Skip to main content

HIV Gene Products as Manipulators of the Immune System

  • Chapter
  • 152 Accesses

Part of the book series: Infectious Disease ((ID))

Abstract

The spread of human immunodeficiency virus (HIV) in the body depends on its fitness to replicate and on its ability to escape immune defenses. The viral proteins Nef, Tat, and Env, best known for their direct effects on the viral life cycle, are also crucially engaged in manipulating various components of the immune system, both to prepare the ground for viral propagation and to facilitate immune evasion. This chapter reviews these lesser known functions of the three HIV gene products, which govern fascinating interactions between the virus and its host.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford MM, Hooker DJ, et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 1995; 270: 988–91.

    Article  PubMed  CAS  Google Scholar 

  2. Kestler H, Ringler D, Mori K, Panicali D, Desrosiers R. Importance of the nef gene for maintainance of high viral loads and for development of AIDS. Cell 1991; 65: 651–62.

    Article  PubMed  CAS  Google Scholar 

  3. Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC. Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection [see comments]. N Engl J Med 1995; 332: 228–32.

    Article  PubMed  CAS  Google Scholar 

  4. Lama J, Mangasavian A, Trono D. Cell surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef-and V pu-inhibitable manner. Curr Biol 1999; 9: 622–31.

    Article  PubMed  CAS  Google Scholar 

  5. Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 1998; 391: 397–401.

    Article  PubMed  CAS  Google Scholar 

  6. Benson RE, Sanfridson A, Ottinger JS, Doyle C, Cullen BR. Downregulation of cell-surface CD4 expression by simian immunodeficiency virus Nef prevents viral super infection. J Exp Med 1993; 177: 1561–6.

    Article  PubMed  CAS  Google Scholar 

  7. Mariani R, Skowronski J. CD4 down-regulation by nef alleles isolated from human immunodeficiency virus type 1-infected individuals. Proc Natl Acad Sci USA 1993; 90: 5549–53.

    Article  PubMed  CAS  Google Scholar 

  8. Aiken C, Konner J, Landau NR, Lenburg ME, Trono D. Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell 1994; 76: 853–64.

    Article  PubMed  CAS  Google Scholar 

  9. Mangasarian A, Foti M, Aiken C, Chin D, Carpentier JL, Trono D. The HIV-1 Nef protein acts as a connector with sorting pathways in the Golgi and at the plasma membrane. Immunity 1997; 6: 67–77.

    Article  PubMed  CAS  Google Scholar 

  10. Piguet V, Chen Y-L, Mangasarian A, Foti M, Carpentier J, Trono D. Mechanism of Nef induced CD4 endocytosis: Nef connects CD4 with the µ chain of adaptor complexes. EMBO J 1998; 17: 2472–81.

    Article  CAS  Google Scholar 

  11. Grzesiek S, Stahl SJ, Wingfield PT, Bax A. The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR. Biochemistry 1996; 35: 10256–61.

    Article  PubMed  CAS  Google Scholar 

  12. Rossi F, Gallina A, Milanesi G. Nef-CD4 physical interaction sensed with the yeast two-hybrid system. Virology 1996; 217: 397–403.

    Article  PubMed  CAS  Google Scholar 

  13. Foti M, Mangasarian A, Piguet V, Lew D, Krause K, Trono D, Carpentier J. Nef-mediated clathrin coated pit formation. J Cell Biol 1997; 139: 37–47.

    Article  PubMed  CAS  Google Scholar 

  14. Le Gall S, Erdtmann L, Benichou S, Berlioz-Torrent C, Liu L, Benarous R, et al. Nef interacts with the subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 1998; 8: 483–95.

    Article  PubMed  Google Scholar 

  15. Bresnahan PA, Yonemoto W, Ferrell S, Williams-Herman D, Geleziunas R, Greene WC. A dileucine motif in HIV-1 Nef acts as an internalization signal for CD4 downregulation and binds the AP-1 clathrin adaptor. Curr Biol 1998; 8: 1235–8.

    Article  PubMed  CAS  Google Scholar 

  16. Craig HM, Pandori MW, Guatelli JC. Interaction of HIV-1 nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity. Proc Natl Acad Sci USA 1998; 95: 11229–34.

    Article  PubMed  CAS  Google Scholar 

  17. Greenberg M, DeTulleo L, Rapoport I, Skowronski J, Kirchhausen T. A dileucine motif in HIV-1 Nef is essential for sorting into clathrin-coated pits and for downregulation of CD4. Curr Biol 1998a; 8: 1239–42.

    Article  PubMed  CAS  Google Scholar 

  18. Kerkau T, Schmitt-Landgraf R, Schimpl A, Wecker E. Downregulation of HLA class I antigens in HIV-1 infected cells. AIDS Res Hum Retroviruses 1989; 5: 613–20.

    Article  PubMed  CAS  Google Scholar 

  19. Pearse B, Robinson M. Clathrin, adaptors, and sorting. Annu Rev Cell Biol 1990; 6: 151–71.

    Article  PubMed  CAS  Google Scholar 

  20. Cowles C, Odorizzi G, Payne G, Emrd SD. The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 1997; 91: 109–18.

    Article  PubMed  CAS  Google Scholar 

  21. Pelchen-Matthews A, Parsons I, Marsh M. Phorbol ester-induced downregulation of CD4 is a multistep process involving dissociation from p561ck, increased association with clathrincoated pits and and altered endosomal sorting. J Exp Med 1993; 178: 1209–22.

    Article  PubMed  CAS  Google Scholar 

  22. Benichou S, Bomsel M, Bodéus M, Durand H, Douté M, Letourneur F, et al. Physical interaction of the HIV-1 Nef protein with beta-COP, a component of non-clathrin-coated vesicles essential for membrane traffic. J Biol Chem 1994; 269: 30073–6.

    PubMed  CAS  Google Scholar 

  23. Piguet V, Gu F, Foti M, Demaurex M, Gruenberg J, Carpentier J-L, Trono D. Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of I3-COP in endosomes. Cell 1999; 97: 63–73.

    Article  PubMed  CAS  Google Scholar 

  24. Scheppler J, Nicholson J, Swan D, Ahmed-Ansari A, McDougal J. Downmodulation of MHC-I in a CD4+ cell line, CEM-E5 after HIV-1 infection. J Immunol 1989; 143: 2858.

    Google Scholar 

  25. Schwartz O, Maréchal V, Le Gall S, Lemonnier F, Heard JM. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 1996; 2: 338–42.

    Article  PubMed  CAS  Google Scholar 

  26. Greenberg ME, Iafrate AJ, Skowronski J. The SH3 domain-binding surface and an acidic motif in HIV-1 Nef regulate trafficking of class I MHC complexes. EMBO J 1998b; 17: 2777–89.

    Article  CAS  Google Scholar 

  27. Mangasarian A, Piguet V, Wang J-K, Chen Y-L, Trono D. Nef-induced CD4 and MHC-I down-regulation are governed by distinct determinants: N-terminal alpha helix and proline repeat selectively regulate MHC-I Trafficking. J Virol 1999; 73: 1964–73.

    PubMed  CAS  Google Scholar 

  28. Hanna Z, Kay DG, Rebai N, Guimond A, Jothy S, Jolicoeur P. Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 1998; 95: 163–75.

    Article  PubMed  CAS  Google Scholar 

  29. Brady HI, Pennington DJ, Miles CG, Dzierzak EA. CD4 cell surface downregulation in HIV-1 Nef transgenic mice is a consequence of intracellular sequestration. EMBO J 1993; 12: 4923–32.

    CAS  Google Scholar 

  30. Lindemann D, Wilhelm R, Renard P, Althage A, Zinkernagel R, Mous J. Severe immunodeficiency associated with a human immunodeficiency virus 1 NEF/3’-long terminal repeat trans-gene. J Exp Med 1994; 179: 797–807.

    Article  PubMed  CAS  Google Scholar 

  31. Skowronski J, Parks D, Mariani R. Altered T cell activation and development in transgenic mice expressing the HIV-1 nef gene. EMBO J 1993; 12: 703–13.

    CAS  Google Scholar 

  32. Baur AS, Sawai ET, Dazin P, Fantl WJ, Cheng MC, Peterlin BM. HIV-1 Nef leads to inhibition or activation of T cells depending on its intracellular localization. Immunity 1994; 1: 373–84.

    Article  PubMed  CAS  Google Scholar 

  33. Alexander L, Du Z, Rosenzweig M, Jung JU, Desrosiers RC. A role for natural simian immunodeficiency virus and human immunodeficiency virus type 1 nef alleles in lymphocyte activation. J Virol 1997; 71: 6094–9.

    PubMed  CAS  Google Scholar 

  34. Du Z, Lang SM, Sasseville VG, Lackner AA, Ilyinskii PO, Daniel MD, et al. Identification of a nef allele that causes lymphocyte activation and acute disease in macaque monkeys. Cell 1995; 82: 665–74.

    Article  PubMed  CAS  Google Scholar 

  35. Bandres JC, Luria S, Ratner L. Regulation of human immunodeficiency virus Nef protein by phosphorylation. Virology 1994; 201: 157–61.

    Article  PubMed  CAS  Google Scholar 

  36. Carreer R, Groux H, Ameisen JC, Capron A. Role of HIV-1 Nef expression in activation pathways in CD4+ T cells. AIDS Res Hum Retrovir 1994; 10: 523–7.

    Article  PubMed  CAS  Google Scholar 

  37. Collette Y. Towards a consensus for a role of Nef in both viral replication and immunomodulation? Res Virol 1997; 148: 23–30.

    Article  PubMed  CAS  Google Scholar 

  38. Collette Y, Chang HL, Cerdan C, Chambost H, Algarte M, Mawas C, et al. Specific Thl cytokine down-regulation associated with primary clinically derived human immunodeficiency virus type 1 Nef gene-induced expression. J Immunol 1996; 156: 360–70.

    PubMed  CAS  Google Scholar 

  39. Collette Y, Dutartre H, Benziane A, Romas M, Benarous R, Harris M, Olive D. Physical and functional interaction of Nef with Lck. HIV-1 Nef-induced T-cell signaling defects. J Biol Chem 1996; 271: 6333–41.

    Article  PubMed  CAS  Google Scholar 

  40. Greenway A, Azad A, McPhee D. Human immunodeficiency virus type 1 Nef protein inhibits activation pathways in peripheral blood mononuclear cells and T-cell lines. J Virol 1995; 69: 1842–50.

    PubMed  CAS  Google Scholar 

  41. Iafrate AJ, Bronson S, Skowronski J. Separable functions of Nef disrupt two aspects of T cell receptor machinery: CD4 expression and CD3 signaling. EMBO J 1997; 16: 673–84.

    CAS  Google Scholar 

  42. Niederman TM, Hastings WR, Luria S, Bandres JC, Ratner L. HIV-1 Nef protein inhibits the recruitment of AP-1 DNA-binding activity in human T-cells. Virology 1993; 194: 338–44.

    Article  PubMed  CAS  Google Scholar 

  43. Niedermann T, Garcia J, Hastings W, Luria S, Ratner L. Human immunodeficiency virus type 1 Nef protein inhibits NF-KB induction in human T-cells. J Virol 1992; 66: 6213–9.

    Google Scholar 

  44. Wang J-K, Kiyokawa E, Verdin E, Trono D. The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc Natl Acad Sci USA 2000; 97: 394–9.

    Article  PubMed  CAS  Google Scholar 

  45. Lee CH, Leung B, Lemmon MA, Zheng J, Cowburn D, Kuriyan J, Saksela K. A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein. EMBO J 1995; 14: 5006–15.

    CAS  Google Scholar 

  46. Lee CH, Saksela K, Mirza UA, Chait BT, Kuriyan J. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell 1996; 85: 931–42.

    Article  PubMed  CAS  Google Scholar 

  47. Saksela K, Cheng G, Baltimore D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J 1995; 14: 484–91.

    CAS  Google Scholar 

  48. Baur AS, Sass G, Laffert B, Willbold D, Cheng-Mayer C, Peterlin BM. The N-terminus of Nef from HIV-1/SIV associates with a protein complex containing Lck and a serine kinase. Immunity 1997; 6: 283–91.

    Article  PubMed  CAS  Google Scholar 

  49. Rhee SS, Marsh JW. Human immunodeficiency virus type 1 Nef-induced down-modulation of CD4 is due to rapid internalization and degradation of surface CD4. J Virol 1994; 68: 5156–63.

    PubMed  CAS  Google Scholar 

  50. Lu X, Wu X, Plemenitas A, Yu H, Sawai ET, Abo A, Peterlin BM. CDC42 and Racl are implicated in the activation of the Nef-associated kinase and replication of HIV-1. Curr Biol 1996; 6: 1677–84.

    Article  PubMed  CAS  Google Scholar 

  51. Nunn MF, Marsh JW. Human immunodeficiency virus type 1 Nef associates with a member of the p21-activated kinase family. J Virol 1996; 70: 6157–61.

    PubMed  CAS  Google Scholar 

  52. Sawai ET, Baur A, Struble H, Peterlin BM, Levy JA, Cheng MC. Human immunodeficiency virus type 1 Nef associates with a cellular serine kinase in T lymphocytes. Proc Natl Acad Sci USA 1994; 91: 1539–43.

    Article  PubMed  CAS  Google Scholar 

  53. Sawai ET, Baur AS, Peterlin BM, Levy JA, Cheng MC. A conserved domain and membrane targeting of Nef from HIV and SIV are required for association with a cellular serine kinase activity. J Biol Chem 1995; 270: 15307–14.

    Article  PubMed  CAS  Google Scholar 

  54. Smith BL, Krushelnycky BW, Mochly RD, Berg P. The HIV nef protein associates with protein kinase C theta. J Biol Chem 1996; 271: 16753–7.

    Article  PubMed  CAS  Google Scholar 

  55. Graziosi C, Pantaleo G, Fauci AS. Comparative analysis of constitutive cytokine expression in peripheral blood and lymph nodes of HIV-infected individuals. Res Immunol 1994; 145: 602–5.

    Article  PubMed  CAS  Google Scholar 

  56. Kinter AL, Poli G, Fox L, Hardy E, Fauci AS. HIV replication in IL-2-stimulateed peripheral blood mononuclear cells is driven in an autocrine/paracrine manner by endogenous cytokines. J Immunol 1995; 154: 2448–59.

    PubMed  CAS  Google Scholar 

  57. Cullen BR. HIV-1 auxiliary proteins: making connections in a dying cell. Cell 1998; 93: 685–92.

    Article  PubMed  CAS  Google Scholar 

  58. Frankel AD, Young JA. HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 1998; 67: 1–25.

    Article  PubMed  CAS  Google Scholar 

  59. Wei P, Garber ME, Fang SM, Fischer WH, Jones KA. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 1998; 92: 451–62.

    Article  PubMed  CAS  Google Scholar 

  60. Chang HC, Samaniego F, Nair BC, Buonaguro L, Ensoli B. HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS 1997; 11: 1421–31.

    Article  PubMed  CAS  Google Scholar 

  61. Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 1993; 67: 277–87.

    PubMed  CAS  Google Scholar 

  62. Lafrenie RM, Wahl LM, Epstein JS, Hewlett IK, Yamada KM, Dhawan S. HIV-1-Tat protein promotes chemotaxis and invasive behavior by monocytes. J Immunol 1996; 157: 974–7.

    PubMed  CAS  Google Scholar 

  63. Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 1995; 375: 497–500.

    Article  PubMed  CAS  Google Scholar 

  64. Wu MX, Schlossman SF. Decreased ability of HIV-1 tat protein-treated accessory cells to organize cellular clusters is associated with partial activation of T cells. Proc Natl Acad Sci USA 1997; 94: 13832–7.

    Article  PubMed  CAS  Google Scholar 

  65. Baggiolini M, Dewald B, Moser B. Human chemokines: an update. Annu Rev Immunol 1997; 15: 675–705.

    Article  PubMed  CAS  Google Scholar 

  66. Albin A, Benelli R, Giunciuglio D, Cai T, Mariani G, Ferrini S, Noonan DM. Identification of a novel domain of HIV tat involved in monocyte chemotaxis. J Biol Chem 1998; 273: 15895–900.

    Article  Google Scholar 

  67. Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, et al. HIV-1 tat protein mimicry of chemokines. Proc Natl Acad Sci USA 1998; 95: 13153–8.

    Article  PubMed  CAS  Google Scholar 

  68. Benelli R, Mortarini R, Anichini A, Giunciuglio D, Noonan DM, Montalti S, et al. Monocyte-derived dendritic cells and monocytes migrate to HIV-Tat RGD and basic peptides. AIDS 1998; 12: 261–8.

    Article  PubMed  CAS  Google Scholar 

  69. Barillari G, Gendelman R, Gallo RC, Ensoli B. The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci USA 1993; 90: 7941–5.

    Article  PubMed  CAS  Google Scholar 

  70. Ensoli B, Gendelman R, Markham P, Fiorelli V, Colombini S, Raffeld M, et al. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi’s sarcoma. Nature 1994; 371: 674–80.

    Article  PubMed  CAS  Google Scholar 

  71. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P et al. Viral dynamics in human immunodeficiency virus type 1 infection [see comments]. Nature 1995; 373: 117–22.

    Article  PubMed  CAS  Google Scholar 

  72. Dimitrov DS, Martin MA. HIV results in the frame. CD4+ cell turnover. Nature 1995; 375:194–5; discussion 198.

    Google Scholar 

  73. Margolick JB, Donnenberg AD. T-cell homeostasis in HIV-1 infection. Semin Immunol 1997; 9: 381–8.

    Article  PubMed  CAS  Google Scholar 

  74. Mosier DE. HIV results in the frame. CD4+ cell turnover. Nature 1995; 375: 193–4.

    Article  PubMed  CAS  Google Scholar 

  75. Nowak MA, Bonhoeffer S, Loveday C, Balfe P, Semple M, Kaye S, et al. HIV results in the frame. Results confirmed [letter; comment]. Nature 1995; 375: 193.

    Article  PubMed  CAS  Google Scholar 

  76. Sprent J, Tough D. HIV results in the frame. CD4+ cell turnover. Nature 1995; 375: 194.

    Article  PubMed  CAS  Google Scholar 

  77. Huang L, Bosch I, Hofmann W, Sodroski J, Pardee AB. Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T-lymphotropic HIV-1 strains. J Virol 1998; 72: 8952–60.

    PubMed  CAS  Google Scholar 

  78. Li CJ, Ueda Y, Shi B, Borodyansky L, Huang L, Li YZ, Pardee AB. Tat protein induces self-perpetuating permissivity for productive HIV-1 infection. Proc Natl Acad Sci USA 1997; 94: 8116–20.

    Article  PubMed  CAS  Google Scholar 

  79. Littman DR. Chemokine receptors: keys to AIDS pathogenesis? Cell 1998; 93: 677–80.

    Article  PubMed  CAS  Google Scholar 

  80. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86: 367–77.

    Article  PubMed  CAS  Google Scholar 

  81. Paxton WA, Liu R, Kang S, Wu L, Gingeras TR, Landau NR, et al. Reduced HIV-1 infectability of CD4+ lymphocytes from exposed-uninfected individuals: association with low expression of CCR5 and high production of beta-chemokines. Virology 1998; 244: 66–73.

    Article  PubMed  CAS  Google Scholar 

  82. Alkhatib G, Combadiere C, Broder C, Feng Y, Kennedy P, Murphy P, Berger E. CC-CKR5: A RANTES, MIP- la, MIP- lb receptor as a fusion cofactor for macrophage tropic HIV. Science 1996; 272: 1955–8.

    Article  PubMed  CAS  Google Scholar 

  83. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, et al. Identification of a major co-receptor for primary isolates of HIV-l. Nature 1996; 381: 661–6.

    Article  PubMed  CAS  Google Scholar 

  84. Dragic T, Litvin V, Allaway G, Martin S, Huang Y, Nagashima K, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667–73.

    Article  PubMed  CAS  Google Scholar 

  85. Ott M, Emiliani S, Van Lint C, Herbein G, Lovett J, Chirmule N, et al. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science 1997; 275: 1481–5.

    Article  PubMed  CAS  Google Scholar 

  86. Harrer T, Harrer E, Kalams SA, Barbosa P, Trocha A, Johnson RP, et al. Cytotoxic T lymphocytes in asymptomatic long-term nonprogressing HIV-1 infection. Breadth and specificity of the response and relation to in vivo viral quasispecies in a person with prolonged infection and low viral load. J Immunol 1996; 156: 2616–23.

    PubMed  CAS  Google Scholar 

  87. Jassoy C, Harrer T, Rosenthal T, Navia BA, Worth J, Johnson RP, Walker BD. Human immunodeficiency virus type 1-specific cytotoxic T lymphocytes release gamma interferon, tumor necrosis factor alpha (TNF-alpha), and TNF-beta when they encounter their target antigens. J Virol 1993; 67: 2844–52.

    PubMed  CAS  Google Scholar 

  88. Rosenberg ES, Billingsley JM, Caliendo AM, Boswell SL, Sax PE, Kalams SA, Walker BD. Vigorous HIV-1 Specific CD4+ T-cell responses associated with control of viremia. Science 1997; 278: 1447–50.

    Article  PubMed  CAS  Google Scholar 

  89. Yang OO, Kalams SA, Trocha A, Cao H, Luster A, Johnson RP, Walker BD. Suppression of human immunodeficiency virus type I replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. J Virol 1997; 71: 3120–8.

    PubMed  CAS  Google Scholar 

  90. Fowlkes BJ, Pardoll DM. Molecular and cellular events of T cell development. Adv Imunol 1989; 44: 207–64.

    Article  CAS  Google Scholar 

  91. York I, Rock K. Antigen processing and presentation by the class I major histocompatibility complex. Annu Rev Imunol 1996; 14: 369–96.

    Article  CAS  Google Scholar 

  92. Guidotti L, Ishikawa T, Hobbs M, Matzke B, Schreiber R, Chisari F. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 1996; 4: 25–36.

    Article  PubMed  CAS  Google Scholar 

  93. Fruh K, Ahn K, Peterson P. Inhibition of MHC class I antigen presentation by viral proteins. J Mol Med 1997; 75: 18–27.

    Article  PubMed  CAS  Google Scholar 

  94. Wiertz E, Jones T, Son L, Bogyo M, Geuze H, Ploegh H. The human cytomegalovirus US 11 gene product dislocates MHC class I heavy chains from the ER to the cytosol. Cell 1996; 84: 769–79

    Article  PubMed  CAS  Google Scholar 

  95. Ahn K, Angulo A, Ghazal P, Peterson P, Yang Y, Fruh K. Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sci USA 1996; 93: 10990–5.

    Article  PubMed  CAS  Google Scholar 

  96. Jones R, Weirtz E, Sun L, Fish K, Nelson J, Ploegh H. Human cytomegalovirus US3 impairs and maturation of MHC-I heavy chains. Proc Natl Acad Sci USA 1996; 93: 11327–33.

    Article  PubMed  CAS  Google Scholar 

  97. Oritz-Navarette V, Hammerling G. Surface appearance and instability of empty H-2 class I molecules under physiological conditions. Proc Natl Acad Sci USA 1991; 88: 3594.

    Article  Google Scholar 

  98. Hoglund P, Sundback J, Olsson-Alheim M, Johansson M, Salcedo M, Ohlen C, et al. Host MHC-class I gene control of NK cell specificity in the mouse. Immunol Rev 1997; 155: 11–28.

    Article  PubMed  CAS  Google Scholar 

  99. Farrell H, Vally H, Lynch D, Fleming P, Shellam G, Scalzo A, Davis-Poynter N. Inhibition of natural killer cells by a cytomegalovirus MHC class I homolog in vivo. Nature 1997; 386: 510–4.

    Article  PubMed  CAS  Google Scholar 

  100. Reyburn H, Mandelbiom O, Vales-Gomez M, Davis D, Pazmany L, Strominger J. The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature 1997; 386: 514–7.

    Article  PubMed  CAS  Google Scholar 

  101. Zocchi MR, Rubartelli A, Morgavi P, Poggi A. HIV-1 Tat inhibits human natural killer cell function by blocking L-type calcium channels. J Immunol 1998; 161: 2938–43.

    PubMed  CAS  Google Scholar 

  102. Leibson PJ. Signal transduction during natural killer cell activation: inside the mind of a killer. Immunity 1997; 6: 655–61.

    Article  PubMed  CAS  Google Scholar 

  103. Huwyler T, Hirt A, Felix D, Morell A. Effect of cations and cation channel blockers on human natural killer cells. Int J Immunopharmacol 1985; 7: 573–6.

    Article  PubMed  CAS  Google Scholar 

  104. Solovera JJ, Alvarez-Mon M, Casas J, Carballido J, Durantez A. Inhibition of human natural killer (NK) activity by calcium channel modulators and a calmodulin antagonist. J Immunol 1987; 139: 876–80.

    PubMed  CAS  Google Scholar 

  105. Poggi A, Rubartelli A, Zocchi MR. Involvement of dihydropyridine-sensitive calcium channels in human dendritic cell function. Competition by HIV-1 Tat. J Biol Chem 1998; 273: 7205–9.

    Article  PubMed  CAS  Google Scholar 

  106. Gately MK, Renzetti LM, Magram J, Stern AS, Adorini L, Gubler U, Presky DH. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 1998; 16: 495–521.

    Article  PubMed  CAS  Google Scholar 

  107. Bofill M, Gombert W, Borthwick N, Akbar A, McLaughlin J, Lee C, et al. Presence of CD3+ CD8+ Bel- 2(low) lymphocytes undergoing apoptosis and activated macrophages in lymph nodes of HIV-1+ patients. Am J Pathol 1995; 146: 1542–55.

    PubMed  CAS  Google Scholar 

  108. Carbonari M, Cibati M, Pesce A, Sbarigia D, Grossi P, D’Offizi G, et al. Frequency of provirusbearing CD4+ cells in HIV type 1 infection correlates with extent of in vitro apoptosis of CD8+ but not of CD4+ cells. AIDS Res Hum Retroviruses 1995; 11: 789–94.

    Article  PubMed  CAS  Google Scholar 

  109. Gougeon M, Lecoeur H, Duliost A, Enouf M, Crouvoiser M, Goujard C, et al. Programmed cell death in peripheral lymphocytes from HIV-infected persons: increases susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and disease progression. J Immunol 1996; 156: 3509–20.

    PubMed  CAS  Google Scholar 

  110. Modlin R, Meyer P, Hofman F, Mehlmauer M, Levy N, Lukes R, et al. T-lymphocyte subsets in lymph nodes from homosexual men. JAMA 1983; 250: 1302–5.

    Article  PubMed  CAS  Google Scholar 

  111. Muro-Cacho C, Pantaleo G, Fauci A. Analysis of apoptosis in lymph nodes of HIV infected persons. Intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with the stage of disease or viral burden. J Immunol 1995; 154: 5555–66.

    PubMed  CAS  Google Scholar 

  112. Earl PL, Moss B, Doms RW. Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein. J Virol 1991; 65: 2047–55.

    PubMed  CAS  Google Scholar 

  113. Rowell JF, Stanhope PE, Siliciano RF. Endocytosis of endogenously synthesized HIV-1 envelope protein. Mechanism and role in processing for association with class II MHC. J Immunol 1995; 155: 473–88.

    PubMed  CAS  Google Scholar 

  114. Willey RL, Bonifacino JS, Potts BJ, Martin MA, Klausner RD. Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp 160. Proc Natl Acad Sci USA 1988; 85: 9580–4.

    Article  PubMed  CAS  Google Scholar 

  115. Herbein G, Mahlknecht U, Batliwalla F, Gregersen P, Pappas T, Butler J, et al. Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature 1998; 395:189–94.

    Article  CAS  Google Scholar 

  116. Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B, et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 1995; 83: 793–802.

    Article  PubMed  CAS  Google Scholar 

  117. Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 1995; 377: 348–51.

    Article  PubMed  CAS  Google Scholar 

  118. Connor RI, Ho DD. Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression. J Virol 1994; 68: 4400–8.

    PubMed  CAS  Google Scholar 

  119. Schuitemaker H, Koot M, Kootstra NA, Dercksen MW, de Goede RE, van Steenwijk RP, et al. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J Virol 1992; 66: 1354–60.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Mangasarian, A., Trono, D. (2001). HIV Gene Products as Manipulators of the Immune System. In: Pantaleo, G., Walker, B.D. (eds) Retroviral Immunology. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-110-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-110-7_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-128-8

  • Online ISBN: 978-1-59259-110-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics