Capillary Coatings for Protein Analysis

  • Kannan Srinivasan
  • Chris Pohl
  • Nebojsa Avdalovic
Part of the Pathology and Laboratory Medicine book series (PLM)


Protein analysis has become very important to the biotechnology, pharmaceutical, and food industries. Analytical techniques that provide fast, automated analysis, but still give high resolution separation of proteins derived from various sources, such as plasma, blood, and vaccine products, are in high demand. Chromatography and electrophoresis continue to be the preferred means for analyzing proteins. Capillary electrophoresis (CE), a micro-format of electrophoresis, has been successfully used for separating various proteins. A major problem encountered in CE analysis of proteins using a fused silica capillary is the interaction of basic analytes, such as proteins, with exposed surface silanol groups on the capillary wall. This interaction results in loss of efficiency and irreproducible separations. Several groups have worked on evaluating protein interactions with the silica surface and have reported mathematical models and computer simulations of these interactions (1–3). Typical approaches in addressing the aforementioned problem include working at conditions where the silanol groups are either unionized (4) or fully ionized (5). However, these conditions require working at extremes of pH and which may be unsuitable for many analytes. In addition, silica dissolves at extreme pHs, another limitation of this approach (6). Other approaches in addressing the aforementioned problem include adding compounds (7–9) that compete with the analytes for the sites of interaction on the capillary wall. These additives, however, may adversely affect the separation of analytes.


Capillary Electrophoresis Basic Protein Capillary Zone Electrophoresis Fuse Silica Capillary Capillary Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stedry, M., Gas, B., and Kenndler, E. (1995) Dynamics of peak dispersion in capillary zone electrophoresis including wall adsorption II. Exact analysis of unsteady linear adsorptive dispersion. Electrophoresis 16, 2027–2033.PubMedCrossRefGoogle Scholar
  2. 2.
    Minarik, M., Gas, B., Rizzi, A., and Kenndler, E. (1995) Plate hieght contribution from wall adsorption in capillary zone electrophoresis of proteins. J. Capillary Electrophor. 2, 89–96.Google Scholar
  3. 3.
    Zhukov, M. Y., Ermakov, S. V., and Righetti, P. G. (1997) Simplified mathematical model of irreversible sample adsorption in capillary zone electrophoresis. J. Chromatogr. A, 766, 171–185.CrossRefGoogle Scholar
  4. 4.
    McCormick, R. M. (1988) Capillary zone electrophoretic separation of peptides and proteins using low pH buffers in modified silica capillaries. Anal. Chem. 60, 2322–2328.PubMedCrossRefGoogle Scholar
  5. 5.
    Lauer, H. H. and McManigill, D. (1986) Capillary zone electrophoresis of proteins in untreated fused silica tubing. Anal. Chem. 58, 166–170.CrossRefGoogle Scholar
  6. 6.
    Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, New York, NY, 1990, p. 183.Google Scholar
  7. 7.
    Gordon, M. J., Lee, K. J., Arias, A. A., and Zare, R. N. (1991) Protocol for resolving protein mixtures in capillary zone electrophoresis. Anal. Chem. 63, 69–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Bushey, M. M. and Jorgenson, J. W. (1989) Capillary electrophoresis of proteins in buffers containing high concentrations of zwitterionic salts. J. Chromatogr. 480, 301–310.PubMedCrossRefGoogle Scholar
  9. 9.
    Stover, F. S., Haymore, B. L., and McBeth, R. J. (1989) Capillary zone electrophoresis of histidine-containing compounds. J. Chromatogr. 470, 241–250.PubMedCrossRefGoogle Scholar
  10. 10.
    Gilges, M., Kleemiss, M. H., and Schomburg, G. (1994) Capillary zone electrophoresis separations of basic and acidic proteins using poly(vinyl alcohol) coatings in fused silica capillaries. Anal. Chem. 66, 2038–2046.CrossRefGoogle Scholar
  11. 11.
    Hjerten, S. (1985) High performance electrophoresis—elimination of electroendosmosis and solute adsorption. J. Chromatogr. 347, 191–198.CrossRefGoogle Scholar
  12. 12.
    Strege. M. A. and Lagu, A. L. (1993) Capillary electrophoretic protein separations in polyacrylamide-coated silica capillaries and buffers containing ionic surfactants. J. Chromatogr. 630, 337–344.CrossRefGoogle Scholar
  13. 13.
    Cifuentes, A., de Frutos, M., Santos, J. M., and Diez-Masa J. C. (1993) Separation of basic proteins by capillary electrophoresis using cross-linked polyacrylamide-coated capillaries and cationic buffer additives. J. Chromatogr. 655, 63–72.CrossRefGoogle Scholar
  14. 14.
    Herren, B. J., Shafer. S. G., Van Alstine, J., Harris, J. M., and Snyder, R. S. (1987) Control of electroosmosis in quartz capillaries. J. Colloid Interface Sci. 115, 46–55.CrossRefGoogle Scholar
  15. 15.
    Yalpani, M. and Brooks, D. E. (1985) Selective chemical modifications of dextran. J. Polymer Sci. 23, 1395–1405.Google Scholar
  16. 16.
    Harris, J. M., Struck, E. C., Case, M. G., Paley, S., Yalpani, M., Van Alstine, J. M., and Brooks, D. E. (1984) Synthesis and characterization of poly(ethylene glyclol) derivatives. J. Polymer Sci. 22, 341–352.Google Scholar
  17. 17.
    Hjerten, S. and Kubo, K. (1993) A new type of pH-and detergent-stable coating for elimination of electroendosmosis and adsorption in (capillary) electrophoresis. Electrophoresis, 14, 390–395.PubMedCrossRefGoogle Scholar
  18. 18.
    Malik, A., Zhao, Z., and Lee, M. L. (1993) Simple method for the preparation of highly efficient polymer coated capillary electrophoresis columns. J. Microcol. 5, 119–125.CrossRefGoogle Scholar
  19. 19.
    Zhao, Z., Malik, A., and Lee, M. L. (1993) Solute adsorption on polymer-coated fused silica capillary electrophoresis column using selected protein and peptide standards. Anal. Chem. 65, 2747–2752.PubMedCrossRefGoogle Scholar
  20. 20.
    Cobb, K. A., Dolnik, V., and Novotny, M. (1990) Electrophoretic separations of proteins in capillaries with hydrolytically stable surface structures. Anal. Chem. 62, 2478–2483.PubMedCrossRefGoogle Scholar
  21. 21.
    Chiari, M., Nesi, M., Sandoval, J. E., and Pesek, J. J. (1995) Capillary electrophoretic separation of proteins using stable, hydrophilic poly(acryloylaminoethoxyethanol)-coated columns. J. Chromatogr. 717, 1–13.CrossRefGoogle Scholar
  22. 22.
    Smith, J. T. and Rassi, Z. E. (1993) Capillary zone electrophoresis of biological substances with fused silica capillaries having zero or constant electroosmotic flow. Electrophoresis, 14, 396–406.PubMedCrossRefGoogle Scholar
  23. 23.
    Huang, M., Plocek, J., and Novotny, M. V. (1995) Hydrolytically stable cellulose-derivative coatings for capillary electrophoresis of peptides, proteins and glycoconjugates. Electrophoresis, 16, 396–401.PubMedCrossRefGoogle Scholar
  24. 24.
    Schmalzing, D., Piggee, C. A., Foret, F., Carrilho, E., and Karger, B. L. (1993) Characterization and performance of a neutral hydrophilic coating for the capillary electrophoretic separation of biopolymers. J. Chromatogr. A 652,149— 159.Google Scholar
  25. 25.
    Srinivasan, K., Pohl, C., and Avdalovic, N. (1997) Cross-linked polymer coatings for capillary electrophoresis and application to analysis of basic proteins, acidic proteins, and inorganic ions. Anal. Chem. 69, 2798–2805.CrossRefGoogle Scholar
  26. 26.
    Schutzner, W. and Kenndler, E. Electrophoresis in synthetic organic polymer capillaries: Variation of electroosmotic velocity and x potential with pH and solvent composition. Anal. Chem. 64, 1991–1995.Google Scholar
  27. 27.
    Hjerten, S. (1967) Free zone electrophoresis. Chromatogr. Rev. 9, 122.PubMedCrossRefGoogle Scholar
  28. 28.
    Pretorius, V., Hopkins, B. J., and Schieke, J. D. (1974) Electroosmosis-new concept for high speed liquid chromatography. Chromatogr. 99, 23–30.CrossRefGoogle Scholar
  29. 29.
    Ewing, A. G., Wallingford, R. A., and Olefirowicz, T. M. (1989) Capillary electrophoresis. Anal. Chem. 61, 292A - 303A.PubMedGoogle Scholar
  30. 30.
    Silicon Compounds: Register and Review, United Technologies, 5th ed., (1991).Google Scholar
  31. 31.
    Tailoring Surfaces with Silanes. Chemtech (1977) 7, 766.Google Scholar
  32. 32.
    Acrylamide Polymerization: A Practical Approach, BioRad, Bulletin 1156, (1987) p. 3.Google Scholar
  33. 33.
    Zhu, M., Rodriguez, R., Wehr, T., and Siebert, C. (1992) Capillary electrophoresis of hemoglobin and globin chains. J. Chromatogr. 608, 225–237.PubMedCrossRefGoogle Scholar
  34. 34.
    Molteni, S., Frischknecht, H., and Thormann, W. (1994) Application of dynamic capillary isoelectric focusing to the analysis of human hemoglobin variants. Electrophoresis, 15, 22–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Huang, T. L., Shieh, P. C. H., and Cooke, N. (1994) The separation of hemoglobin variants by capillary zone electrophoresis. J. High Resolut. Chromatogr. 17, 676–678.CrossRefGoogle Scholar
  36. 36.
    Pritchett, T. J. (1996) Capillary isoelectric focusing of proteins (review). Electrophoresis, 17, 1195–1199.PubMedCrossRefGoogle Scholar
  37. 37.
    Wu, J., Li, S. C, and Watson, A. (1998) Optimizing separation conditions for proteins and peptides using imaged capillary isoelectric focusing. J. Chromatogr. A, 817, 163–171.CrossRefGoogle Scholar
  38. 38.
    Lillard, S. J., Yeung, E. S., Lautamo, R. M. A., and Mao, D. T. (1995) Separation of hemoglobin variants in single human erthrocytes by capillary electrophoresis with laser-induced native fluorescence detection. J. Chromatogr. A, 718, 397–404.CrossRefGoogle Scholar
  39. 39.
    Chasteen, N. D. and Williams, J. (1981) The influence of pH on the equilibrium distribution of iron between the metal binding sites of human transferrin. J. Biochem. 193, 717.Google Scholar
  40. 40.
    Kilar, F. and Hjerten, S. (1989) Separation of the human transferrin isoforms by carrier free high performance zone electrophoresis and isoelectric focusing. J. Chromatogr. 480, 351.PubMedCrossRefGoogle Scholar
  41. 41.
    Srinivasan, K. and Avdalovic, N. Eighth International Symposium on High Performance Capillary Electrophoresis, Poster P153, January 1996.Google Scholar
  42. 42.
    Kilar, F. and Hjerten, S. (1993) Unfolding of human serum transferrin in urea studied by high-performance capillary electrophoresis. J. Chromatogr. 638, 269–276.PubMedCrossRefGoogle Scholar
  43. 43.
    Jong, N., Visser, S., and Oliemann, C. (1993) Determination of milk proteins by capillary electrophoresis. J. Chromatogr. A652, 207–213.CrossRefGoogle Scholar
  44. 44.
    Werner, W. E., Demorest, D. M., Stevens, J. and Wiktorowicz, J. E. (1993) Size-dependent separation of proteins denatured in SDS by capillary electrophoresis using a replacable sieving matrix. Anal. Biochem. 212, 253.PubMedCrossRefGoogle Scholar
  45. 45.
    Ganzler, K., Greve, K. S., Cohen, A. S., and Karger, B. L. (1992) High performance capillary electrophoresis of SDS-protein complexes using UV-transparent polymer networks. Anal. Chem. 64, 2665.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhu, M. D., Rodriguez, R., Hansen, D. L., and Wehr, T. (1990) Capillary electrophoresis of proteins under alkaline conditions. J. Chromatogr. 516, 123–131.Google Scholar
  47. 47.
    Frenz, J., Wu, S. L., and Hancock, W. S. (1989) Characterization of human growth hormone by capillary electrophoresis. J. Chromatogr. 480, 379–391.PubMedCrossRefGoogle Scholar
  48. 48.
    Bruin G. J. M., Huisden, R., Kraak, J. C., and Poppe, H. (1989) Performance of carbohydrate-modified fused silica capillaries for the separation of proteins by zone electrophoresis. J. Chromatogr. 480, 339–349.PubMedCrossRefGoogle Scholar
  49. 49.
    Towns, J. K. and Regnier, F. E. (1990) Polyethyleneimine-bonded phases in the separation of proteins by capillary electrophoresis. J. Chromatogr. 516, 6978.Google Scholar
  50. 50.
    Maa, Y. F., Hvyer, K. J., and Swedberg, S. A. (1991) Impact of wall modification on protein elution in high performance capillary zone electrophoresis. J. High Resolution Chromatogr. 14, p. 65–67.CrossRefGoogle Scholar
  51. 51.
    Jorgensen, T. K., Bagger, L. H., Christiansen, J., Johnsen, G. H., Faarbaek, J. R., and Welinder, B. S. (1998) Quantifying biosynthetic human growth hormone in Escherichia coli with capillary electrophoresis under hydrophobic conditions. J. Chromatogr. A, 817, 205–214.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Kannan Srinivasan
  • Chris Pohl
  • Nebojsa Avdalovic

There are no affiliations available

Personalised recommendations