Advertisement

Basic Principles and Modes of Capillary Electrophoresis

  • Harry Whatley
Part of the Pathology and Laboratory Medicine book series (PLM)

Abstract

Capillary electrophoresis (CE) is a special case of using an electrical field to separate the components of a mixture. Electrophoresis in a capillary is differentiated from other forms of electrophoresis in that it is carried out within the confines of a narrow tube. To understand the behavior of molecules under the influence of an electrical field inside a capillary it is essential to understand the phenomena that result from the geometry of a capillary.

Keywords

Capillary Electrophoresis Capillary Wall Capillary Zone Electrophoresis Electroosmotic Flow Chiral Selector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Janini, G. M., and Issaq, H. J. (1993) The buffer in capillary zone electrophoresis, in Capillary Electrophoresis Technology, ( Guzman, N.A., ed.), Marcel Dekker, Inc., New York, pp. 119–160.Google Scholar
  2. 2.
    Cifuentes, A. and Poppe, H. (1994) Rectangular capillary electrophoresis: some theoretical considerations. Chromatographia 39, 391–404.CrossRefGoogle Scholar
  3. 3.
    Virtanen, R. and Kivalo, P. (1969) Quantitative high-voltage zone electrophoresis method. Suomen Kemistilehti B 42, 182.Google Scholar
  4. 4.
    Jorgensen, J. W. and Lukacs, K. D. (1981) Zone electrophoresis is open-tubular glass capillaries. Anal. Chem. 53, 1298–1302.CrossRefGoogle Scholar
  5. 5.
    Smoluchowski, M. V. (1905) Elektrosche kataphorese. Physik. Z. 6, 529.Google Scholar
  6. 6.
    Lukacs, K. D. and Jorgensen, J. W. (1985) Capillary zone electrophoresis: effect of physical parameters on separation efficiency and quantitation J. High Resolut. Chromatogr. Chromatogr. Commun. 8, 407.CrossRefGoogle Scholar
  7. 7.
    Kuhn, R. and Hoffstetter-Kuhn, S. (1993) Capillary Electrophoresis Principle and Practice. Springer Verlag, Berlin, p. 153.CrossRefGoogle Scholar
  8. 8.
    Lambert, W. J. and Middleton, D. L. (1990) pH hysteresis effect with silica capillaries in capillary zone electrophoresis. Anal. Chem. 62, 1585–1587.CrossRefGoogle Scholar
  9. 9.
    Cobb, K. A., Dolnik, V., and Novotny, M. (1990) Electrophoretic separations of proteins in capillaries with hydrodynamically stable surface structures. Anal. Chem. 61, 2478–2483.CrossRefGoogle Scholar
  10. 10.
    Hjerten, S. (1988) High performance electrophoresis: elimination of electroendosmosis and solute absorption. J. Chromatogr. 347, 191–198.Google Scholar
  11. 11.
    Bruin, G. M., Chang, J. P., Kuhlmann, R. H., Zegers, K., Kraak, J. C., and Poppe, H. (1992) Capillary zone electrophoretic separations of proteins in polyethylene glycol-modified capillaries. J. Chromatogr. 471, 429–436.Google Scholar
  12. 12.
    McCormick, R. M. (1988) Capillary zone electrophoretic separation of peptides and proteins using low pH buffers in modified silica capillary. Anal. Chem. 60, 2322–2328.PubMedCrossRefGoogle Scholar
  13. 13.
    Novotny, M. V., Cobb, K. A., and Liu, J. (1990) Recent advances in capillary electrophoresis of proteins, peptides, and amino acids. Electrophoresis 11, 735–749.Google Scholar
  14. 14.
    Wiktorowicz, J. E. and Colburn, J. C. (1990) Separation of proteins via charge reversal in capillary electrophoresis. Electrophoresis 11, 769–773.PubMedCrossRefGoogle Scholar
  15. 15.
    Emmer, A, Jansson, M., and Roeraade, J. (1991) Improved capillary zone electrophoretic separation of basic proteins, using a flurosurfactant buffer additive. J. Chromatogr. 547, 544–550.CrossRefGoogle Scholar
  16. 16.
    VanOrman, B. B., Liversidge, G. G., and McIntire, G. L. (1991) Effects of buffer composition on electroosmotic flow in capillary electrophoresis. J. Microcol. Septo. 2, 176.Google Scholar
  17. 17.
    Ferguson, N. J., Braunschweiger, K. I., Braunschweiger, W. R., Smith, J. R., McCormick, J. J., Wasmann, C. C., et al. (1980) Hydrogen ion buffers for biological research. Anal. Biochem. 104, 300–310.PubMedCrossRefGoogle Scholar
  18. 18.
    Vinther, A. and Soeberg, H. (1991) Temperature elevation of the sample zone in free solution capillary electrophoresis under stacking conditions. J. Chromatogr. 559, 3–26.CrossRefGoogle Scholar
  19. 19.
    Vinther, A. and Soeberg, H. (1991) Mathematical model describing dispersion in free solution capillary electrophoresis under stacking conditions. J. Chromatogr. 559, 27–47.CrossRefGoogle Scholar
  20. 20.
    Burgi, D. S. and Chien, R-L. (1991) Optimization in sample stacking for high-performance capillary electrophoresis. Anal. Chem. 63, 2042–2047.CrossRefGoogle Scholar
  21. 21.
    Bullock, J. A. and Yuan, L. C. (1991) Free solution capillary electrophoresis of basic proteins in untreated fused silica capillary tubing. J. Microcol. Sep. 3, 241.CrossRefGoogle Scholar
  22. 22.
    Terabe, S. (1989) Electrokinetic chromatography: an interface between electrophoresis and chromatography. Trends Anal. Chem. 8, 129.CrossRefGoogle Scholar
  23. 23.
    Heiger, D. N., Cohen, A. S., and Karger, B. L. (1990) Separation of DNA restriction fragments by high performance capillary electrophoresis with low and zero crosslinked polyacrylamide using continuous and pulsed electric fields. J. Chromatogr. 516, 33–48.PubMedCrossRefGoogle Scholar
  24. 24.
    Fujiwara, S. and Honda, S. (1987) Effect of addition of organic solvents on the separation of positional isomers in high-performance capillary electrophoresis. Anal. Chem. 59, 487–490.Google Scholar
  25. 25.
    Josic, D., Zeilinger, K., Reutter, W., Bottcher, A., and Schmitz, G. (1990) High performance capillary electrophoresis of hydrophobic membrane proteins. J. Chromatogr. 516, 89–98.PubMedCrossRefGoogle Scholar
  26. 26.
    Harrington, S. J., Varro, R., and Li, T. M. (1992) High-performance capillary electrophoresis as a fast in-process control method for enzyme-labeled monoclonal antibodies. J. Chromatogr. 559, 385–390.Google Scholar
  27. 27.
    Reijenga, J. C., Aben, G. V. A., Verheggen, Th. P. E. M., and Everaerts, F. M. (1992) Effect of electroosmosis on detection in isotachophoresis. J. Chromatogr. 594, 317–324.CrossRefGoogle Scholar
  28. 28.
    Knox, J. H. (1988) Thermal effects and band spreading in capillary electroseparation. Chromatographia 26, 329.CrossRefGoogle Scholar
  29. 29.
    Jorgensen, J. W. and Lukacs, K. D. (1983) Capillary zone electrophoresis. Science 222, 266–272.CrossRefGoogle Scholar
  30. 30.
    Chervet, J. P., van Soest, R. E. J., and Ursem, M. (1991) Z-shaped flow cell for UV detection in capillary electrophoresis. J. Chromatogr. 543, 439–449.CrossRefGoogle Scholar
  31. 31.
    Gordon, G. B. (1991) Capillary zone electrophoresis cell system. United States Patent 5,061,361, October 29.Google Scholar
  32. 32.
    Kobayashi, S., Ueda, T., and Kikumoto, J. (1989) Photodiode array detection in high-performance capillary electrophoresis. J. Chromatogr. 480, 179–184.CrossRefGoogle Scholar
  33. 33.
    Wu, S. and Dovichi, N. J. (1992) Capillary zone electrophoresis separation and laser-induced fluorescence detection of zeptomole quantities of fluorescein thiohydantoin derivatives of amino acids. Talanta 39, 173.PubMedCrossRefGoogle Scholar
  34. 34.
    Wallingford, R. A. and Ewing, A. G. (1987) Characterization of a microinjector for capillary zone electrophoresis. Anal. Chem. 59, 678–681.CrossRefGoogle Scholar
  35. 35.
    Wallingford, R. W. and Ewing, E. M. (1990) Separation of serotonin from catechols by capillary zone electrophoresis with electrochemical detection. Anal. Chem. 61, 98–100.CrossRefGoogle Scholar
  36. 36.
    Huang, X., Pang, T. K., Gordon, M. J., and Zare, R. N. (1987) On column conductivity detector for capillary zone electrophoresis. Anal. Chem. 59, 2747–2749.CrossRefGoogle Scholar
  37. 37.
    Huang, X., Zare, R. N., Sloss, S., and Ewing, A. G. (1991) End column detection for capillary zone electrophoresis. Anal. Chem. 63, 189–192.PubMedCrossRefGoogle Scholar
  38. 38.
    Huang, X., Luckey, J. A., Gordon, M. J., and Zare, R. N. (1989) Quantitative analysis of low molecular weight carboxylic acids by capillary zone electrophoresis/conductivity detection. Anal. Chem. 61, 766–770.CrossRefGoogle Scholar
  39. 39.
    Banks, J. F. (1997) Recent advances in capillary electrophoresis/electrospray/ mass spectrometry. Electrophoresis 18, 2255–2266.PubMedCrossRefGoogle Scholar
  40. 40.
    Wildman, B. J., Jackson, P. E., Jones, W. R., and Alden, P. G. (1991) Analysis of anion constituents of urine by inorganic capillary electrophoresis. J. Chromatogr. 546, 459–466.PubMedCrossRefGoogle Scholar
  41. 41.
    Wanders, B. J. (1997) Data analysis in CE, in Handbook of Capillary Electrophoresis, 2nd ed. ( Landers, J. P., ed.), CRC, Boca Raton, FL.Google Scholar
  42. 42.
    Kuhn, R. and Hoffstetter-Kuhn, S. (1993) Capillary Electrophoresis Principle and Practice. Springer Verlag, Berlin, p. 156.CrossRefGoogle Scholar
  43. 43.
    Smith, R. D., Leo, J. A., Edmonds, C. G., Barinaga, C. J., and Usdeth, H. R. (1990) Sensitivity considerations for large molecule detection by capillary electrophoresis-electrospray ionization mass spectrometry. J. Chromatogr. 516, 157–165.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Harry Whatley

There are no affiliations available

Personalised recommendations