Skip to main content

The Role of Omega-3 Polyunsaturated Fatty Acids in Retinal Function

  • Chapter
Fatty Acids

Abstract

The precursors of both n-6 and n-3 polyunsaturated fatty acids (PUFAs), linoleic acid and α-linolenic acid, respectively, are essential for mammals as they are required for normal physiological function and cannot be synthesized de novo (Holman, 1968). They can only be accumulated by placental transfer or by dietary intake. Once accretion of these fatty acids has occurred, metabolic, conservation and recycling pathways sustain them (Bazan et al., 1994) Unlike mammals, plants can synthesize these precursor PUFAs (linoleic and α-linolenic acids) so they are found in abundance in the chloroplast membranes of plants, in certain vegetable oils, and in the tissues of plant-eating animals (Nettleton, 1991). The best sources of α-linolenic acid are vegetable oils, such as perilla (Yoshida et al., 1993) rapeseed (canola), linseed, walnut, and soybean (Nettleton, 1991). They are also abundant in shellfish, fish, and fish products and can be found in low amounts in green, leafy vegetables and baked beans (Nettleton, 1991; Sinclair, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson R. Biochemistry of the Eye. American Academy of Ophthalmology, San Fransisco, 1983.

    Google Scholar 

  • Anderson R, Maude M. Lipids of ocular tissues. VIII. The effects of essential fatty acid deficiency on the phospholipdis of the photoreceptor membranes of rat retina. Arch Biochem Biophysiol 1970; 151: 270 - 276.

    Google Scholar 

  • Anderson R, Risk M. Lipids of ocular tissues. IX. The phospholipids of frog photoreceptor membranes. Vision Res 1974; 14: 129 - 131.

    PubMed  CAS  Google Scholar 

  • Anderson RE, Chen H, Stinson A. The accretion of docosahexaenoic acid in the retina. World Rev Nutr Diet 1994; 75: 124 - 127.

    PubMed  CAS  Google Scholar 

  • Armington JC. The Electroretinogram. Academic, New York, 1974.

    Google Scholar 

  • Armitage J, Weisinger H, Vingrys A, et al. Perinatal omega-3 fatty acid deficiency alters ERG in adult rats irrespective of tissue fatty acid content. [ARVO Abstract]. Invest Ophthalmol Vis Sci 2000; 41: S245.

    Google Scholar 

  • Aveldano de Caldironi M, Bazan N. Composition and biosynthesis of meolcular species of retina phosphoglycerides. Neurochemistry 1980; 1: 381 - 392.

    Google Scholar 

  • Baylor DA, Lamb TD, Yau KW. The membrane current of single rod outer segments. J Physiol 1979; 288: 589 - 611.

    PubMed  CAS  Google Scholar 

  • Bazan NG, Gordon WC, Rodriguez de Turco EB. Docosahexaenoic acid uptake and metabolism in photoreceptors: retinal conservation by an efficient retinal pigment epithelial cell-mediated recycling process. Adv Exp Med Biol 1992; 318: 295 - 306.

    PubMed  CAS  Google Scholar 

  • Bazan NG, Rodriguez de Turco EB, Gordon WC. Docosahexaenoic acid supply to the retina and its conservation in photoreceptor cells by active retinal pigment epithelium-mediated recycling. World Rev Nutr Diet 1994; 75: 120 - 123.

    PubMed  CAS  Google Scholar 

  • Bell M, Dick J, Buda C. Molecular seciation of fish sperm phospohlipids: large amounts of dipolyunsaturated phosphatidylserine. Lipids 1997; 32: 1085 - 1091.

    PubMed  CAS  Google Scholar 

  • Benolken RM, Anderson RE, Wheeler TG. Membrane fatty acids associated with the electrical response in visual excitation. Science 1973; 182: 1253 - 1254.

    PubMed  CAS  Google Scholar 

  • Bernsohn J, Spitz F. Linoleic and linolenic acid dependency on some brain membrane-bound enzymes after lipid deprivation in rats. Biochem Biophys Res Commun 1974; 57: 293 - 298.

    PubMed  CAS  Google Scholar 

  • Birch DG, Birch EE, Hoffman DR, et al. Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids. Invest Ophthalmol Vis Sci 1992; 33: 2265 - 2376.

    Google Scholar 

  • Birch DG, Hood DC, Nusinowitz S, et al. Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the Pro-23-his mutation. Invest Ophthalmol Vis Sci 1995; 36: 1603 - 1614.

    PubMed  CAS  Google Scholar 

  • Birch E, Birch D, Hoffman D, et al. Breast-feeding and optimal visual development. J Pediatr Ophthalmol Strabismus 1993; 30: 33 - 38.

    PubMed  CAS  Google Scholar 

  • Bourre J, Durand G, Erre J, et al. Changes in auditory brainstem responses in alpha-linolenic acid deficiency as a function of age in rats. Audiology 1999; 38: 8 - 13.

    Google Scholar 

  • Bourre J, Faivre A, Dumont O, et al. Effect of polyunsaturated fatty acids on fetal mouse brains in culture in a chemically defined medium. J Neurochem 1983; 41: 1234 - 1242.

    PubMed  CAS  Google Scholar 

  • Bourre JM, Francois M, Youyou A, et al. The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 1989; 119: 1880 - 1892.

    PubMed  CAS  Google Scholar 

  • Breton ME, Quinn GE, Schueller AW. Development of electroretinogram and rod phototransduction response in human infants. Invest Ophthalmol Vis Sci 1995; 36: 1588 - 1602.

    PubMed  CAS  Google Scholar 

  • Breton ME, Schueller AW, Lamb T, et al. Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction. Invest Ophthalmol Vis Sci 1994; 35: 295 - 309.

    PubMed  CAS  Google Scholar 

  • Brown KT. The electroretinogram: its components and their origins. Vision Res 1968; 8: 633 - 677.

    PubMed  CAS  Google Scholar 

  • Brown MF. Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 1994; 73: 159 - 180.

    PubMed  CAS  Google Scholar 

  • Bui BV, Vingrys AJ. Development of receptoral responses in pigmented and albino guinea-pigs (Cavea porcellus). Documenta Ophthalmol, 2000; 99: 151 - 170.

    Google Scholar 

  • Bui BV. The development of the electroretinogram in the guinea pig (cavia porcellus) MSc dissertation, University of Melbourne, 1998.

    Google Scholar 

  • Burr G, Burr M. A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem 1929; 82: 345 - 367.

    CAS  Google Scholar 

  • Bush RA, Malnoe A, Reme CE, et al. Dietary deficiency of n-3 fatty acids alters rhodopsin content and function in the rat retina. Invest Ophthalmol Vis Sci 1994; 35: 91 - 100.

    PubMed  CAS  Google Scholar 

  • Bush RA, Sieving PA. A proximal retinal component in the primate photopic ERG a-Wave. Invest Ophthalmol Vis Sci 1994; 35 (2): 635 - 645.

    PubMed  CAS  Google Scholar 

  • Chen Y, Houghton LA, Brenna JT, et al. Docosahexaenoic acid modulates the interactions of the interphotoreceptor retinoid-binding protein with 11-cis-retinal. J Biol Chem 1996; 271:20, 507-20, 515.

    Google Scholar 

  • Chen Y, Saari JC, Noy N. Interactions of all-trans-retinol and long-chain fatty acids with interphotoreceptor retinoid-binding protein. Biochemistry 1993; 32:11, 311-11, 318.

    Google Scholar 

  • Cibis G, Anderson R, Chew E, et al. Fundamentals and principles of ophthalmology. In: Cibis G, Anderson R, Chew E, et al., eds. Basic and Clinical Science Course. American Academy of Ophthalmology, San Fransisco, 1995.

    Google Scholar 

  • Cideciyan AV, Jacobson SG. An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age. Vision Res 1996; 36: 2609 - 2621.

    PubMed  CAS  Google Scholar 

  • Clarke SD, Jump DB. Dietary polyunsaturated fatty acid regulation of gene transcription. Ann Rev Nutr 1994; 14: 83 - 98.

    CAS  Google Scholar 

  • Cobbs WH, Pugh EN. Kinetics and components of the flash photocurrent of isolated retinal rods of the larval salamanda, Ambystoma tigrinum. J Physiol 1987; 394: 529 - 572.

    PubMed  CAS  Google Scholar 

  • Cone RA. Early receptor potential of the vertebrate retina. Nature 1964; 201: 626 - 628.

    Google Scholar 

  • Cone RA, Cobbs WH. Rhodopsin cycle in the living eye of the rat. Nature 1969; 221: 820 - 822.

    PubMed  CAS  Google Scholar 

  • Connor WE, Neuringer M. The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain retina. In: Karnovsky ML, Leaf A, Bolls LC, eds. Biological Membranes: Aberrations in Membrane Structure and Function. Alan R. Liss, New York, 1988.

    Google Scholar 

  • Connor WE, Lin DS, Neuringer M, et al. The comparative importance of prenatal and postnatal n-3 fatty acid deficiency: repletion at birth and later. In: Sinclair AJ, Gibson RA, eds. The Third International Congress on Essential Fatty Acids and Eicosanoids. AOCS, Champaign, IL, 1993.

    Google Scholar 

  • Crawford MA, Sinclair M. Nutritional influences in the evolution of the mammalian brain, CIBA Foundation Symposium on Lipids, Malnutrition and the Developing Brain. Associated Scientific, New York, 1972.

    Google Scholar 

  • Dawson W, Galloway N. Early receptor potential: origin and clinical applications. In: Heckenliveley J, Arden G, eds. Principles and Practice of Clinical Electrophysiolology of Vision. Mosby Year Book, St. Louis, MO, 1991.

    Google Scholar 

  • Dowling JE. The Retina: An Approachable Part of the Brain. Harvard University Press, Cambridge, MA, 1987.

    Google Scholar 

  • Dratz EA, Holte LL. The molecular spring model for the function of docosahexaenoic acid (22:6n-3) in biological membranes. In: Sinclair AJ, Gibson RA, eds. The Third International Congress on Essential Fatty Acids and Eicosanoids. AOCS, Champaign, IL, 1993.

    Google Scholar 

  • Dratz EA, Furstenau JE, Lambert CG, et al. NMR structure of a receptor-bound G-protein peptide. Nature 1993; 363: 276 - 281.

    PubMed  CAS  Google Scholar 

  • Dudley P, Landis D, Anderson R. Further studies on the chemistry of photoreceptor membranes fed an essential fatty acid deficient diet. Exp Eye Res 1975; 21: 523 - 530.

    PubMed  CAS  Google Scholar 

  • Faber DS. Analysis of the slow transretinal potentials in response to light. Doctoral dissertation, State University of New York, Buffalo, 1969.

    Google Scholar 

  • Fliesler SJ, Anderson RE. Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 1983; 22: 79 - 131.

    PubMed  CAS  Google Scholar 

  • Frishman L, Karwoski C. The d-wave. In: Heckenliveley J, Arden G, eds. Principles and Practice of Clinical Electrophysiolology of Vision. Mosby YearBook, St Louis, MO, 1991.

    Google Scholar 

  • Frishman LJ, Steinberg RH. Origin of negative potentials in the light-adapted ERG of cat retina. J Neurophysiol 1990; 63: 1333 - 1346.

    PubMed  CAS  Google Scholar 

  • Fulton AB, Rushton WA. The human rod ERG: correlation with psychophysical responses in light and dark adaptation. Vision Res 1978; 18 (7): 793 - 800.

    PubMed  CAS  Google Scholar 

  • Fulton AB, Dodge J, Hansen RM, et al. The quantity of rhodopsin in young human eyes. Curr Eye Res 1991; 10: 977 - 982.

    PubMed  CAS  Google Scholar 

  • Fulton A, Hansen RM, Dorn E, et al. Development of primate rod structure and function. In: Vital-Durrand F, ed. Infant Vision. Oxford University Press, London, 1995a.

    Google Scholar 

  • Fulton AB, Hansen RM, Findl O. The development of the rod photoresponse from dark-adapted rats. Invest Ophthalmol Vis Sci 1995b; 36: 1038 - 1045.

    PubMed  CAS  Google Scholar 

  • Futterman S, Stevens-Andrews J. The fatty acid composition of human retinal vitamin A ester and the lipids of human retinal tissue. Invest Ophthalmol Vis Sci 1964; 3: 441 - 444.

    CAS  Google Scholar 

  • Futterman S, Downer JL, Hendrickson A. Effect of essential fatty acid deficiency on the fatty acid composition, morphology, and electroretinographic response of the retina. Invest Ophthalmol Vis Sci 1971; 10: 151 - 156.

    CAS  Google Scholar 

  • Galli C, White H, Paoletti R. Lipid alterations and their reversion in the central nervous system of growing rats deficient in eesential fatty acids. Lipids 1971; 6: 378 - 387.

    PubMed  CAS  Google Scholar 

  • Gerbi A, Zerouga M, Debray M, et al. ffect of dietary a-linolenic acid on functional characteristic of Na+/ KtATPase isoenzymes in whole brain membranes of weaned rats. Biochim Biophys Acta 1993; 1165: 291 - 298.

    PubMed  CAS  Google Scholar 

  • Granit R. Components of the retinal action potential in mammals and their relations to the discharge in the optic nerve. J Physiol 1933; 77: 207 - 238.

    PubMed  CAS  Google Scholar 

  • Greiner R, Moriguchi T, Hutton A, et al. Rats with low levels of brain docosahexaenoic show impaired performance in oflactory-based and spatial learning tasks. Lipids 1999; 34: S239 - S243.

    PubMed  CAS  Google Scholar 

  • Gurr MI, James AT. Lipid Biochemistry. An Introduction. Chapman and Hall, London, 1980. Holman R Biological activities of and requirements for polyunsaturated fatty acids. Prog Chem Fats Other Lipids 1968; 9: 611 - 680.

    Google Scholar 

  • Holopigian K, Greenstein VC, Seiple W, et al. Evidence for photoreceptor changes in patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 1997; 38: 2355 - 2365.

    PubMed  CAS  Google Scholar 

  • Hood DC, Birch DG. A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography. Vis Neurosc 1990a; 5: 379 - 387.

    CAS  Google Scholar 

  • Hood DC, Birch DG. The a-wave of the human ERG and rod receptor function. Invest Ophthalmol Vis Sci 1990b; 31: 2070 - 2081.

    PubMed  CAS  Google Scholar 

  • Hood DC, Birch DG. Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. Invest Ophthalmol Vis Sci 1994; 35: 2948 - 2961.

    PubMed  CAS  Google Scholar 

  • Huster D, Arnold K, Gawrisch K. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Biochemistry 1998; 37: 17299 - 308.

    PubMed  CAS  Google Scholar 

  • Hyman B, Spector A. Choline uptake in cultured human Y79 retinoblastoma cells: effect of polyunsaturated fatty acid compositional modifications. J Neurochem 1982; 38: 650 - 656.

    PubMed  CAS  Google Scholar 

  • Karwoski CJ, Proenze LM. Light-evoked changes in extracellular potassium concentration in mudpuppy retina. Brain Res 1978; 142: 515 - 530.

    PubMed  CAS  Google Scholar 

  • Kline RP, Ripps H, Dowling JE. Light induced potassium fluxes in the skate retina. J Neurosci 1985; 464: 225 - 235.

    Google Scholar 

  • Kraft TW, Schneeweis DM, Schnaft JL. Visual transduction in human rod photoreceptors. J Physiol 1993; 464: 747 - 765.

    PubMed  CAS  Google Scholar 

  • Kurlack L, Stephenson T. Plausible explanations for effects of long chain polyunstaurated fatty acids on neonates. Arch Dis Child 1999; 80: 148 - 154.

    Google Scholar 

  • Lamb TD. Transduction in vertebrate photoreceptors: the roles of cyclic GMP and calcium. Trends Neurosci 1986; 9: 224 - 228.

    CAS  Google Scholar 

  • Lamb TD, Pugh EN Jr. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol 1992; 449: 719 - 758.

    PubMed  CAS  Google Scholar 

  • Lamptey M, Walker B. Learning behaviour and brain lipid composition in rats subjected to essential fatty acid deficiency during gestation, lactation and growth. J Nutr 1978; 108: 358 - 367.

    PubMed  CAS  Google Scholar 

  • Landis DJ, Dudley PA, Anderson RE. Alteration of disc formation in photoreceptors of rat retina. Science 1973; 182: 1144 - 1146.

    PubMed  CAS  Google Scholar 

  • Leat WMF, Curtis R, Millichamp NJ, et al. Retinal function in rats and guinea pigs reared on diets low in essential fatty acids and supplemented with linoleic or linolenic acids. Ann Nutr Metab 1986; 30: 166 - 174.

    PubMed  CAS  Google Scholar 

  • Liebman PA, Parker KR, Dratz EA. The molecular mechanism of visual excitation and its relation to the structure and composition of the rod outer segment. Ann Rev Physiol 1987; 49: 765 - 791.

    CAS  Google Scholar 

  • Lin DS, Anderson GJ, Connor WE, et al. Effect of dietary n-3 fatty acids upon the phospholipid molecular species of the monkey retina. Invest Ophthalmol Vis Sci 1994; 35: 794 - 803.

    PubMed  CAS  Google Scholar 

  • Lipton S, Rasmussen H, Dowling J. Electrical and adaptive properties of rod photoreceptors in Bufo marinus: II. Effects of cyclic nucleotides and prostaglandins. J Gen Physiol 1977; 70: 771 - 791.

    PubMed  CAS  Google Scholar 

  • Littman BJ, Mitchell DC. A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids 1996; 31: S193 — S197.

    Google Scholar 

  • Lyubarski A, Pugh E. Recovery phase of the murine rod photoresponse reconstructed from electroretinographic recordings. J Neurosci 1996; 16: 563 - 571.

    Google Scholar 

  • Makrides M, Neumann M, Simmer K, et al. Are long-chain polyunsaturated fatty acids essential nutrients in infancy? Lancet 1994; 345: 1463 - 1468.

    Google Scholar 

  • Marmor MF, Zrenner E. Standard for clinical electroretinography (1999 update). Documenta Ophthalmol 1999; 97: 143 - 156.

    CAS  Google Scholar 

  • McMurchie EJ. Dietary lipids and the regulation of membrane fluidity and function In: Aloia, RC, ed. Physiological Regulation of Membrane Fluidity. Alan R. Liss, New York, 1988.

    Google Scholar 

  • Miller S, Steinberg R. Passive ionic properties of the frog retinal pigment epithelium. J Membr Biol 1977; 36: 337 - 372.

    PubMed  CAS  Google Scholar 

  • Mitchell DC, Gawrisch K, Litmann BJ, Salem N Jr. Why is docosahexaenoic acid essential for nervous system function? Biochem Soc Trans 1998; 26: 365 - 370.

    PubMed  CAS  Google Scholar 

  • Naka K, Rushton WA. H. S-potential from luminosity units in the retina of the fish (cyprinidont). J Physiol 1966; 185: 587 - 599.

    PubMed  CAS  Google Scholar 

  • Nettleton JA. n-3 Fatty acids: comparison of plant and seafood sources in human nutrition. J Am Diet Assoc 1991; 91:331-337.

    Google Scholar 

  • Neuringer M. The relationship of fatty acid composition to function in the retina and visual system. In: Dobbing J, ed. Lipids, Learning and the Brain: Fats in Infant Formulas, Report of the 103rd Ross Conference on Paediatric Research. Ross Laboratories, Columbus, OH, 1993.

    Google Scholar 

  • Neuringer M, Connor WE, Lin DS, et al. Biochemical and functional effects of prenatal and postnatal omega-3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci USA 1986; 83: 4021 - 4025.

    PubMed  CAS  Google Scholar 

  • Neuringer M, Jeffrey B, Gibson R. N-3 fatty acid deficiency alters rod phototrandsuction and recovery. [ARVO Abstract]. Invest Ophthalmol Vis Sci 2000; 41: S493.

    Google Scholar 

  • Nicholls J, Martin A, Wallace B. eds. From Neuron to Brain. Sinauer Associates, Sunderland, MA, 1992. Papahadjopoulos D. Calcium-induced phase changes and fusion in natural and model membranes. In: Poste G, ed. Membrane Fusion. North-Holland, Amsterdam, 1978.

    Google Scholar 

  • Penn JS, Anderson RE. Effects of light history on the rat retina. Prog Retinal Res 1991; 11: 75 - 98.

    Google Scholar 

  • Penn RD, Hagins WA. Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 1969; 223: 201 - 205.

    PubMed  CAS  Google Scholar 

  • Pepperberg DR, Birch DG, Hofmann KP, et al. Recovery kinetics of human rod phototransduction inferred from the two-branched a-wave saturation function. J Opt Soc Am A 1996; 13: 586 - 600.

    CAS  Google Scholar 

  • Quinn PJ. The fluidity of cell membranes and its regulation. Prog Biophysiol Mol Biol 1981; 38: 1 - 104.

    CAS  Google Scholar 

  • Reisbick S, Neuringer M, Connor WE, et al. Postnatal deficiency of omega-3 fatty acids in monkeys: fluid intake and urine concentration. Physiol Behav 1992; 51: 473 - 479.

    PubMed  CAS  Google Scholar 

  • Reisbick S, Neuringer M, Hasnain R, et al. Polydipsia in rhesus monkeys deficient in omega-3 fatty acids. Physiol Behav 1990; 47: 315 - 323.

    PubMed  CAS  Google Scholar 

  • Ripps H, Witlovsky P. Neuron-glia interaction in the brain and retina. Prog Retinal Res 1985; 4: 181 - 219.

    Google Scholar 

  • Rodieck RW. Components of the electroretinogram-a reappraisal. Vision Res 1972; 12: 773 - 780.

    PubMed  CAS  Google Scholar 

  • Rodieck RW. The primate retina. Compar Primate Biol 1988; 4: 203 - 278.

    Google Scholar 

  • Rodriguez de Turco EB, Deretic D, Bazan NG, et al. Post-golgi vesicles cotransport docosahexaenoylphospholipids and rhodopsin during frog photoreceptor membrane biogenesis. J Biol Chem 1997; 272(16): 10,491-10,497.

    Google Scholar 

  • Rotstein NP, Pennacchiotti GL, Sprecher H, et al. Active synthesis of C24:5,n-3 fatty acid in retina. J Biochem 1996; 316: 859 - 864.

    CAS  Google Scholar 

  • Salem Jr., N. Omega-3 fatty acids: molecular and biochemical aspects. In: Spiller GA, Scala J, eds. New Protective Roles for Selected Nutrients. Alan R. Liss, New York, 1989.

    Google Scholar 

  • Schnapf JL, Baylor DA. How photoreceptors respond to light. Sci Am 1987; 256: 40 - 47.

    PubMed  CAS  Google Scholar 

  • Sinclair A. The nutritional significance of omega-3 polyunsaturated fatty acids for humans Asean Food 1993; J8: 3 - 13.

    CAS  Google Scholar 

  • Sinclair AJ. Long chain polyunsaturated fatty acids in the mammalian brain. Proc Nutr Soc 1975; 34: 287 - 291.

    PubMed  CAS  Google Scholar 

  • Steinberg RH, Linsenmeier RA, Griff ER. Retinal pigment epithelial cell contributions to the electroretingram and electrooculogram. Prog Retinal Res 1985; 4: 33 - 66.

    Google Scholar 

  • Steinberg RH, Schmidt R, Brown K. Intracellular responses to light from the cat retinal pigment epithelium: origin of the electroretinogram c-wave. Nature 1970; 227: 728 - 730.

    PubMed  CAS  Google Scholar 

  • Stryer L. Biochemistry. WH Freeman, New York, 1981.

    Google Scholar 

  • Stryer L. The cyclic GMP cascade of vision. Ann Rev Neurosci 1986; 9: 87 - 119.

    PubMed  CAS  Google Scholar 

  • Tinoco J, Williams M, Hincenbergs I, et al. Evidence for nonessentiality of linolenic acid in the diet of the rat. J Nutr 1971; 101: 937 - 946.

    PubMed  CAS  Google Scholar 

  • Treen M, Uauy RD, Jameson DM, et al. Effect of docosahexaenoic acid on membrane fluidity and function in intact cultured Y-79 retinoblastoma cells. Arch Biochem Biophysiol 1992; 294: 564 - 570.

    CAS  Google Scholar 

  • Uauy R, Hoffman DR. Essential fatty acid requirements for normal eye and brain development. Semin Perinatol 1991; 15: 449 - 455.

    PubMed  CAS  Google Scholar 

  • Uauy RD, Birch EE, Birch DG, et al. Significance of w3 fatty acids for retinal and brain development of preterm and term infants. World Rev Nutr Diet 1994; 75: 52 - 62.

    Google Scholar 

  • Umezawa M, Kogishi K, Tojo H, et al. High linoleate and high alpha linolenate diets affect learning ability and natural behaviour in SAMRI mice. J Nutr 1999; 129: 431 - 437.

    PubMed  CAS  Google Scholar 

  • Vingrys AJ, Weisinger HS, Sinclair AJ. The effect of age and n-3 PUFA level on the ERG in the guinea pig. In: Huang Y. Sinclair A eds., Lipids and Infant Nutrition. AOCS, Champaign, IL, 1998.

    Google Scholar 

  • Voss A, Reinhart S, Sankarappa S, et al. Metabolism of 22:5n-3 to 22:6n-3 in rat liver is independent of 4-desaturase. J Biol Chem 1991; 166: 1995 - 2000.

    Google Scholar 

  • Wainwright P. Do essential fatty acids play a role in brain and behavioural development? Biol Behav Rev 1992; 16: 193 - 205.

    CAS  Google Scholar 

  • Wang N, Anderson RE. Synthesis of docosahexaenoic acid by retina and retinal pigment epithelium. Biochemistry 1993; 32:13, 703-13, 709.

    Google Scholar 

  • Ward G. Wainwright P. The contribution of animal models to understanding the role of fats in infant nutrition. In: Huang Y, Sinclair A, eds. Lipids in Nutrition. AOCS, Champaign, IL, 1998.

    Google Scholar 

  • Ward G, Woods J, Reyzer M, et al. Artificial rearing of infant rats on milk formula deficient in n-3 essential fatty acids: a rapid method fo the production of experimental n-3 deficiency. Lipids 1996; 31: 71 - 78.

    PubMed  CAS  Google Scholar 

  • Watanabe I, Aonuma H, Kaneko S, et al. Effect of high linoleate and high a-linoleate diets on size distribution of phagosomes in retinal pigment epithelium. In: Yasugi T, Nakamura H, Soma M, eds. Advances in Polyunsaturated Fatty Acid Research. Elsevier, Amsterdam, 1993.

    Google Scholar 

  • Weisinger HS. The effect of docosahexanaenoic acid on the electroretinogram of the guinea pig.MSc dissertation, University of Melbourne, Melbourne, 1995.

    Google Scholar 

  • Weisinger HS, Sinclair AJ, Vingrys AJ. Effect of dietary n-3 deficiency on the electroretinogram in the guinea pig. Ann Nutr Metab 1996; 40: 91 - 98.

    PubMed  CAS  Google Scholar 

  • Weisinger HS, Vingrys AJ, Sinclair AJ. Dietary manipulation of long-chain polyunsaturated fatty acids in the retina and brain of guinea pigs. Lipids 1995; 30: 471 - 473.

    PubMed  CAS  Google Scholar 

  • Weisinger HS, Vingrys AJ, Sinclair AJ. The effect of docosahexaenoic acid on the electroretinogram of the guinea pig. Lipids 1996a; 31 (1): 65 - 70.

    PubMed  CAS  Google Scholar 

  • Weisinger HS, Vingrys AJ, Sinclair AJ. Electrodiagnostic methods in vision. Parts 1-3: Clinical experimental optometry 1996b; 79:50-61; 97-105; 131 - 143.

    Google Scholar 

  • Weisinger HS, Vingrys AJ, Sinclair AJ. Effect of diet on the rate of depletion of n-3 fatty acids in the retina of the guinea pig. J Lipid Res 1998; 39: 1274 - 1279.

    PubMed  CAS  Google Scholar 

  • Weisinger HS, Vingrys AJ, Bui BV, et al. Effects of dietary n-3 fatty acid deficiency and repletion in the guinea pig retina. Invest Ophthalmol Vis Sci 1999; 40: 327 - 338.

    PubMed  CAS  Google Scholar 

  • Wheeler TG, Benolken RM, Anderson RE. Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science 1975; 188: 1312 - 1314.

    PubMed  CAS  Google Scholar 

  • Witkovsky P, Dudek FE, Ripps H. Slow PIII component of the carp electroretinogram. J Gen Physiol 1975; 65: 119 - 134.

    PubMed  CAS  Google Scholar 

  • Yau KW. Phototransduction in retinal rods and cones. Invest Ophthalmol Vis Sci 1994; 35: 9 - 32.

    PubMed  CAS  Google Scholar 

  • Yoshida S, Yasuda A, Kawasato H, et al. Ultrastructural study of hippocampus synapse in perilla and safflower oil fed rats. In: Yasugi T, Nakamura H, Soma M, eds. Advances in Polyunsaturated Fatty Acid Research. Elsevier, Amsterdam, 1993.

    Google Scholar 

  • Young R. The renewal of photoreceptor cell outer segments. J Cell Biol 1967; 42: 392 - 403.

    Google Scholar 

  • Young R, Bok D. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 1969; 42: 392 - 403.

    PubMed  CAS  Google Scholar 

  • Youyou A, Durand G, Pascal G, et al. Recovery of altered fatty acid composition induced by a diet devoid of n-3 fatty acids in myelin, synaptosomes, mitochondria, and microsomes of developing rat brain. J Neurochem 1986; 46: 224 - 228.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vingrys, A.J., Armitage, J.A., Weisinger, H.S., Bui, B.V., Sinclair, A.J., Weisinger, R.S. (2001). The Role of Omega-3 Polyunsaturated Fatty Acids in Retinal Function. In: Mostofsky, D.I., Yehuda, S., Salem, N. (eds) Fatty Acids. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-119-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-119-0_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-265-0

  • Online ISBN: 978-1-59259-119-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics