
    Davidsson, L., Lonnerdal, B., Sandstrom, B., Kunz, C., and Keen, C. L. (1989) Identification of transferrin as the major plasma carrier protein for manganese introduced orally or intravenously or after in vitro addition in the rat. J. Nutr. 119, 1461–1464.PubMedGoogle Scholar
  21. 19.
    Malecki, E. A., Devenyi, A. G., Barron, T. F., Mosher, T. J., Eslinger, P. J., Flaherty-Craig, C. V., et al. (1999b) Iron and manganese homeostasis in chronic liver disease: relationship to pallidal TI-weighted magnetic resonance signal hyperintensity. Neurotoxicology 20, 647–652.PubMedGoogle Scholar
  22. 20.
    Witzleben, C., Pitlick, P., Bergmeyer, J., and Benoit, R. (1968) Acute manganese overload: a new model of intrahepatic cholestasis. Am. J. Pathol. 53, 409–423.PubMedGoogle Scholar
  23. 21.
    Caine, D. B., Chu, N. S., Huang, C. C., Lu, C. S., and Olanow, W. (1994) Manganism and idiopathic parkinsonism: similarities and difference. Neurology 44, 1583–1586.Google Scholar
  24. 22.
    Nagatomo, S., Umehara, F., Hanada, K., Nobuhara, Y., Takenaga, S., Arimura, K., and Osame, M. (1999) Manganese intoxication during total parenteral nutrition: report of two cases and review of the literature. J. Neurol. Sci. 162, 102–105.PubMedGoogle Scholar
  25. 23.
    Olanow, C.W., Good, P.F., Shinotoh, H., Hewitt, K.A., Vingerhoets, F., Snow, B.J., et al. (1996) Manganese intoxication in the rhesus monkey: a clinical, imaging, pathologic, and biochemical study. Neurology 46, 492–498.PubMedGoogle Scholar
  26. 24.
    Brenneman, K. A., Cattley, R. C., Ali, S. F., and Dorman, D. C. (1999) Manganese-induced developmental neurotoxicity in the CD rat: is oxidative damage a mechanism of action? Neurotoxicology 20, 477–487.PubMedGoogle Scholar
  27. 25.
    Boyes, W. K. and Miller, D. B. (1998) A review of rodent models of manganese neuro-toxicity, Neurotoxicology 19, 468 [Abstract].Google Scholar
  28. 26.
    Lyden, A., Larsson, B. S., and Lindquist, N. G. (1984) Melanin affinity of manganese. Acta Pharmacol. Toxicol. 55, 133–138.Google Scholar
  29. 27.
    Chandra, S. V. and Shukla, G. S. (1978) Manganese encephalopathy in growing rats. Environ. Res. 15, 28–37.PubMedGoogle Scholar
  30. 28.
    Dorman, D. C, Struve, M. F., Vitarella, D., Byerly, F. I., Goetz, J., and Miller, R. (2000) Neurotoxicity of manganese chloride in neonatal and adult CD rat following subchronic (21-day) high-dose oral exposure. J. Appl. Toxicol. 20, 179–187.PubMedGoogle Scholar
  31. 29.
    Kristensson, K., Eriksson, H., Lindth, B., Plantin, L. O., Wachtmeister, L., elAzazi, M., et al. (1986) Effect of manganese chloride on the developing nervous system, Acta Pharmacol. Toxicol. 59, 345–348.Google Scholar
  32. 30.
    Scheuhammer, A. M. and Cherian, M. G. (1983) The influence of manganese on the distribution of essential trace elements. II. The tissue distribution of manganese, magnesium, zinc, iron, and copper in rats after chronic manganese exposure. J. Toxicol. Environ. Health 12, 361–370.PubMedGoogle Scholar
  33. 31.
    Furchner, J. E., Richmond, C. R., and Drake, G. A. (1966) Comparative metabolism of radionuclides in mammals. 3. retention of manganese-54 in the mouse, rat, monkey and dog. Health Phys. 12, 1415–1423.PubMedGoogle Scholar
  34. 32.
    Cotzias, G. C., Horuichi, K., Fuenzalida, S., and Mena, I. (1968) Chronic manganese poisoning: Clearance of tissue manganese concentrations with persistence of the neurological picture. Neurology 18, 376–382.PubMedGoogle Scholar
  35. 33.
    Takeda, A., Sawashita, J., and Okada, S. (1995) Biological half-lives of zinc and manganese in rat brain, Brain Res. 695, 53–58.PubMedGoogle Scholar
  36. 34.
    Strause, L., Saltman, P., Smith, K., Bracker, M., and Andon, M. (1994) Spinal bone loss in postmenopausal women supplemented with calcium and trace minerals. J. Nutr. 124, 1060–1064.PubMedGoogle Scholar
  37. 35.
    Gianutsos, G., Morrow, G. R., and Morris, J. B. (1997) Accumulation of manganese in rat brain following intranasal administration. Fund. Appl. Toxicol. 37, 102–105.Google Scholar
  38. 36.
    Tjälve, H. and Henriksson, J. (1999) Uptake of metals in the brain via olfactory pathways. Neurotoxicology 20, 181–195.PubMedGoogle Scholar
  39. 37.
    Brenneman, K. A., Wong, B. A., Bucelloto, M. A., Costa, E. R., Gross, E. A., and Dorman, D. C. (2000) Direct olfactory transport of inhaled manganese (54MnC12) to the rat brain: Toxicokinetic investigations in a unilateral nasal occlusion model. Toxicol. Appl. Pharmacol. 169, 238–248.PubMedGoogle Scholar
  40. 38.
    Pautler, R. G., Silva, A. C., and Koretsky, A. P. (1998) In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn. Reson. Med. 40, 740–748.PubMedGoogle Scholar
  41. 39.
    Sloot, W. N. and Gramsbergen, J. B. (1984) Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res. 657, 124–132.Google Scholar
  42. 40.
    Henriksson, J., Tallkvist, J., and Tjälve, H. (1999) Transport of manganese via the olfactory pathway in rats: dosage dependency of the uptake and subcellular distribution of the metal in the olfactory epithelium and brain. Toxicol. Appl. Pharmacol. 156, 119–128.PubMedGoogle Scholar
  43. 41.
    Takeda A., Sawashita, J., and Okada, S. (1998) Manganese concentration in rat brain: manganese transport from the peripheral tissues. Neurosci. Lett. 242, 45–48.PubMedGoogle Scholar
  44. 42.
    Foradori, A. C., Bertinchamps, A., Gulibon, J. M., and Cotzias, G. C. (1967) The discrimination between magnesium and manganese by serum proteins. J. Gen. Physiol. 50, 2255–2266.PubMedGoogle Scholar
  45. 43.
    Aisen, P., Aasa, R., and Redfield, A. G. (1969) The chromium, manganese, and cobalt complexes of transferrin. J. Biol. Chem. 244, 4628–4633.PubMedGoogle Scholar
  46. 44.
    Fishman, J. B., Handrahan, J. B., Rubir, J. B., Connor, J. R., and Fine, R. E. (1985) Receptor-mediated trancytosis of transferrin across the blood-brain barrier. J. Cell Biol. 101, 423A.Google Scholar
  47. 45.
    Jeffries, W. A., Brandon, M. R., Hunt, S. V., Williams, A. F., and Mason, D. Y. (1984) Transferrin receptor on endothelium of brain capillaries. Nature 132, 162–163.Google Scholar
  48. 46.
    Partridge, W. M., Eisenberg, J., and Yang, J. (1987) Human blood-brain barrier transfer-rin receptor. Metabolism 36, 892–895.Google Scholar
  49. 47.
    Suarez, N. and Eriksson, H. (1993) Receptor-mediated endocytosis of a manganese complex of transferrin into neuroblastoma (SHSY5Y) cells in culture. J. Neurochem. 61, 127–131.PubMedGoogle Scholar
  50. 48.
    Barbeau, A., Inoué, N., and Cloutier, T. (1976) Role of manganese in dystonia. Adv. Neurol. 14, 339–352.PubMedGoogle Scholar
  51. 49.
    Hill, J. M. and Switzer, R. C., III. (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11, 595–603.PubMedGoogle Scholar
  52. 50.
    Hill, J. M., Ruff, M. R., and Weber, R. J. (1985) Transferrin receptors in rat brain: Neuropeptide-like pattern and relationship to iron distribution. Proc. Natl. Acad. Sci. USA 82, 4553–4557.PubMedGoogle Scholar
  53. 51.
    Santamaria, A., Rios, C., Perez, P., Flores, A., Galvan-Arzate, S., Osorio-Rico L., and Solis F. (1996) Quinolinic acid neurotoxicity: in vivo increased copper and manganese content in rat corpus striatum after quinolinate intrastriatal injection. Toxicol. Lett. 87, 113–119.PubMedGoogle Scholar
  54. 52.
    Walaas, I. and Fonnum, F. (1979) The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions. Brain Res. 177, 325–336.PubMedGoogle Scholar
  55. 53.
    Nagy, J. I., Carter, D. A., and Fibiger, H. C. (1978) Evidence for a GABA-containing projection from the enopenduncular nucleus to the lateral habenula in the rat. Brain Res. 145, 360–364.PubMedGoogle Scholar
  56. 54.
    Mena, I., Horiuchi, K., Burke, K., and Cotzias, G. C. (1969) Chronic manganese poisoning: individual susceptibility and absorption of iron. Neurology 19, 1000–1006.PubMedGoogle Scholar
  57. 55.
    Aschner, M. and Aschner, J. L. (1990) Manganese transport across the blood-brain barrier: relationship to iron homeostasis. Brain Res. Bull. 24, 857–860.PubMedGoogle Scholar
  58. 56.
    Aschner, M. and Aschner, J. L. (1991) Manganese neurotoxicity: cellular effects and blood-brain barrier transport. Neurosci. Biobehay. Rev. 15, 333–340.Google Scholar
  59. 57.
    Diez-Ewald, M., Weintraub, L. R., and Crosby, W. H. (1968) Inter relationship of iron and manganese metabolism. Proc. Soc. Exp. Biol. Med. 129, 448–151.PubMedGoogle Scholar
  60. 58.
    Aschner, M. and Gannon, M. (1994) Manganese (Mn) transport across the rat blood-brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res. Bull. 33, 345–349.PubMedGoogle Scholar
  61. 59.
    Ueda, F., Raja, K. B., Simpson, R. J., Trowbridge, I. S., and Bradbury, M. W. B. (1993) Rate of [59]Fe uptake into brain a cerebrospinal fluid and the influence thereon of antibodies against the transferrin receptor. J. Neurochem. 60, 106–113.PubMedGoogle Scholar
  62. 60.
    Grafstein, B. and Forman, D. S. (1980) Intracellular transport in neurons. Physiol. Rev. 60, 1167–1283.PubMedGoogle Scholar
  63. 61.
    Gavin, C. E., Gunter, K. K., and Gunter, T. E. (1994) Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochem. J. 266, 329–334.Google Scholar
  64. 62.
    Shen, X. M. and Dryhurst, G. (1998) Iron—and manganese-catalyzed autoxidation of dopamine in the presence of L-cysteine: possible insights into iron and manganese- mediated dopaminergic neurotoxicity. Chem. Res. Toxicol. 11, 824–837.PubMedGoogle Scholar
  65. 63.
    Zheng, W., Zhao, Q., Slavkovich, V., Aschner, M., and Graziano, J. H. (1999) Alteration of iron homeostasis following chronic exposure to manganese in rats. Brain Res. 833, 125–132.PubMedGoogle Scholar
  66. 64.
    Murphy, V. A., Wadhwani, K. C., Smith, Q. R., and Rapoport, S. I. (1991) Saturable transport of manganese (II) across the rat blood-brain barrier. J. Neurochem. 57, 948–954.PubMedGoogle Scholar
  67. 65.
    Rabin, O., Hegedus, L., Bourre, J. M., and Smith, Q. R. (1993) Rapid brain uptake of manganese (II) across the blood-brain barrier. J. Neurochem. 61, 509–517.PubMedGoogle Scholar
  68. 66.
    London, R. E., Toney, G., Gabel, S. A., and Funk, A. (1989) Magnetic resonance imaging studies of the brains of anesthetized rats treated with manganese chloride. Brain Res. Bull. 23, 229–235.PubMedGoogle Scholar
  69. 67.
    Ingersoll, R. T., Montgomery, E. B., Jr., and Aposhian, H. V. (1995) Central nervous system toxicity of manganese. I. Inhibition of spontaneous motor activity in rats after intrathecal administration of manganese chloride. Toxicol. Appl. Pharmacol. 27, 106–113.Google Scholar
  70. 68.
    Takeda, A., Sawashita, J., and Okada, S. (1994) Localization in rat brain of the trace metals, zinc and manganese, after intracerebroventricular injection. Brain Res. 658, 252–254.PubMedGoogle Scholar
  71. 69.
    Malecki, E. A., Devenyi, A. G., Beard, J. L., and Connor, J. R. (1999e) Existing and emerging mechanisms for iron and manganese transport to the brain. J. Neurosci. Res. 56, 113–122.PubMedGoogle Scholar
  72. 70.
    Burdo, J., Martin, J., Menzies, S., Dolan, K., Romano, M., Fletcher, R., et al. (1999) Cellular distribution of iron in the brain of the Belgrade rat. Neuroscience 93, 1189–1196.PubMedGoogle Scholar
  73. 71.
    Shukla, A., Agarwal, K. N., and Shukla, G. S. (1989) Effect of latent iron deficiency on metal levels of rat brain regions. Biol. Trace Elem. Res. 22, 141–151.PubMedGoogle Scholar
  74. 72.
    Yokoi, K., Kimura, M., and Itokawa, Y. (1991) Effect of dietary iron deficiency on mineral levels in tissues of rats. Biol. Trace Elem. Res. 29, 257–265.PubMedGoogle Scholar
  75. 73.
    Thomson, A. B. R. and Valberg, L. S. (1972) Intestinal uptake of iron, cobalt, and manganese in the iron-deficient rat. Am. J. Physiol. 223, 1327–1329.PubMedGoogle Scholar
  76. 74.
    Davis, C. D., Malecki, E. A., and Greger, J. L. (1992) Interactions among dietary manganese, heme iron, and nonheme iron in women. Am. J. Clin. Nutr. 56, 926–932.PubMedGoogle Scholar
  77. 75.
    Gunshin, H., Mackenzie, B., Berger, U., Gunshin, Y., Romero, M., Boron, W., et al. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 338, 482–488.Google Scholar
  78. 76.
    Bernstein, S. E. (1987) Hereditary hypotransferrinemia with hemosiderosis, a murine disorder resembling human atransferrinemia. J. Lab. Clin. Med. 110, 690–705.PubMedGoogle Scholar
  79. 77.
    Huggenvik, J. I., Craven, C. M., Idzerda, R. L., Bernstein, S., Kaplan, J., and McKnight, G. S. (1989) A splicing defect in the mouse transferrin gene leads to congenital atransferrinemia. Blood 74, 482–486.PubMedGoogle Scholar
  80. 78.
    Dickinson, T. K. and Connor, J. R. (1994) Histological analysis of selected brain regions of hypotransferrinemic mice. Brain Res. 635, 169–178.PubMedGoogle Scholar
  81. 79.
    Malecki, E. A., Devenyi, A. G., Beard, J. L., and Connor, J.R. (1998) Transferrin response in normal and iron-deficient mice heterozygotic for hypotransferrinemia: effects on iron and manganese accumulation. BioMetals 11, 265–276.PubMedGoogle Scholar
  82. 80.
    Malecki, E. A., Cook, B. M., Devenyi, A. G., Beard, J. L., and Connor, J. R. (1999a) Transferrin is required for normal distribution of 59Fe and ‘Mn in brains of mice. J. Neurol. Sci. 170, 112–118.PubMedGoogle Scholar
  83. 81.
    Tu, G., Achen, M., Aldred, A., Southwell, B., and Schreiber, G. (1991) The distribution of cerebral expression of the transferrin gene is species specific. J. Biol. Chem. 266, 6201–6208.PubMedGoogle Scholar
  84. 82.
    Richardson, D. R. and Ponka, P. (1997) The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim. Biophys. Acta 1331, 1–40.PubMedGoogle Scholar
  85. 83.
    Cotzias, G. C. (1958) Manganese in health and disease. Physiol. Rev. 38, 503–532.PubMedGoogle Scholar
  86. 84.
    Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L., Kortsha, G. X., Brown, G. G., and Richardson, R. J. (1997) Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology 48, 650–658.PubMedGoogle Scholar
  87. 85.
    Rybicki, B. A., Johnson, C. C., Uman, J., and Gorell, J. M. (1993) Parkinson’s disease mortality and the industrial use of heavy metals in Michigan. Movement Disorders 8, 87–92.PubMedGoogle Scholar
  88. 86.
    Semchuk, K. M, Love, E. J., and Lee, R. G. (1992) Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology 42, 1328–1335.PubMedGoogle Scholar
  89. 87.
    Tanner, C. M. (1989) The role of environmental toxins in the etiology of Parkinson’s disease. Trends Neurosci. 12, 49–54.PubMedGoogle Scholar
  90. 88.
    Barbeau, A. (1985) Manganese and extrapyramidal disorders. Neurotoxicology 5, 13–16.Google Scholar
  91. 89.
    Mena, 1., Court, J., Fuenzalida, S., Papavasiliou, P. S., and Cotzias, G. C. (1974) Modification of chronic manganese poisoning. Treatment with L-dopa or 5-OH tryptophane. N. Engl. J. Med. 282, 5–10.Google Scholar
  92. 90.
    Tepper, L. B. (1961) Hazards to health: manganese. N. Engl. J. Med. 264, 347–348.PubMedGoogle Scholar
  93. 91.
    Pal, P. K., Samii, A., and Caine, D. B. (1999) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20, 227–238.PubMedGoogle Scholar
  94. 92.
    Donaldson, J., McGregor, D., and Labella, F. S. (1982) Manganese neurotoxicity: a model for free radical mediated neurodegeneration? Can. J. Physiol. Pharmacol. 60, 1398–1405.PubMedGoogle Scholar
  95. 93.
    Archibald, F. S., and Tyree, C. (1987) Manganese poisoning and the attack of trivalent manganese upon catecholamines. Arch. Biochem. Biophys. 256, 638–650.PubMedGoogle Scholar
  96. 93a.
    Segura-Aguilar, J. and Lind, C. (1989) On the mechanism of the Mn3(+)-induced neuro-toxicity of dopamine: prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Chem. Biol. Interact. 72, 309–324.PubMedGoogle Scholar
  97. 94.
    Parenti, M., Flauto, C., Parati, E., Vescovi, A., and Groppetti, A. (1988) Manganese neurotoxicity: effect of L-DOPA and pargyline treatments. Brain Res. 367, 8–13.Google Scholar
  98. 95.
    Ambani, L. M., Vanwoert, M. H., and Murphy, S. (1975) Brain peroxidase and catalase in Parkinson’s disease. Arch. Neurol. 32, 114–118.PubMedGoogle Scholar
  99. 96.
    Cohen, G. and Heikkila, R. E. (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J. Biol. Chem. 249, 2447–2452.PubMedGoogle Scholar
  100. 97.
    Cohen, G. (1984) Oxy-radical toxicity in catecholamine neurons. Neurotoxicology 5, 77–82.PubMedGoogle Scholar
  101. 98.
    Marinho, C. R. and Manso, C. F. (1993) 02 generation during neuromelanin synthesis. The action of manganese. Acta Med. Portug. 6, 547–554.Google Scholar
  102. 99.
    Sun, A. Y., Yang, W. L., and Kim, H. D. (1993) Free radical and lipid peroxidation in manganese-induced neuronal cell injury. Annal. NYAcad. Sci. 679, 358–363.Google Scholar
  103. 100.
    Graham, D. G., Tiffany, S. M., Bell, W. R., Jr., and Gutknecht, W. F. (1978) Autooxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C 1300 neuroblastoma cells in vitro. Mol. Pharmacol. 14, 644–653.PubMedGoogle Scholar
  104. 101.
    Graham, D. G. (1984) Catecholamine toxicity: a proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson’s disease. Neurotoxicology 5, 83–96.PubMedGoogle Scholar
  105. 102.
    Perry, T. L., Godin, D. V., and Hansen, S. (1982) Parkinson’s disease: a disease due to nigral glutathione deficiency? Neurosci. Lett. 33, 305–310.PubMedGoogle Scholar
  106. 103.
    Donaldson, J. (1987) The physiopathologie significance of manganese in brain: its relation to schizophrenia and neurodegenerative disorders. Neurotoxicology 8, 451–462.PubMedGoogle Scholar
  107. 104.
    Garner, C. D. and Nachtman, J. P. (1989) Manganese catalyzed auto-oxidation of dopamine to 6-hydroxydopamine in vitro. Chem. Biol. Interactions 69, 345–351.Google Scholar
  108. 105.
    Millar, D. M., Buttner, G. R., and Aust, S. D. (1990) Transition metals as catalysts of “autooxidation” reactions. Free Rad. Biol. Med. 8, 95–108.Google Scholar
  109. 106.
    Roy, B. P., Paice, M. G., Archibald, F. S., Misra, S. K., and Misiak, L. E. (1994) Creation of metal-complexing agents, reduction of manganese dioxide, and promotion of manganese peroxidase-mediated Mn(III) production by cellobiose: quinone oxidoreductase from Trametes versicolor. J. Biol. Chem. 269, 19,745–19, 750.Google Scholar
  110. 107.
    Brouillet, E. P., Shinobu, L., McGarvey, U., Hochberg, F., and Beal, M. F. (1993) Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp. Neurol. 120, 89–94.PubMedGoogle Scholar
  111. 108.
    Verity, M. A. (1999) Manganese neurotoxicity: a mechanistic hypothesis. Neurotoxicology 20, 489–497.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Michael Aschner
  • James R. Connor
  • David C. Dorman
  • Elise A. Malecki
  • Kent E. Vrana

There are no affiliations available

Personalised recommendations