Advertisement

Capillary Electrophoresis

General Overview and Applications in the Clinical Laboratory
  • Manjiri Lele
  • Subodh M. Lele
  • John R. Petersen
  • Amin Mohammad
Part of the Pathology and Laboratory Medicine book series (PLM)

Abstract

Electrophoresis was first described by Arne Tiselius (1) in 1930, for which he received a Nobel Prize in 1948. In this pioneering experiment, he used a U-shaped quartz tube to show the separation of different proteins in free solution as contiguous bands. His work was published in 1937 (1) but received little notice until the late 1960s, when Hjerten (2) described the first capillary electrophoresis (CE) apparatus. Hjerten’s apparatus consisted of three units: 1) a high voltage power supply; 2) a detector; and 3) a unit holding a 1–3 mm ID quartz capillary tube, which was immersed in a cooling bath (2). He used this apparatus to prove numerous theoretical concepts in CE and was able to separate inorganic ions, proteins, nucleic acid, and microorganisms by capillary zone electrophoresis (CZE) or capillary isoelectric focusing (LIEF). In spite of the pioneering work by Hjerten, CE was still relatively unknown until Jorgenson and Lukacs (3–5) published a series of papers in 1980. The availability of polyiimide-coated fused silica capillaries with a 75–100-μm internal diameter, in addition to sensitive absorbance detectors developed for micro-bore high-performance liquid chromatography (HPLC), were instrumental in the development of commercial CE applications. The smaller internal diameter eliminated band broadening caused by convection, whereas the plug flow characteristics of the electroosmotic flow (EOF) allowed efficiencies reaching hundreds of thousand of theoretical plates. Since the landmark publication in 1980 by Jorgenson and Lukacs research dealing with the applications of CE has grown exponentially. Consistent with the theme of this book, this chapter will try to provide a general overview of current and future applications of CE in clinical chemistry. It is not meant to be a comprehensive review of general literature, but instead an attempt to give a reader a flavor of its potential power in solving some of the challenging problems that arise in a clinical laboratory.

Keywords

Capillary Electrophoresis Therapeutic Drug Monitoring Capillary Zone Electrophoresis Fuse Silica Capillary Hemoglobin Variant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tiselius, A. (1930) The moving boundary method of studying the electrophoresis of proteins. Ph.D. thesis, Nova Acta Regiae Societatis Scientiarum Upsaliensis, Ser IV, Vol. 17, No. 4, Almqvist and Wiksell, Uppsala, Sweden, pp. 1–107.Google Scholar
  2. 2.
    Hjerten, S. (1967) Free zone electrophoresis. Chromatogr. Rev. 9, 122–219.PubMedCrossRefGoogle Scholar
  3. 3.
    Jorgenson, J. W. and Lukacs, K. D. (1981) Zone electrophoresis in open tubular glass capillaries. Anal. Chem. 53, 1298–1302.CrossRefGoogle Scholar
  4. 4.
    Jorgenson, J. W. and Lukacs, K. D. (1981) High-resolution separation based on electrophoresis and electroosmosis. J. Chromatogr. 218, 209.CrossRefGoogle Scholar
  5. 5.
    Jorgenson, J. W. and Lukacs, K. D. (1983) Capillary zone electrophoresis. Science 222, 266–272.PubMedCrossRefGoogle Scholar
  6. 6.
    Burgi, D. S. and Chien, R. L. (1996) Applications and limits of sample stacking in capillary electrophoresis. Methods Molec. Biol. 52, 211–226.Google Scholar
  7. 7.
    Quirino, J. P. and Terabe S. (1998) Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography. Science 282, 465–468.PubMedCrossRefGoogle Scholar
  8. 8.
    Ewing, A. G., Wallingford, R. A., and Olefirowicz, T. M. (1989) Capillary electrophoresis. Anal. Chem. 61, 292A - 303A.PubMedGoogle Scholar
  9. 9.
    Wallingford, R. A. and Ewing, A. G. (1988) Retention of ionic and nonionic catechols in capillary zone electrophoresis with micellar solutions. J. Chromatogr. 441, 299–309.PubMedCrossRefGoogle Scholar
  10. 10.
    Cohen, A. S., Terabe, S., Smith, J. A., and Karger, B. L. (1987) High performance capillary electrophoretic separation of bases, nucleosides and oligonucleotides: retention manipulation via micellar solutions and metal additives. Anal. Chem. 59, 1021–1027.PubMedCrossRefGoogle Scholar
  11. 11.
    Cohen, A. S. and Karger, B. L. (1987) High performance sodium dodecyl polyacrylamide gel capillary electrophoresis of peptides and proteins. J. Chromatogr. 397, 409–417.PubMedCrossRefGoogle Scholar
  12. 12.
    Jorgenson, J. W. (1986) Electrophoresis. Anal. Chem. 58, 743A - 760A.PubMedCrossRefGoogle Scholar
  13. 13.
    Everaerts, F. M., Beckers, J. L., and Vehrggen, T. (1976) Isotachophoresis: Theory, Instrumentation and Applications: Elsevier; Amsterdam, The Netherlands.Google Scholar
  14. 14.
    Jollif, C. R. and Blessum, C. R. (1997) Comparison of serum protein electrophoresis by agarose gel and capillary zone electrophoresis in a clinical setting. Electrophoresis 18, 1781–1784.CrossRefGoogle Scholar
  15. 15.
    Friedberg, M. A. and Shahabi, Z. K. (1997) Urine protein analysis by capillary electrophoresis. Electrophoresis 18, 1836–1841.PubMedCrossRefGoogle Scholar
  16. 16.
    Jenkins, M. A. (1997) Clinical application of capillary electrophoresis to unconcentrated human urine proteins. Electrophoresis 18, 1842–1846.PubMedCrossRefGoogle Scholar
  17. 17.
    Schimtz, G., Borgmann, U., and Assmann, G. (1985) Analytical capillary isotachophoresis: a routine technique for the analysis of lipoproteins and lipoprotein subfractions in whole serum. J. Chromatogr. 320, 253–262.CrossRefGoogle Scholar
  18. 18.
    Lehmann, R., Liebich, H., Grubler, G., and Voelter, W. (1995) Capillary electrophoresis of human serum proteins and apolipoproteins. Electrophoresis 16, 998–1001.PubMedCrossRefGoogle Scholar
  19. 19.
    Wolfishberg, H., Schmutz, A., Stotzer, R., and Thormann, W. (1993) Assessment of automated capillary electrophoresis for therapeutic and diagnostic drug monitoring: determination of bupvacaine in drain fluid and antipyrine in plasma. J. Chromatogr. A 652, 407–416.CrossRefGoogle Scholar
  20. 20.
    Perrett, D. and Ross, G. A. (1995) Rapid determination of drugs in biofluids by capillary electrophoresis-measurement of antipyrine in saliva for pharmacokinetic studies. J. Chromatogr. A 700, 179–186.PubMedCrossRefGoogle Scholar
  21. 21.
    Caslayska, J., Hufschmid, E., Theurillat, R., Desiderio, C., Wokfishberg, H., and Thormann, W. (1994) Screening for hydroxylation and acetylation poly- morphisms in man via simultaneous analysis of urinary metabolites of mephenytoin, dextomethorphan and caffeine by capillary electrophoretic procedures. J. Chromatogr. B 656, 219–231.CrossRefGoogle Scholar
  22. 22.
    Guo, R. and Thormann, W. (1993) Acetylator phenotyping via analysis of four caffeine metabolites in human urine by micellar electrokinetic capillary chromatography with multiwavelength detection. Electrophoresis 14, 547–553.PubMedCrossRefGoogle Scholar
  23. 23.
    Jumppanen, J. H., Wiedmer, S. K., Siren, H., Riekkola, M-L, and Haario, H. (1994) Optimized separation of seven corticosteroids by micellar electrokinetic chromatography. Electrophoresis 15, 1267–1272.PubMedCrossRefGoogle Scholar
  24. 24.
    Ji, A. J., Nunez, M. F., Machacek, D., Ferguson, J. E., lossi, M. F., Kao, P. C., and Landers, J. P. (1995) Separation of urinary estrogens by micellar electrokinetic chromatography. J. Chromatogr. B 669, 15–26.CrossRefGoogle Scholar
  25. 25.
    Schmalzing, D., Nashabeh, W., Yao, X-W, Mhatre, R., Regnier, F. E., Afeyan, N. B., and Fuchs M. (1995) Capillary electrophoresis based immunoassays for cortisol in serum. Anal. Chem. 67, 606–612.PubMedCrossRefGoogle Scholar
  26. 26.
    Schmalzing, D., Nashabeh, W., and Fuchs, M. (1995) Solution-phase immunoassay for determination of cortisol in serum by capillary electrophoresis. Clin. Chem. 41, 1403–1406.PubMedGoogle Scholar
  27. 27.
    Rao, L. V., Peterson, J. R., Bissell, M. G., Okorodudu, A. O., and Mohammad, A. A. (1999) Development of a urinary free cortisol assay using solid-phase extraction capillary electrophoresis. J. Chromatogr. B 730, 123–128.CrossRefGoogle Scholar
  28. 28.
    Ma, Y., Wu, Z., Furr, H. C., Lammi-Keefe, C., and Craft, N. E. (1993) Fast mini-microassay of serum retinol (vitamin A) by capillary zone electrophoresis with laser-excited fluorescence detection. J. Chromatogr. 616, 31–37.PubMedGoogle Scholar
  29. 29.
    Shi, H., Ma, Y., Humphrey, J. H., and Craft, N. E. (1995) Determination of vitamin A in dried human blood spots by high-performance capillary electrophoresis with laser-excited fluorescence detection. J. Chromatogr. B 665, 89–96.CrossRefGoogle Scholar
  30. 30.
    Koh, E. V., Bissell, M. G., and Ito, R. K. (1993) Measurement of vitamin C by capillary electrophoresis in biological fluids and fruit beverages using a stereoisomer as an internal standard. J. Chromatogr. 633, 245–250.PubMedCrossRefGoogle Scholar
  31. 31.
    Che, P., Xu, J., Shi, H., and Ma, Y. (1995) Quantitative determination of serum iron in human blood by high-performance capillary electrophoresis. J. Chromatogr. B 669, 45–51.CrossRefGoogle Scholar
  32. 32.
    Wu, N., Sweedler, J. V., and Lin, M. (1994) Enhanced separation and detection of serum bilirubin species by capillary electrophoresis using a mixed anionic surfactant-protein buffer system with laser-induced fluorescence detection J. Chromatogr. B 654, 185–191.CrossRefGoogle Scholar
  33. 33.
    Phillips, T. M. and Kimmel, P. L. (1994) High performance capillary electrophoretic analysis of inflammatory cytokines in human biopsies. J. Chromatogr. B 656, 259–266.CrossRefGoogle Scholar
  34. 34.
    Hempe, J. M., Granger, J. N., and Craver, R. D. (1997) Capillary isoelectric focusing of hemoglobin variants in the pediatric clinical laboratory. Electrophoresis 18, 1785–1795.PubMedCrossRefGoogle Scholar
  35. 35.
    Weinberger, R., Sapp, E., and Moring, S. (1990) Capillary electrophoresis of urinary porphyrins with absorbance and fluorescence detection. J. Chromatogr. 516, 271–285.PubMedCrossRefGoogle Scholar
  36. 36.
    Buchberger, W., Winna, K., and Turner, M. (1994) Applications of capillary zone electrophoresis in clinical chemistry: determination of low-molecular mass ions in body fluids. J. Chromatogr. A 671, 375–382.PubMedCrossRefGoogle Scholar
  37. 37.
    Xu, X., Kok, W. T., Kraak, J. C., and Poppe, H. (1994) Simultaneous determination of urinary creatinine, calcium and other inorganic cations by capillary zone electrophoresis with indirect UV detection. J. Chromatogr. B 661, 35–45.CrossRefGoogle Scholar
  38. 38.
    Zhang, R., Shi, H., and Ma, Y. (1994) Quantitative determination of ionized and total calcium in human serum by capillary zone electrophoresis with indirect photometric detection. J. Microcolumn 6, 217–221.CrossRefGoogle Scholar
  39. 39.
    Ueda, T., Maekawa, T., Sadamitsu, D., Oshita, S., Ogino, K., and Nakamura, K. (1995) The determination of nitrite and nitrate in human blood plasma by capillary zone electrophoresis. Electrophoresis 16, 1002–1004.PubMedCrossRefGoogle Scholar
  40. 40.
    Janini, G. M., Chan, K. C., Muschick, G. M., and Issaaq, H. J. (1994) Analysis of nitrate and nitrite in water and urine by capillary zone electrophoresis. J. Chromatogr. B 657, 419–423.CrossRefGoogle Scholar
  41. 41.
    Garcia, A., Barbas, C., Aguila, R., and Castro, M. (1998) Capillary electrophoresis profiling of organic acidurias. Clin. Chem. 44, 1905–1911.PubMedGoogle Scholar
  42. 42.
    Grune, T., Ross, G. A., Schimdt, H., Siems, W., and Perrett, D. (1993) Optimized separation of purine bases and nucleosides in human cord plasma by capillary zone electrophoresis. J. Chromatogr. 636, 105–111.PubMedCrossRefGoogle Scholar
  43. 43.
    Gross, M., Gathof, B. F., Kolle, P., and Gresser, U. (1995) Capillary electrophoresis for screening of adenylosuccinate lyase deficiency. Electrophoresis 16, 1927–1929.PubMedCrossRefGoogle Scholar
  44. 44.
    Liu, X., Xu, Y., and Ip, M. P. C. (1995) Capillary electrophoretic enzyme immunoassay for digoxin in human serum. Anal. Chem. 67, 3211–3218.PubMedCrossRefGoogle Scholar
  45. 45.
    Steinmann, L., Caslavaska, J., and Thormann, W. (1995) Feasibility study of a drug immunoassay based on micellar electrokinetic capillary chromatography with laser induced fluorescence detection: Determination of theophylline in serum. Electrophoresis 16, 1912–1926.PubMedCrossRefGoogle Scholar
  46. 46.
    Kataoka, Y., Makino, K., and Oishi, R. (1998) Capillary electrophoresis for therapeutic drug monitoring of antiepileptics. Electrophoresis 19, 2856–2860.PubMedCrossRefGoogle Scholar
  47. 47.
    Wernly, P. and Thormann, W. (1991) Analysis of illicit drugs in human urine by micellar electrokinetic capillary chromatography with one-column fast scanning polychrome absorption detection. Anal. Chem. 63, 2878–2882.PubMedCrossRefGoogle Scholar
  48. 48.
    Thormann, W., Meier, P., Marcolli, C., and Binder, F. (1991) Analysis of barbiturates in human serum and urine by high-performance capillary electrophoresis-micellar electrokinetic capillary chromatography with on-column multiwavelength detection. J. Chromatogr. 545, 445–460.PubMedCrossRefGoogle Scholar
  49. 49.
    Schafroth, M., Thormann, W., and Allenmann, D. (1994) Micellar electrokinetic capillary chromatography of benzodiazepines in human urine. Electrophoresis 15, 72–78.PubMedCrossRefGoogle Scholar
  50. 50.
    Chee, G.L. and Wan, T. S. M. (1993) Reproducible and high-speed separation of basic drugs by capillary zone electrophoresis. J. Chromatogr. 612, 172–177.PubMedGoogle Scholar
  51. 51.
    Chicharro, M., Zapardiel, A., Bermejo, E., Perez, J. A., and Hernandez, L. (1993) Direct determination of ephedrine and norephedrine in human urine by capillary zone electrophoresis. J. Chromatogr. 622, 103–108.PubMedGoogle Scholar
  52. 52.
    Mader, R. M., Brunner, M., Rizovski, B., Mensik, C., Steger, G. G., Eichler, H-G., and Muller, M. (1998) Analysis of microdialysates from cancer patients by capillary electrophoresis. Electrophoresis 19, 2981–2985.PubMedCrossRefGoogle Scholar
  53. 53.
    Shihabi, Z. K. (1995) Myoglobulinuria detection by capillary electrophoresis. J. Chromatogr. B 669, 53–58.CrossRefGoogle Scholar
  54. 54.
    Hiroaka, A., Akai, J., Tominaga, I., Hattori, M., Sasaki, H., and Arato, T. (1994) Capillary zone electrophoretic determination of organic acids in CSF from patients with central nervous system diseases. J. Chromatogr. A 680, 243–246.CrossRefGoogle Scholar
  55. 55.
    Schwartz, H. E., Ulfelder, K. J., Sunzeri, F. J., Busch, M.P., and Brownlee, R.G. (1991) Analysis of DNA restriction fragments and polymerase chain reaction products towards detection of the AIDS (HIV-1) virus in blood. J. Chromatogr. 559, 267–283.PubMedCrossRefGoogle Scholar
  56. 56.
    Rossomando, E. F., White, L., and Ulfelder, K. J. (1994) Capillary electrophoresis separation and quantitation of reverse transcriptase PCR products from poliovirus. J. Chromatogr. B 656, 159–168.CrossRefGoogle Scholar
  57. 57.
    Smith, L. M. (1991) High-speed DNA sequencing by capillary gel electrophoresis. Nature 349, 812, 813.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Manjiri Lele
  • Subodh M. Lele
  • John R. Petersen
  • Amin Mohammad

There are no affiliations available

Personalised recommendations