Skip to main content

Mechanisms of Quinoline Resistance

  • Chapter
Antimalarial Chemotherapy

Part of the book series: Infectious Disease ((ID))

  • 446 Accesses

Abstract

For decades, the 4-aminoquinoline chloroquine (CQ) was the mainstay for the prevention and treatment of malaria because of its low cost, safety, and efficacy. However, CQ-resistant Plasmodium falciparum has now been reported from almost every malaria endemic country, and this drug can no longer be considered appropriate for the treatment of malaria in many areas (1). Reports of CQ-resistant P. vivax also have begun to emerge from Asia and South America (2). In response to the problem of CQ resistance, the quinolinemethanol mefloquine has been widely deployed and used for the prevention and treatment of malaria in areas where CQ is no longer effective. However, resistance to this drug has emerged in many malarious regions (3–8). Although the older quinolinemethanols quinine and quinidine remain useful in areas of CQ and mefloquine resistance, these drugs have been losing efficacy, and cases of cross-resistance among the different quinolines have been described (9–16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barat LM, Bloland PB. Drug resistance among malaria and other parasites. Infect Dis Clin North Am 1997; 11: 969–987.

    Article  PubMed  CAS  Google Scholar 

  2. Whitby, M. Drug resistant Plasmodium vivax malaria. J Antimicrob Chemother 1997; 40: 749–752.

    Article  PubMed  CAS  Google Scholar 

  3. Boudreau EF, Webster HK, Pavanand K, Thosingha, L. Type II mefloquine resistance in Thailand. Lancet 1982; 2: 1335.

    Article  PubMed  CAS  Google Scholar 

  4. Espinal CA, Cortes GT, Guerra P, Arias AE. Sensitivity of Plasmodium falciparum to antimalarial drugs in Colombia. Am J Trop Med Hyg 1985; 34: 675–680.

    PubMed  CAS  Google Scholar 

  5. Draper CC, Brubaker G, Geser A, Kilimali VA, Wernsdorfer WH. Serial studies on the evolution of chloroquine resistance in an area of East Africa receiving intermittent malaria chemosuppression. Bull WHO 1985; 63: 109–118.

    PubMed  CAS  Google Scholar 

  6. Raccurt CP, Dumestre-Toulet, V, Abraham, E, Le Bras, M, Brachet-Liermain A, Ripen C. Failure of falciparum malaria prophylaxis by mefloquine in travelers from West Africa. Am J Trop Med Hyg 1991; 45: 319–324.

    PubMed  CAS  Google Scholar 

  7. Looareesuwan S, Viravan C, Vanijanonta, S. Wilairatana P, Suntharasamai P, Charoenlarp P, et al. Randomised trial of artesunate and mefloquine alone and in sequence for acute uncomplicated falciparum malaria. Lancet 1992; 339: 821–824.

    Article  PubMed  CAS  Google Scholar 

  8. White NJ. Mefloquine in the prophlaxis and treatment of falciparum malaria. Br Med J 1994; 308: 286–287.

    Article  CAS  Google Scholar 

  9. Bray PG, Hawley SR, Ward SA. 4-Aminoquinoline resistance of Plasmodium falciparum: insights from the study of amodiaquine uptake. Mol Pharmacol 1996; 50: 1551–1558.

    PubMed  CAS  Google Scholar 

  10. Churchill FC, Patchen LC, Campbell CC, Schwartz IK, Nguyen-Dinh P, Dickinson CM. Amodiaquine as a prodrug: importance of metabolite(s) in the antimalarial effect of amodiaquine in humans. Life Sci 1985; 36: 53–62.

    Article  PubMed  CAS  Google Scholar 

  11. Elueze EI, Croft SL, Warhurst DC. Activity of pyronaridine and mepacrine against twelve strains of Plasmodium falciparum in vitro. J Antimicrob Chemother 1996; 37: 511–518.

    Article  PubMed  CAS  Google Scholar 

  12. Webster HK, Thaithong S, Pavanand K, Yongvanitchit K, Pinswasdi C, Boudreau EF. Cloning and characterization of mefloquine-resistant Plasmodium falciparum from Thailand. Am J Trop Med Hyg 1985; 34: 1022–1027.

    PubMed  CAS  Google Scholar 

  13. White NJ. Antimalarial drug resistance: the pace quickens. J Antimicrob Chemother 1992; 30: 571–585.

    Article  PubMed  CAS  Google Scholar 

  14. Wongsrichanalai C, Webster HK, Wimonwattrawatee T, Sookto P, Chuanak N, Thimasarn K, et al. Emergence of multidrug-resistant Plasmodium falciparum in Thailand: in vitro tracking. Am J Trop Med Hyg 1992; 47: 112–116.

    PubMed  CAS  Google Scholar 

  15. Wilson CM, Volkman SK, Thaithong S, Martin RK, Kyle DE, Milhous WK, et al. Amplification of pfindr 1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Mol Biochem Parasitol 1993; 57: 151–160.

    Article  PubMed  CAS  Google Scholar 

  16. Suebsaeng L, Wernsdorfer WH, Rooney W. Sensitivity to quinine and mefloquine of Plasmodium falciparum in Thailand. Bull WHO 1986; 64: 759–765.

    PubMed  CAS  Google Scholar 

  17. Wernsdorfer WH. Epidemiology of drug resistance in malaria. Acta Tropica 1994; 56: 143–156.

    Article  PubMed  CAS  Google Scholar 

  18. O’Neill PM, Bray PG, Hawley SR, Ward SA, Park BK. 4-Aminoquinolines-past, present, and future: a chemical perspective. Pharmacol Ther 1998; 77: 29–58.

    Article  PubMed  Google Scholar 

  19. Fitch CD. Plasmodium falciparum in owl monkeys: drug resistance and chloroquine binding capacity. Science 1970;169:289–290.

    Article  Google Scholar 

  20. Fitch CD, Yunis NG, Chevli R, Gonzalez Y. High-affinity accumulation of chloroquine by mouse erythrocytes infected with Plasmodium berghei. J Clin Invest 1974; 54: 24–33.

    Article  PubMed  CAS  Google Scholar 

  21. Yayon A, Cabantchik ZI, Ginsburg H. Identification of the acidic compartment of Plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug chloroquine. EMBO J 1984; 3: 2695–2700.

    PubMed  CAS  Google Scholar 

  22. Verdier F, Le Bras J, Clavier F, Hatin I, Blayo MC. Chloroquine uptake by Plasmodium falciparum-infected human erythrocytes during in vitro culture and its relationship to chloroquine resistance. Antimicrob Agents Chemother 1985; 27: 561–564.

    Article  PubMed  CAS  Google Scholar 

  23. Bray PG, Howells RE, Ritchie GY, Ward SA. Rapid chloroquine efflux phenotype in both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. A correlation of chloroquine sensitivity with energy-dependent drug accumulation. Biochem Pharmacol 1992; 44: 1317–1324.

    Article  PubMed  CAS  Google Scholar 

  24. Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 1998; 79: 55–87.

    Article  PubMed  CAS  Google Scholar 

  25. Wellems TE, Panton LJ, Gluzman IY, do Rosario VE, Gwadz RW, Walker-Jonah A, et al. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature 1990; 345: 253–255.

    Article  PubMed  CAS  Google Scholar 

  26. Su X, Kirkman LA, Fujioka H, Wellems TE. Complex polymorphisms in an approximately 330 kDa protein are linked to chloroquine-resistant P. falciparum in Southeast Asia and Africa. Cell 1997; 91: 593–603.

    Article  PubMed  CAS  Google Scholar 

  27. Fidock D, Nomura T, Talley A, Cooper R, Dzekunov S, Ferdig M, et al. Mutations in the digestive vacuole transmembrane protein PfCRT confer verapamil-reversible chloroquine resistance to Plasmodium falciparum. Cell 2000; in press.

    Google Scholar 

  28. Peters, W. Morphological and physiological variations in chloroquine-resistant Plasmodium berghei, Vincke and Lips. Ann Soc Belg Med Trop 1965; 45: 365–376.

    CAS  Google Scholar 

  29. Krogstad DJ, De, D. Chloroquine: modes of action and resistance and the activity of chloroquine analogs. In: Sherman IW. (ed). Malaria: Parasite Biology, Pathogenesis, and Protection Washington, DC: ASM Press, 1998, pp. 331–339.

    Google Scholar 

  30. Krogstad DJ, Gluzman IY, Kyle DE, Oduola AM, Martin SK, Milhous WK, et al. Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance. Science 1987; 238: 1283–1285.

    Article  PubMed  CAS  Google Scholar 

  31. Vezmar M, Deady LW, Tilley L, Georges E. The quinoline-based drug, N-(4-(1-hydroxy2-(dibutylamino)ethyl) quinolin-8-yl)-4-azidosalicylamide, photoaffinity labels the multidrug resistance protein (MRP) at a biologically relevant site. Biochem Biophys Res Commun 1997; 241: 104–111.

    Article  PubMed  CAS  Google Scholar 

  32. Martin SK, Oduola AM, Milhous WK. Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science 1987; 235: 899–901.

    Article  PubMed  CAS  Google Scholar 

  33. Bray PG, Boulter MK, Ritchie GY, Howells RE, Ward SA. Relationship of global chloroquine transport and reversal of resistance in Plasmodium falciparum. Mol Biochem Parasitol 1994; 63: 87–94.

    Article  PubMed  CAS  Google Scholar 

  34. Geary TG, Divo AD, Jensen JB, Zangwill M, Ginsburg H. Kinetic modelling of the response of Plasmodium falciparum to chloroquine and its experimental testing in vitro. Implications for mechanism of action of and resistance to the drug. Biochem Pharmacol 1990; 40: 685–691.

    Article  PubMed  CAS  Google Scholar 

  35. Ginsburg H, Stein WD. Kinetic modelling of chloroquine uptake by malaria-infected erythrocytes. Assessment of the factors that may determine drug resistance. Biochem Pharmacol. 1991; 41: 1463–1470.

    Article  PubMed  CAS  Google Scholar 

  36. Homewood CA, Warhurst DC, Peters W, Baggaley VC. Lysosomes, pH and the antimalarial action of chloroquine. Nature 1972; 235: 50–52.

    Article  PubMed  CAS  Google Scholar 

  37. Krogstad DJ, Schlesinger PH, Gluzman IY. Antimalarials increase vesicle pH in Plasmodium falciparum. J Cell Biol 1985; 101: 2302–2309.

    Article  PubMed  CAS  Google Scholar 

  38. Bray PG, Howells RE, Ward SA. Vacuolar acidification and chloroquine sensitivity in Plasmodium falciparum. Biochem Pharmacol 1992; 43: 1219–1227.

    Article  PubMed  CAS  Google Scholar 

  39. Karcz SR, Herrmann VR, Cowman AF. Cloning and characterization of a vacuolar ATPase A subunit homologue from Plasmodium falciparum. Mol Biochem Parasitol 1993; 58: 333–844.

    Article  PubMed  CAS  Google Scholar 

  40. Karcz SR, Herrmann VR, Trottein F, Cowman AF. Cloning and characterization of the vacuolar ATPase B subunit from Plasmodium falciparum. Mol Biochem Parasitol 1994; 65: 123–133.

    Article  PubMed  CAS  Google Scholar 

  41. Dzekunov S, Ursos L, Roepe P. Digestive vacuolar pH of intact intraerythrocytic P. falciparum either sensitive or resistant to chloroquine. Mol Biochem Parasitol 2000; 110 (1): 107–124.

    Article  PubMed  CAS  Google Scholar 

  42. Bray PG, Mungthin, M, Ridley RG, Ward SA. Access to hematin: the basis of chloroquine resistance. Mol Pharmacol 1998; 54: 170–179.

    PubMed  CAS  Google Scholar 

  43. Warhurst DC. Antimalarial drugs: mode of action and resistance. J Antimicrob Chemother 18 (Suppl B): 1986; 51–59.

    Article  PubMed  CAS  Google Scholar 

  44. Hawley SR, Bray PG, Park BK, Ward SA. Amodiaquine accumulation in Plasmodium falciparum as a possible explanation for its superior antimalarial activity over chloroquine. Mol Biochem Parasitol 1996; 80: 15–25.

    Article  PubMed  CAS  Google Scholar 

  45. Chou AC, Chevli R, Fitch CD. Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 1980; 19: 1543–1549.

    Article  PubMed  CAS  Google Scholar 

  46. Sanchez CP, Wunsch S, Lanzer M. Identification of a chloroquine importer in Plasmodium falciparum. Differences in import kinetics are genetically linked with the chloroquine-resistant phenotype. J Biol Chem 1997; 272: 2652–2658.

    Article  PubMed  CAS  Google Scholar 

  47. Ridley RG. Malaria: dissecting chloroquine resistance. Curr Biol 1998; 8: R346 - R249.

    Article  PubMed  CAS  Google Scholar 

  48. Sanchez CP, Horrocks P, Lanzer M. Is the putative chloroquine resistance mediator CG2 the Na+/H+ exchanger of Plasmodium falciparum? Cell 1998; 92: 601–602.

    Article  PubMed  CAS  Google Scholar 

  49. Wellems TE, Wooton JC, Fujioka H, Su XZ, Cooper R, Baruch D, et al. P. falciparum CG2, linked to chloroquine resistance, does not resemble Na+/H+ exchangers. Cell 1998; 94: 285–286.

    Article  PubMed  CAS  Google Scholar 

  50. Basco LK, Le Bras, J. In vitro reversal of chloroquine resistance with chlorpheniramine against African isolates of Plasmodium falciparum. Jpn J Med Sci Biol 1994; 47: 59–63.

    PubMed  CAS  Google Scholar 

  51. Bitonti AJ, Sjoerdsma A, McCann PP, Kyle DE, Oduola AM, Rossan RN, et al. Reversal of chloroquine resistance in malaria parasite Plasmodium falciparum by desipramine. Science 1988; 242: 1301–1303.

    Article  PubMed  CAS  Google Scholar 

  52. Bray PG, Ward SA. A comparison of the phenomenology and genetics of multidrug resistance in cancer cells and quinoline resistance in Plasmodium falciparum. Pharmacol Ther 1998; 77: 1–28.

    Article  PubMed  CAS  Google Scholar 

  53. Martiney JA, Cerami A, Slater AF. Verapamil reversal of chloroquine resistance in the malaria parasite Plasmodium falciparum is specific for resistant parasites and independent of the weak base effect. J Biol Chem 1995; 270: 22393–22398.

    Article  PubMed  CAS  Google Scholar 

  54. Bayoumi RA, Babiker HA, Arnot DE. Uptake and efflux of chloroquine by chloroquineresistant Plasmodium falciparum clones recently isolated in Africa. Acta Tropica 1994; 58: 141–149.

    Article  PubMed  CAS  Google Scholar 

  55. Walter RD, Seth M, Bhaduri AP. Reversal of chloroquine resistance in Plasmodium falciparum by CDR 87/209 and analogues. Trop Med Parasitol 1993; 44: 5–8.

    PubMed  CAS  Google Scholar 

  56. Riordan JR, Deuchars K, Kartner N, Alon N, Trent J, Ling V. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 1985; 316: 817–819.

    Article  PubMed  CAS  Google Scholar 

  57. Riffkin CD, Chung R, Wall DM, Zalcberg JR, Cowman AF, Foley M, et al. Modulation of the function of human MDR1 P-glycoprotein by the antimalarial drug mefloquine. Biochem Pharmacol 1996; 52: 1545–1552.

    Article  PubMed  CAS  Google Scholar 

  58. Foote SJ, Thompson JK, Cowman AF, Kemp DJ. Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell 1989; 57: 921–930.

    Article  PubMed  CAS  Google Scholar 

  59. Wilson CM, Serrano AE, Wasley A, Bogenschutz MP, Shankar AH, Wirth DF. Amplification of a gene related to mammalian mdr genes in drug-resistant. Plasmodium falciparum Science 1989; 244: 1184–1186.

    Article  PubMed  CAS  Google Scholar 

  60. Rubio JP, Cowman AF. Plasmodium falciparum: the pfmdr2 protein is not overexpressed in chloroquine-resistant isolates of the malaria parasite. Exp Parasitol 1994; 79: 137–147.

    Article  PubMed  CAS  Google Scholar 

  61. Zalis MG, Wilson CM, Zhang Y, Wirth DF. Characterization of the pfmdr2 gene for Plasmodium falciparum. Mol Biochem Parasitol 1994; 63: 311.

    Article  PubMed  CAS  Google Scholar 

  62. Cowman AF, Karcz S, Galatis D, Culvenor JG. A P-glycoprotein homologue of Plasmodium falciparum is localized on the digestive vacuole. J Cell Biol 1991; 113: 1033–1042.

    Article  PubMed  CAS  Google Scholar 

  63. Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K, Kemp DJ, et al. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 1990; 345: 255–258.

    Article  PubMed  CAS  Google Scholar 

  64. Ekong RM, Robson KJ, Baker DA, and Warhurst DC. Transcripts of the multidrug resistance genes in chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. Parasitology 1993; 106: 107–115.

    Article  PubMed  CAS  Google Scholar 

  65. Cowman AF, Galatis D, Thompson JK. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfindrl gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci USA 1994; 91: 1143–1147.

    Article  PubMed  CAS  Google Scholar 

  66. Barnes DA, Foote SJ, Galatis D, Kemp DJ, Cowman AF. Selection for high-level chloroquine resistance results in deamplification of the pfmdrl gene and increased sensitivity to mefloquine in Plasmodium falciparum. Embo J 1992; 11: 3067–3075.

    PubMed  CAS  Google Scholar 

  67. Peel SA, Bright P, Yount B, Handy J, Bark RS. A strong association between mefloquine and halofantrine resistance and amplification, overexpression, and mutation in the P-glycoprotein gene homolog (pfmdr) of Plasmodium falciparum in vitro. Am J Trop Med Hyg 1994; 51: 648–658.

    PubMed  CAS  Google Scholar 

  68. von Seidlein L, Duraisingh MT, Drakeley CJ, Bailey R, Greenwood BM, Pinder M. Polymorphism of the Pfmdrl gene and chloroquine resistance in Plasmodium falciparum in The Gambia. Trans R Soc Trop Med Hyg 1997; 91: 450–453.

    Article  Google Scholar 

  69. Grobusch MP, Adagu IS, Kremsner PG, Warhurst DC. Plasmodium falciparum: in vitro chloroquine susceptibility and allele-specific PCR detection of Pfmdrl Asn86Tyr polymorphism in Lambarene, Gabon. Parasitology 1998; 116: 211–217.

    Article  PubMed  CAS  Google Scholar 

  70. Gómez-Saladin E, Fryauff DJ, Taylor WR, Laksana BS. Susanti AI, Purnomo, et al. Plasmodium falciparum mdrl mutations and in vivo chloroquine resistance in Indonesia. Am J Trop Med Hyg 1999; 61: 240–244.

    PubMed  Google Scholar 

  71. Duraisingh MT, Drakeley CJ, Muller O, Bailey R, Snounou G, Targett GA, et al. Evidence for selection for the tyrosine-86 allele of the pfmdr 1 gene of Plasmodium falciparum by chloroquine and amodiaquine. Parasitology 1997; 114: 205–4211.

    Article  PubMed  CAS  Google Scholar 

  72. Basco LK, Ringwald, P. Molecular epidemiology of malaria in Yaoundé, Cameroon. III. Analysis of chloroquine resistance and point mutations in the multidrug resistance 1 (pfmdr 1) gene of Plasmodium falciparum. Am J Trop Med Hyg 1998; 59: 577–581.

    PubMed  CAS  Google Scholar 

  73. Basco LK, Ringwald, P. pfmdrl gene mutation and clinical response to chloroquine in Yaoundé, Cameroon. Trans R Soc Trop Med Hyg 1997; 91: 210–211.

    CAS  Google Scholar 

  74. Basco LK, de Pecoulas PE, Le Bras J, Wilson CM. Plasmodium falciparum: molecular characterization of multidrug-resistant Cambodian isolates. Exp Parasitol 1996; 82: 97–103.

    Article  PubMed  CAS  Google Scholar 

  75. Basco LK, Le Bras J, Rhoades Z, Wilson CM. Analysis of pfmdrl and drug susceptibility in fresh isolates of Plasmodium falciparum from subsaharan Africa. Mol Biochem Parasitol 1995; 74: 157–166.

    Article  PubMed  CAS  Google Scholar 

  76. Awad-el-Kariem FM, Miles MA, Warhurst DC. Chloroquine-resistant Plasmodium falciparum isolates from the Sudan lack two mutations in the pfmdrl gene thought to be associated with chloroquine resistance. Trans R Soc Trop Med Hyg 1992; 86: 587–589.

    Article  PubMed  CAS  Google Scholar 

  77. Chaiyaroj SC, Buranakiti A, Angkasekwinai P, Looressuwan S, Cowman AF. Analysis of mefloquine resistance and amplification of pfmdrl in multidrug-resistant Plasmodium falciparum isolates from Thailand. Am J Trop Med Hyg 1999; 61: 780–783.

    PubMed  CAS  Google Scholar 

  78. van Es HH, Karcz S, Chu F, Cowman AF, Vidal S, Gros P, et al. Expression of the plasmodial pfmdrl gene in mammalian cells is associated with increased susceptibility to chloroquine. Mol Cell Biol 1994; 14: 2419–2428.

    Article  PubMed  Google Scholar 

  79. van Es HH, Renkema, H. Aerts H, Schurr E. Enhanced lysosomal acidification leads to increased chloroquine accumulation in CHO cells expressing the pfmdrl gene. Mol Biochem Parasitol 1994; 68: 209–219.

    Article  PubMed  Google Scholar 

  80. Barasch J, Kiss B, Prince A, Saiman L, Gruenert D, al-Awqati Q. Defective acidification of intracellular organelles in cystic fibrosis. Nature 1991; 352: 70–73.

    Article  PubMed  CAS  Google Scholar 

  81. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF. Pghl modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 2000; 403: 906–999.

    Article  PubMed  CAS  Google Scholar 

  82. Wellems TE, Walker-Jonah A, Panton LJ. Genetic mapping of the chloroquine-resistance locus on Plasmodium falciparum chromosome. 7 Proc Natl Acad Sci USA 1991; 88: 3382–3386.

    Article  CAS  Google Scholar 

  83. Su X, Ferdig MT, Huang Y, Huynh CQ, Liu A, You J, et al. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 1999; 286: 1351–1353.

    Article  PubMed  CAS  Google Scholar 

  84. Durand R, Gabbett E, Di Piazza JP, Delabre JF, Le Bras J. Analysis of kappa and omega repeats of the cg2 gene and chloroquine susceptibility in isolates of Plasmodium falciparum from sub-Saharan Africa. Mol Biochem Parasitol 1999; 101: 185–197.

    Article  PubMed  CAS  Google Scholar 

  85. Basco LK, Ringwald, P. Chloroquine resistance in Plasmodium falciparum and polymorphism of the CG2 gene. J Infect Dis 1999; 180: 1979–1986.

    Article  PubMed  CAS  Google Scholar 

  86. Basco LK, Ringwald, P. Molecular epidemiology of malaria in Yaounde, Cameroon V. Analysis of the omega repetitive region of the Plasmodium falciparum CG2 gene and chloroquine resistance. Am J Trop Med Hyg 1999; 61: 807–813.

    PubMed  CAS  Google Scholar 

  87. Adagu IS, Warhurst DC. Association of cg2 and pfmdrl genotype with chloroquine resistance in field samples of Plasmodium falciparum from Nigeria. Parasitol 1999; 119: 343–348.

    Article  CAS  Google Scholar 

  88. Fidock D, Nomura T, Cooper R, Su X, Talley A, Wellems TE. Allelic modifications of the cg2 and cg 1 genes do not alter the chloroquine response of drug-resistant Plasmodium falciparum. Mol Biochem Parasitol, 2000;110(1)1–10.

    Article  PubMed  CAS  Google Scholar 

  89. Djimde A, Doumbo, O, Kayentao K, Duombo S, Diourte Y, Coulibaly D, et al. In vivo chloroquine responses and pfcrt polymorphisms in Bandiagara, Mali. Am J Trop Med Hyg 1999; 61 (Supp): 335–336.

    Google Scholar 

  90. Bjorkman, A. and Phillips-Howard PA. The epidemiology of drug-resistant malaria. Trans R Soc Trop Med Hyg 1990; 84: 177–180.

    Article  PubMed  CAS  Google Scholar 

  91. Geary TG, Divo AA, Jensen JB. Activity of quinoline-containing antimalarials against chloroquine-sensitive and -resistant strains of Plasmodium falciparum in vitro. Trans R Soc Trop Med Hyg 1987; 81: 499–503.

    Article  PubMed  CAS  Google Scholar 

  92. Scott HV, Tan WL, Barlin GB. Antimalarial activity of Mannich bases derived from 4(7’-bromo-1’,5’-naphthyridin-4’-ylamino)phenol and 4-(7’-trifluoromethylquinolin-4’ylamino)phenol against Plasmodium falciparum in vitro. Ann Trop Med Parasitol 1987; 81: 85–93.

    PubMed  CAS  Google Scholar 

  93. Geary TG, Jensen JB. Lack of cross-resistance to 4-aminoquinolines in chloroquineresistant Plasmodium falciparum in vitro. J Parasitol 1983; 69: 97–105.

    Article  PubMed  CAS  Google Scholar 

  94. iaro P, Nevill C, LeBras J, Ringwald P, Mussano P, Garner P, et al. Systematic review of amodiaquine treatment in uncomplicated malaria. Lancet 1996; 348: 1196–1201.

    Article  PubMed  CAS  Google Scholar 

  95. Bray PG, Hawley SR, Mungthin M, and Ward SA. Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum. Mol Pharmacol 1996; 50: 1559–1566.

    PubMed  CAS  Google Scholar 

  96. De D, Krogstad FM, Cogswell FB, Krogstad DJ. Aminoquinolines that circumvent resistance in Plasmodium falciparum in vitro. Am J Trop Med Hyg 1996; 55 (6): 579–583.

    PubMed  CAS  Google Scholar 

  97. Ridley RG, Hofheinz W, Matile H, Jaquet C, Dorn A, Masciadri R, et al. 4-Aminoquinoline analogs of chloroquine with shortened side chains retain activity against chloroquineresistant Plasmodium falciparum. Antimicrob Agents Chemother 1996; 40: 1846–1854.

    PubMed  CAS  Google Scholar 

  98. Watt G, Shanks GD. Reversal of chloroquine-resistant falciparum malaria. Lancet 1990; 335: 1155.

    Article  PubMed  CAS  Google Scholar 

  99. Bjorkman A, Willcox M, Kihamia CM, Mahikwano LF, Howard PA, Hakansson A, et al. Field study of cyproheptadine/chloroquine synergism in falciparum malaria. Lancet 1990; 336: 59–60.

    Article  PubMed  CAS  Google Scholar 

  100. Warsame M, Wernsdorfer WH, Bjorkman A. Lack of effect of desipramine on the response to chloroquine of patients with chloroquine-resistant falciparum malaria. Trans R Soc Trop Med Hyg 1992; 86: 235–236.

    Article  PubMed  CAS  Google Scholar 

  101. Boulter MK, Bray PG, Howells RE, Ward SA. The potential of desipramine to reverse chloroquine resistance of Plasmodium falciparum is reduced by its binding to plasma protein. Trans R Soc Trop Med Hyg 1993; 87: 303.

    Article  PubMed  CAS  Google Scholar 

  102. Kyle DE, Milhous WK, Rossan RN. Reversal of Plasmodium falciparum resistance to chloroquine in Panamanian Aotus monkeys. Am J Trop Med Hyg 1993; 48: 126–133.

    PubMed  CAS  Google Scholar 

  103. Sowunmi A, Walker O, Salako LA. Pruritus and antimalarial drugs in Africans. Lancet 1989; 2: 213.

    Article  PubMed  CAS  Google Scholar 

  104. Sowunmi A, Oduola AM, Ogundahunsi OA, Falade CO, Gbotosho GO, Salako LA. Enhanced efficacy of chloroquine-chlorpheniramine combination in acute uncomplicated falciparum malaria in children. Trans R Soc Trop Med Hyg 1997; 91: 63–67.

    Article  PubMed  CAS  Google Scholar 

  105. Sowunmi A, Oduola AM. Comparative efficacy of chloroquine/chlorpheniramine combination and mefloquine for the treatment of chloroquine-resistant Plasmodium falciparum malaria in Nigerian children. Trans R Soc Trop Med Hyg 1997; 91: 689–693.

    Article  PubMed  CAS  Google Scholar 

  106. Sowunmi A, Oduola AM, Ogundahunsi OA, Salako LA. Enhancement of the antimalarial effect of chloroquine by chloropheniramine in vivo. Trop Med Int Health 1998; 3: 177–183.

    Article  PubMed  CAS  Google Scholar 

  107. Sowunmi A, Oduola AM, Ogundahunsi OA, Salako LA. Comparative efficacy of chloroquine plus chlorpheniramine and pyrimethamine/sulfadoxine in acute uncomplicated falciparum malaria in Nigerian children. Trans R Soc Trop Med Hyg 1998; 92: 77–81.

    Article  PubMed  CAS  Google Scholar 

  108. Sowunmi A, Fehintola FA, Ogundahunsi OA, Oduola AM. Comparative efficacy of chloroquine plus chlorpheniramine and halofantrine in acute uncomplicated falciparum malaria in Nigerian children. Trans R Soc Trop Med Hyg 1998; 92: 441–445.

    Article  PubMed  CAS  Google Scholar 

  109. Okonkwo CA, Coker HA, Agomo PU, Ogunbanwo JA, Mafe AG, Agomo CO, et al. Effect of chlorpheniramine on the pharmacokinetics of and response to chloroquine of Nigerian children with falciparum malaria. Trans R Soc Trop Med Hyg 1999; 93: 306–311.

    Article  PubMed  CAS  Google Scholar 

  110. Nosten F, ter Kuile F, Chongsuphajaisiddhi T, Luxemburger C, Webster HK, Edstein M, et al. Mefloquine-resistant falciparum malaria on the Thai-Burmese border. Lancet 1991; 337: 1140–1143.

    Article  PubMed  CAS  Google Scholar 

  111. Fontanet AL, Johnston DB, Walker AM, Rooney W, Thimasarn K, Sturchler D, et al. High prevalence of mefloquine-resistant falciparum malaria in eastern Thailand. Bull WHO 1993; 71: 377–383.

    PubMed  CAS  Google Scholar 

  112. Bjorkman A, Phillips-Howard PA. Drug-resistant malaria: mechanisms of development and inferences for malaria control. Trans R Soc Trop Med Hyg 1990; 84: 323–324.

    Article  PubMed  CAS  Google Scholar 

  113. Giboda M, Denis MB. Response of Kampuchean strains of Plasmodium falciparum to antimalarials: in-vivo assessment of quinine and quinine plus tetracycline; multiple drug resistance in vitro. J Trop Med Hyg 1988; 91: 205–211.

    PubMed  CAS  Google Scholar 

  114. Oduola AM, Sowunmi A, Milhous WK, Kyle DE, Martin RK, Walker O, et al. Innate resistance to new antimalarial drugs in Plasmodium falciparum from Nigeria. Trans R Soc Trop Med Hyg 1992; 86: 123–126.

    Article  PubMed  CAS  Google Scholar 

  115. Brasseur P, Kouamouo J, Moyou-Somo R, Druilhe P. Multi-drug resistant falciparum malaria in Cameroon in 1987–1988. II. Mefloquine resistance confirmed in vivo and in vitro and its correlation with quinine resistance. Am J Trop Med Hyg 1992; 46: 8–14.

    PubMed  CAS  Google Scholar 

  116. Zalis MG, Pang L, Silveira MS, Milhous WK, Wirth DF. Characterization of Plasmodium falciparum isolated from the Amazon region of Brazil: evidence for quinine resistance. Am J Trop Med Hyg 1998; 58: 630–637.

    PubMed  CAS  Google Scholar 

  117. Price RN, Cassar C, Brockman A, Duraisingh M, van Vugt M, White NJ, et al. The pfmdrl gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the western border of Thailand. Antimicrob Agents Chemother 1999; 43: 2943–2949.

    PubMed  CAS  Google Scholar 

  118. Lim AS, Galatis D, Cowman AF. Plasmodium falciparum: amplification and over-expression of pfmdrl is not necessary for increased mefloquine resistance. Exp Parasitol 1996; 83: 295–303.

    Article  PubMed  CAS  Google Scholar 

  119. Ritchie GY, Mungthin M, Green JE, Bray PG, Hawley SR, Ward SA. In vitro selection of halofantrine resistance in Plasmodium falciparum is not associated with increased expression of Pghl. Mol Biochem Parasitol 1996; 83: 35–46.

    Article  PubMed  CAS  Google Scholar 

  120. Peters W, Robinson BL. The chemotherapy of rodent malaria. XLVI. Reversal of mefloquine resistance in rodent Plasmodium. Ann Trop Med Parasitol 1991; 85: 5–10.

    PubMed  CAS  Google Scholar 

  121. Oduola AM, Omitowoju GO, Gerena L, Kyle DE, Milhous WK. Sowunmi A, et al. Reversal of mefloquine resistance with penfluridol in isolates of Plasmodium falciparum from south-west Nigeria. Trans R Soc Trop Med Hyg 1993; 87: 81–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dorsey, G., Fidock, D.A., Wellems, T.E., Rosenthal, P.J. (2001). Mechanisms of Quinoline Resistance. In: Rosenthal, P.J. (eds) Antimalarial Chemotherapy. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-111-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-111-4_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-124-0

  • Online ISBN: 978-1-59259-111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics