Skip to main content

Recent Advances in the Supply of Docosahexaenoic Acid to the Nervous System

  • Chapter
Fatty Acids

Part of the book series: Nutrition and Health ((NH))

  • 328 Accesses

Abstract

Docosahexaenoic acid (DHA, 22:6n-3) is the most abundant polyunsaturated fatty acid (PUFA) acylated to the aminophospholipids phosphatidylethanolamine (PE) and phosphatidylserine (PS) in membranes of neurons within the central nervous system (CNS) (Naughton, 1981; Salem et al., 1986). It can occur in concentrations exceeding 30-mol% of the fatty acids (Salem, 1989). The high enrichment of DHA in synaptosomes is especially striking and suggests that DHA has unique properties that are required for optimal neuronal function. This concentration in the CNS is even more remarkable when one considers that sources of n-3 fatty acids are disproportionately limited in the terrestrial food chain compared to the much more abundant n-6 fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernoud N, Fenart L, Moliere P, Dehouck MP, Lagarde M, Cecchelli R, et al. Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in vitro blood-brain barrier over unesterified docosahexaenoic acid. J Neurochem 1999; 72 (1): 338 - 345.

    Article  PubMed  CAS  Google Scholar 

  • Bourre JM, Durand G, Pascal G, Youyou A. Brain cell and tissue recovery in rats made deficient in n-3 fatty acids by alterations of dietary fat. J Neurochem 1989; 119: 12 - 22.

    Google Scholar 

  • Brenna JT. Use of stable isotopes to study fatty acid and lipoprotein metabolism in man. Prostaglandins Leukotrienes Essential Fatty Acids 1997; 57 (4-5): 467 - 472.

    Article  CAS  Google Scholar 

  • Brenna JT. High-precision gas isotope ratio mass spectrometry: recent advances in instrumentation and biomedical applications. Arch Chem Res 1994; 27: 340 - 346.

    Article  CAS  Google Scholar 

  • Buzzi M, Henderson RJ, Sargent JR. Biosynthesis of docosahexaenoic acid in trout hepatocytes proceeds via 24-carbon intermediates. Biochem Physiol 1997; 116B (2): 263 - 267.

    Article  CAS  Google Scholar 

  • Carnielli VP, Wattimena DJ, Luijendijk IH, Boerlage A, Degenhart Hi, Sauer JP. The very low birth weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediatr Res 1996; 40 (1): 169 - 174.

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Ray J, Scarpino V, Acland GM, Aguirre GD, Anderson RE. Synthesis and release of docosahexaenoic acid by the RPE cells of prcd-affected dogs. Invest Ophthalmol Vision Sc 1999; 40: 2418 - 2422.

    CAS  Google Scholar 

  • Clandinin MT, Wong K, Hacker RR. Synthesis of chain elongation—denaturation products of linoleic acid by liver and brain microsomes during development of the pig. Biochem J 1985; 226: 305 - 309.

    PubMed  CAS  Google Scholar 

  • Connor WE, Neuringer M. The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain and retina. In: Karnovsky ML, Leaf A, Bolis LC, eds. Biological Membranes: Aberrations in Membrane Structure and Function. Alan R Liss, New York, 1988, pp. 275 - 294.

    Google Scholar 

  • Delton-Vandenbrouke I, Grammas P, Anderson RE. Polyunsaturated fatty acid metabolism in retinal and cerebral microvascular endothelial cells. J Lipid Res 1997; 38: 147 - 159.

    Google Scholar 

  • Dhopeshwarkar GA, Subranamanian C. Metabolism of linolenic acid in developing brain: I. Incorporation of radioactivity from 1-14C-linolenic acid into brain fatty acids. Lipids 1974; 10: 238 - 241.

    Article  Google Scholar 

  • Fu Z, Sinclair AJ. Novel pathway of the metabolism of alpha-linolenic acid in the Guinea pig. Pediatr Res 2000; 47 (3): 414 - 417.

    Article  PubMed  CAS  Google Scholar 

  • Gordon WC, Rodriguez de Turco EB, Bazan NG. Retinal pigment epithelial cells play a central role in the conservation of docosahexaenoic acid by photoreceptor cells after shedding and phagocytosis. Curr Eye Res 1992; 11 (1): 73 - 83.

    Article  PubMed  CAS  Google Scholar 

  • Green P, Yavin E. Mechanisms of docosahexaenoic acid accretion in the fetal brain. J Neurol Res 1998; 52: 129 - 136.

    Article  CAS  Google Scholar 

  • Greiner RC, Winter J, Nathanielsz PW, Brenna JT. Brain docosahexaenoate accretion in fetal baboons: Bioequivalence of dietary alpha-linolenic and docosahexaenoic acids. Pediatr Res 1997; 42 (6): 826 - 834.

    Article  PubMed  CAS  Google Scholar 

  • Hassam AG, Rivers JPW, Crawford MA. The failure of the cat to desaturate linoleic acid: its nutrient implications. Br J Nutr 1977; 39: 227 - 231.

    Google Scholar 

  • Holte LL, Peter SA, Sinnwell TM, Gawrisch K. 2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain. Biophys J 1995; 68 (6): 2396 - 2403.

    Article  PubMed  CAS  Google Scholar 

  • Holte LL, Separovic F, Gawrisch K. Nuclear magnetic resonance investigation of hydrocarbon chain packing in bilayers of polyunsaturated phospholipids. Lipids 1996; 31: S199 — S203

    Article  PubMed  CAS  Google Scholar 

  • Litman J, Mitchell DC. A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids 1996; 31S: S193 - 5197.

    Article  PubMed  CAS  Google Scholar 

  • LuthriaDL, Mohammed BS, Sprecher WH. Regulation of the biosynthesis of 4,5,10,13,16,19-docosahexaenoic acid. J Biol Chem 1996; 271(27):16,020-16,025.

    Google Scholar 

  • Marzo I, Alva AA, Pineiro A, Naval J. Biosynthesis of docosahexaenoic acid in human cells: evidence that two different delta-6 desaturase activities may exist. Biochim Biophys Acta 1996; 1301: 263 - 272.

    Article  PubMed  Google Scholar 

  • Menard CR, Goodman KJ, Corso TN, Brenna JT, Cunnane SC. Recycling of carbon into lipids synthesized de novo is a quantitatively important pathway of alpha-[U-13C] linolenate utilization in the developing rat brain. J Neurochem 1998; 71: 2151 - 2158.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DC, Litman BJ. Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids. Biophys J 1998; 74: 879 - 891.

    Article  PubMed  CAS  Google Scholar 

  • Moore SA. Cerebral endothelium and astrocytes cooperate in supplying docosahexaenoic acid to neurons. Adv Exp Med Biol 1993; 331: 229 - 233.

    Article  PubMed  CAS  Google Scholar 

  • Moore SA, Yoder E, Murphy S, Dutton GR, Spector AA. Astrocytes not neurons produce docosahexaenoic acid (22:6n-3) and arachidonic acid (20:4n-6). J Neurochem 1991; 56: 518 - 524.

    Article  PubMed  CAS  Google Scholar 

  • Naughton JM. Supply of polyenoic fatty acids to the mammalian brain: the ease of conversion of the short chain essential fatty acids to their longer chain polyunsaturated metabolites in liver, brain, placenta and blood. Intl J Biochem 1980; 13: 21 - 32.

    Article  Google Scholar 

  • Neuringer M, Connor WE, Lin DS, Barstad L, Luck S. Biochemical and functional effects of prenatal and postnatal n-3 fatty acid deficiency on retina and brain in rhesus monkeys. Proceedings of the National. Academy of Science USA 1986; 83: 4021 - 4025.

    Article  CAS  Google Scholar 

  • Pawlosky RJ, Sprecher HW, Salem N Jr. High sensitivity negative ion GC—MS method for the detection of desaturated and chain elongated products of deuterium-labeled linoleic and linolenic acids. J Lipid Res 1992; 33: 1711 - 1717.

    PubMed  CAS  Google Scholar 

  • Pawlosky RJ, Salem N Jr. The metabolism of essential fatty acids in mammals. In: Sinclair A, Gibson R, eds. The 3rd International Conference on Eicosanoids and Essential Fatty Acids. American Oil Chemists’ Society, Champaign, IL, 1993, pp. 26 - 30.

    Google Scholar 

  • Pawlosky R, Barnes A, Salem N Jr. Essential fatty acid metabolism in the feline: relationship between liver and brain production of long-chain polyunsaturated fatty acids. J Lipid Res 1994; 35 (11), 2032 - 2040.

    PubMed  CAS  Google Scholar 

  • Pawlosky R, Denkins Y, Ward G, Salem N Jr. Retinal and brain accretion of long-chain polyunsaturated fatty acids in developing felines: the effects of corn oil-based maternal diets. Am J Clin Nutr 1997; 65: 465 - 472.

    PubMed  CAS  Google Scholar 

  • Pawlosky R, Salem N Jr. Is dietary arachidonic acid necessary for feline reproduction? J Nutr 1996; 126: 1081S - 1085S.

    PubMed  CAS  Google Scholar 

  • Pawlosky RJ, Ward G, Salem N Jr. Essential fatty acid uptake and metabolism in the developing rodent brain. Lipids 1996; 31S: S103 — S107.

    Article  PubMed  CAS  Google Scholar 

  • Protstein NP, Pennacchiotti GL, Sprecher H, Aveldano MI. Active synthesis of C24:5n-3 fatty acid in retina. Biochem J 1996; 316: 859 - 864.

    Google Scholar 

  • Rivers JPW, Sinclair AJ, Crawford MA. Inability of the cat to desaturate essential fatty acids. Nature 1975; 258: 171 - 173.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez A, Sarda P, Nessmann C, Boulot P, Poisson J-P, Leger CL, et al. Fatty acid desaturase activities and polyunsaturated fatty acid composition in human liver between the seventeenth and thirty-sixth gestational weeks. Am J Obstetr Gynecol 1998; 179 (4): 1063 - 1070.

    Article  CAS  Google Scholar 

  • Rodriguez de Turco EB, Gordon WC, Bazan NG. Rapid and selective uptake, metabolism and cellular distribution of docosahexaenoic acid among rod and cone photoreceptor cells in the frog retina. J Neurosci 1991; 111 (1): 3667 - 3678.

    Google Scholar 

  • Rodriguez de Turco EB, Parkins N, Ershov AV, Bazan NG. Selective retinal pigment epithelial cell lipid metabolism and remodeling conserves photoreceptor docosahexaenoic acid following phagocytosis. J Neurosci Res 1999; 57: 479 - 486.

    Article  Google Scholar 

  • Salem N Jr, Kim H-Y, Yergey JA. Docosahexaenoic acid: membrane function and metabolism. In: Simopoulos AP, Kifer RR, Martin R, eds. The Health Effects of Polyunsaturates in Seafoods. Academic, New York, 1986, pp. 263 - 317.

    Google Scholar 

  • Salem N Jr, Omega-3 fatty acids: molecular and biochemical aspects. In: Spiller GA, Scala J, eds. New Protective Roles for Selected Nutrients Alan R. Liss, New York, 1989, pp. 109 - 228.

    Google Scholar 

  • Salem N Jr, Pawlosky RJ. Health Policy Aspects of Lipid Nutrition and Early Development. In: Galli C, Simopoulos AP, Tremoli E, eds. Fatty Acids and Lipids: Biological Aspects. World Review of Nutrition and Diet Vol. 75. Karger, Basel, 1994, pp. 46 - 51.

    Google Scholar 

  • Salem N Jr, Pawlosky RJ. Arachidonate and docosahexaenoate biosynthesis in various species and compartments in vivo. In: Galli C, Simopoulos AP, Tremoli E, eds. Fatty Acids and Lipids: Biological Aspects World. Review of Nutrition and Diet Vol. 75. Karger, Basel, 1994, pp. 114 - 119.

    Google Scholar 

  • Salem N Jr, Wegher B, Mena P, Uauy R. Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad of Sci USA 1996; 93: 49 - 54.

    Article  CAS  Google Scholar 

  • Salem N Jr, Pawlosky R, Wegher B, Hibbeln J. In vivo conversion of linoleic acid to arachidonic acid in human adults. Prostaglandins Leukotrienes Essential Fatty Acids 1999; 60 (5-6): 407 - 410.

    Article  CAS  Google Scholar 

  • Sauerwald TU, Hachey DL, Jensen CL, Chen H, Anderson RE, Heird WC. Intermediates in endogenous synthesis of C22:6n-3 and C20:4n6 by term and preterm infants. Pediatr Res 1991; 41 (2): 183 - 187.

    Article  Google Scholar 

  • Schenck PA, Rakoff H, Emken EA. Delta-8 desaturation in vivo of deuterated eicosatrienoic acid by mouse liver. Lipids 1996; 31 (6): 593 - 600.

    Article  PubMed  CAS  Google Scholar 

  • Scott BL, Bazan NG. Membrane docosahexaenoate is supplied to the developing brain by the liver. Proc Natl Acad Sci USA 1989; 86: 2903 - 2907.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AJ, McLean JG, Monger EA. Metabolism of linoleic acid in the cat. Lipids 1979; 14: 932 - 936.

    Article  PubMed  CAS  Google Scholar 

  • Stinson AM, Wiegand RD, Anderson RE. Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency J Lipid Res 1991; 32: 2009 - 2017.

    CAS  Google Scholar 

  • Su H-M, Bernardo L, Mirmiran M, Ma X-H, Nathanielsz PW, Brenna JT. Dietary 18:3n3 and 22:6n-3 as sources of 22:6n-3 accretion in neonatal baboon brain and associated organs. Lipids 1999; 34 (3): S347 - S350.

    Article  PubMed  CAS  Google Scholar 

  • Vermunt SH, Mensink RP, Simonis MM, Hornstra G. Effects of dietary alpha-linolenic acid on the conversion and oxidation of 13C-alpha-linolenic acid. Lipids 2000; 35 (2): 137 - 142.

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Anderson RE. Synthesis of docosahexaenoic acid by the retina and retinal pigment epithelium. Biochemistry 1993; 32:13, 703-13, 709.

    Google Scholar 

  • Weisinger HS, Vingrys AJ, Sinclair AJ. Effect of dietary n-3 deficiency on the electroretinogram in the guinea pig. Ann Nutr Metab 1996; 40 (2): 91 - 98.

    Article  PubMed  CAS  Google Scholar 

  • Willis AL. Unanswered questions in EFA and PG research. Prog Lipid Res 1981; 20: 839 - 850.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pawlosky, R.J., Salem, N. (2001). Recent Advances in the Supply of Docosahexaenoic Acid to the Nervous System. In: Mostofsky, D.I., Yehuda, S., Salem, N. (eds) Fatty Acids. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-119-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-119-0_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-265-0

  • Online ISBN: 978-1-59259-119-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics