Advertisement

Cytokines and Chemokines in HIV Infection

  • Guido Poli
Chapter
Part of the Infectious Disease book series (ID)

Abstract

Primary human immunodeficiency virus (HIV) infection is associated with a profound activation of the immune system resulting in strong cellular and humoral immune response within a few weeks from the moment of infection (1,2). At the clinical level this may be associated with a mononucleosis-like syndrome with lymph node enlargement and constitutional symptoms. Accordingly, several cytokines are upregulated and detectable during this initial stage of infection, usually enduring for a few weeks and stabilizing within a few months in the majority of individuals, a stage corresponding to a clinically asymptomatic phase. This second period spans several years and is associated with relatively stable levels of plasma-associated HIV RNA (viremia) and slow erosion of peripheral CD4+ T cell counts. Finally, in most individuals, opportunistic infections or tumors mark the transition to the acquired immune deficiency syndrome (AIDS) stage resulting in the death of the individual in the absence of potent antiviral agents (2). These three distinct although interconnected stages of disease have been substantially changed in recent years since the introduction of potent antiretroviral regimens known as highly aggressive antiretroviral therapy (HAART) based on combinations of protease inhibitors and inhibitors of the virion-associated reverse transcriptase enzyme (3). Therefore, it is quite difficult at present to investigate the natural history of the disease in industrialized countries, where combination therapy is available, whereas it remains possible in developing countries where antiviral agents are poorly or not accessible at all. It is important to underscore that individuals from the less developed areas of the world, and particularly from Sub-Saharan Africa, are frequently affected by other important infectious diseases and in conditions (i.e., malnutrition) that may profoundly affect cytokine expression (4). In addition, a heterogeneous distribution of viral subtypes may differ in terms of both susceptibility to cytokines for their replication, as suggested by difference in their long terminal repeat (LTR) configuration (5,6) and, potentially for their ability to induce or modulate cytokine expression.

Keywords

Human Immunodeficiency Virus Human Immunodeficiency Virus Type Human Immunodeficiency Virus Infection Chemokine Receptor Long Terminal Repeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pantaleo G, Graziosi C, Fauci AS. New concepts in the immunopathogenesis of human immunodeficiency virus infection. N Engl J Med 1993; 328: 327–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Fauci AS. Host factors and the pathogenesis of HIV-induced disease. Nature 1996; 384: 529–34.PubMedCrossRefGoogle Scholar
  3. 3.
    Autran B, Carcelain G, Li TS, Blanc C, Mathez D, Tubiana R, et al. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 1997; 277: 112–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Bentwich Z, Kalinkovich A, Weisman Z. Immune activation is a dominant factor in the pathogenesis of African AIDS. Immunol Today 1995; 16: 187–91.PubMedCrossRefGoogle Scholar
  5. 5.
    Montano MA, Nixon CP, Essex M. Dysregulation through the NF-kappaB enhancer and TATA box of the human immunodeficiency virus type 1 subtype E promoter. J Virol 1998; 72: 8446–52.Google Scholar
  6. 6.
    Montano MA, Nixon CP, Ndung’u T, Bussmann H, Novitsky VA, Dickman D, Essex M. Elevated tumor necrosis factor-alpha activation of human immunodeficiency virus type 1 subtype C in Southern Africa is associated with an NF-kappaB enhancer gain-of-function. J Infect Dis 2000; 181: 76–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Dinarello CA. Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int Rev Immunol 1998; 16: 457–99.PubMedCrossRefGoogle Scholar
  8. 8.
    Eliaz R, Wallach D, Kost J. Long-term protection against the effects of tumour necrosis factor by controlled delivery of the soluble p55 TNF receptor. Cytokine 1996; 8: 482–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Esser R, Glienke W, Andreesen R, Unger RE, Kreutz M, Rubsamen-Waigmann H, von Briesen H. Individual cell analysis of the cytokine repertoire in human immunodeficiency virus-1- infected monocytes/macrophages by a combination of immunocytochemistry and in situ hybridization. Blood 1998; 91: 4752–60.PubMedGoogle Scholar
  10. 10.
    Graziosi C, Pantaleo G, Gantt KR, Ortin J-P, Demarest JF, Cohen OJ, et al. Lack of evidence for the dichotomy of TH1 and TH2 predominance in HIV-infected individuals. Science 1994; 265: 248–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Revel M, Groner Y. Post-transcriptional and translational controls of gene expression in eukaryotes. Annu Rev Biochem 1978; 47: 1079–126.PubMedCrossRefGoogle Scholar
  12. 12.
    Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998; 16: 137–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Klein SA, Dobmeyer JM, Dobmeyer TS, Pape M, Ottmann OG, Helm EB, et al. Demonstration of the Thl to Th2 cytokine shift during the course of HIV-1 infection using cytoplasmic cytokine detection on single cell level by flow cytometry. AIDS 1997; 11: 1111–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Scott-Algara D, Vuillier F, Marasescu M, De Saint Martin J, Dighiero G. Serum levels of IL-2, IL-1, TNF-a, and soluble receptor of IL-2 in HIV-1-infected patients. AIDS Res Hum Retrovir 1991; 7: 381–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Agostini C, Zambello R, Trentin L, Cerutti A, Enthammer C, Facco M, et al. Expression of TNF receptors by T cells and membrane TNF-alpha by alveolar macrophages suggests a role for TNF-alpha by regulation of the local immune responses in the lung of HIV-1-infected patients. J Immunol 1995; 154: 2928–38.PubMedGoogle Scholar
  16. 16.
    Clerici M, Piconi S, Balotta C, Trabattoni D, Capetti A, Fusi ML, et al. Pentoxifylline improves cell-mediated immunity and reduces human immunodeficiency virus (HIV) plasma viremia in asymptomatic HIV-seropositive persons. J Infect Dis 1997; 175: 1210–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Kalinkovich A, Engelmann H, Harpaz N, Burstein R, Barak V, Kalickman I, et al. Elevated serum levels of soluble tumour necrosis factor receptors (sTNF-R) in patients with HIV infection. Clin Exp Immunol 1992; 89: 351–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Barcellini W, Rizzardi GP, Poli G, Tambussi G, Velati C, Meroni PL, et al. Cytokines and soluble receptor changes in the transition from primary to early chronic HIV type 1 infection. AIDS Res Hum Retrovir 1996; 12: 325–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Salazar-Gonzalez JF, Martinez-Maza 0, Aziz N, Kolberg JA, Yeghiazarian T, Shen LP, Fahey JL. Relationship of plasma HIV-RNA levels and levels of TNF-alpha and immune activation products in HIV infection. Clin Immunol Immunopathol 1997; 84: 36–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Hestdal K, Aukrust P, Muller F, Lien E, Bjerkeli V, Espevik T, Froland SS. Dysregulation of membrane-bound tumor necrosis factor-alpha and tumor necrosis factor receptors on mononuclear cells in human immunodeficiency virus type 1 infection: low percentage of p75-tumor necrosis factor receptor positive cells in patients with advanced disease and high viral load. Blood 1997; 90: 2670–9.PubMedGoogle Scholar
  21. 21.
    Fahey JL, Taylor JM, Manna B, Nishanian P, Aziz N, Giorgi JV, Detels R. Prognostic significance of plasma markers of immune activation, HIV viral load and CD4 T-cell measurements. AIDS 1998; 12: 1581–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Rinaldo CR Jr, Armstrong JA, Kingsley LA, Zhou S, Ho M. Relation of alpha and gamma interferon levels to development of AIDS in homosexual men. J Exp Pathol 1990; 5: 127–32.PubMedGoogle Scholar
  23. 23.
    Krown SE, Niedzwiecki D, Bhalla R, Flomerberg B, Bundow D, Chapman D. Relationship and prognostic value of endogenous interferon-a, P2-microglobulin, and neopterin serum levels in patients with Kaposi’s sarcoma and AIDS. J AIDS Hum Retrovir 1991; 4: 871–80.Google Scholar
  24. 24.
    Genis P, Jett M, Bernton EW, Boyle T, Gelbard HA, Dzenko K, et al. Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophageastroglia interactions: implications for the neuropathogenesis of HIV disease. J Exp Med 1992; 176: 1703–18.PubMedCrossRefGoogle Scholar
  25. 25.
    Koka P, He K, Zack JA, Kitchen S, Peacock W, Fried I, et al. Human immunodeficiency virus 1 envelope proteins induce interleukin 1, tumor necrosis factor alpha, and nitric oxide in glial cultures derived from fetal, neonatal, and adult human brain. J Exp Med 1995; 182: 941–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Tan SV, Guiloff RJ, Henderson DC, Gazzard BG, Miller R. AIDS-associated vacuolar myelopathy and tumor necrosis factor-alpha (TNF alpha). J Neurol Sci 1996; 138: 134–44.PubMedCrossRefGoogle Scholar
  27. 27.
    McManus CM, Brosnan CF, Berman JW. Cytokine induction of MIP-1 alpha and MIP-1 beta in human fetal microglia. J Immunol 1998; 160: 1449–55.PubMedGoogle Scholar
  28. 28.
    Pizzolo G, Vinante F, Morosato L, Nadali G, Chilosi M, Gandini G, et al. High serum levels of the soluble form of CD30 molecule in the early phase of HIV-1 infection as an independent predictor of progression to AIDS. AIDS 1994; 8: 741–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Rizzardi GP, Barcellini W, Tambussi G, Lillo F, Malnati M, Perrin L, Lazzarin A. Plasma levels of soluble CD30, tumour necrosis factor (TNF)-alpha and TNF receptors during primary HIV-1 infection: correlation with HIV-1 RNA and the clinical outcome. AIDS 1996; 10: F45–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Biswas P, Smith CA, Goletti D, Hardy EC, Jackson RW, Fauci AS. Cross-linking of CD30 induces HIV expression in chronically infected T cells. Immunity 1995; 2: 587–96.PubMedCrossRefGoogle Scholar
  31. 31.
    Maggi E, Annunziato F, Manetti R, Biagiotti R, Giudizi MG, Ravina A, et al. Activation of HIV expression by CD30 triggering in CD4+ T cells from HIV-infected individuals. Immunity 1995; 3: 251–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Kaplan D, Sieg S. Role of the Fas/Fas ligand apoptotic pathway in human immunodeficiency virus type 1 disease. J Virol 1998; 72: 6279–82.PubMedGoogle Scholar
  33. 33.
    Emilie D, Peuchmaur MC, Maillot MC, Crevon N, Brousee JF, Delfraissy J, et al. Production of interleukins in human immunodeficiency virus- 1-replicating lymphnodes. J Clin Invest 1990; 86: 148–59.PubMedCrossRefGoogle Scholar
  34. 34.
    Fuchs D, Hansen A, Reibnegger G, Werner ER, Dierich MP, Watcher H. Neopterin as a marker for activated cell-mediated immunity: application in HIV infection. Immunol Today 1988; 9: 150–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Buhl R, Jaffe HA, Holroyd KJ, Borok Z, Roum JH, Mastrangeli A, et al. Activation of alveolar macrophages in asymptomatic HIV-infected individuals. J Immunol 1993; 150: 1019–28.PubMedGoogle Scholar
  36. 36.
    Capobianchi MR, Mattana P, Mercuri F, Conciatori G, Ameglio F, Anke H, Dianzani F. Acid lability is not an intrinsic property of interferon-alpha induced by HIV-infected cells. J Interferon Res 1992; 12: 431–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Wahl SM, Allen JB, McCartney-Francis N, Morganti-Kossmann MC, Kossmann T, Ellingsworth L, et al. Macrophage-and astrocyte-derived transforming growth factor beta as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome. J Exp Med 1991; 173: 981–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Gallo P, Sivieri S, Rinaldi L, Yan XB, Lolli F, De Rossi A, Tavolato B. Intratechal synthesis of interleukin-10 (IL-10) in viral and inflammatory diseases of the central nervous system. J Neurol Sci 1994; 126: 49–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Muller F, Aukrust P, Nordoy I, Froland SS. Possible role of interleukin-10 (IL-10) and CD40 ligand expression in the pathogenesis of hypergammaglobulinemia in human immunodeficiency virus infection: modulation of IL-10 and Ig production after intravenous Ig infusion. Blood 1998; 92: 3721–9.PubMedGoogle Scholar
  40. 40.
    Kreuzer KA, Dayer JM, Rockstroh JK, Sauerbruch T, Spengler U. The IL-1 system in HIV infection: peripheral concentrations of IL- lbeta, IL-1 receptor antagonist and soluble IL-1 receptor type II. Clin Exp Immunol 1997; 109: 54–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Ayyavoo V, Mahboubi A, Mahalingam S, Ramalingam R, Kudchodkar S, Williams WV, et al. HIV-1 Vpr suppresses immune activation and apoptosis through regulation of nuclear factor kappa B. Nat Med 1997; 3: 1117–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Poon B, Grovit-Ferbas K, Stewart SA, Chen ISY. Cell cycle arrest by Vpr in HIV-1 virions and insensitivity to antiretroviral agents. Science 1998; 281: 266–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Than S, Hu R, Oyaizu N, Romano J, Wang X, Sheikh S, Pahwa S. Cytokine pattern in relation to disease progression in human immunodeficiency virus-infected children. J Infect Dis 1997; 175: 47–56.PubMedCrossRefGoogle Scholar
  44. 44.
    Clerici M, Shearer GM. A TH1–TH2 switch is a critical step in the etiology of HIV infection. Immunol Today 1993; 14: 107–11.PubMedCrossRefGoogle Scholar
  45. 45.
    Clerici M, Shearer GM. The Thl-Th2 hypothesis of HIV infection: new insights. Immunol Today 1994; 15: 575–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Shearer GM. HIV-induced immunopathogenesis. Immunity 1998; 9: 587–93.PubMedCrossRefGoogle Scholar
  47. 47.
    Del Prete G, De Carli M, Almerigogna F, Giudizi MG, Biagiotti R, Romagnani S. Human IL-10 is produced by both type l helper (Thl) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol 1993; 150: 353–60.PubMedGoogle Scholar
  48. 48.
    Ozawa H, Aiba S, Nakagawa S, Tagami H. Interferon-gamma and interleukin-10 inhibit antigen presentation by Langerhans cells for T helper type 1 cells by suppressing their CD80 (B7–1) expression. Eur J Immunol 1996; 26: 648–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Hasegawa A, Ueno Y, Yamashita M, Nakayama T, Tada T. Regulation of T cell autoreactivity to MHC class II by controlling CD80 (B7–1) expression on B cells. Int Immunol 1998; 10: 147–58.PubMedCrossRefGoogle Scholar
  50. 50.
    Murray HW, Rubin BY, Masur H, Roberts RB. Impaired production of lymphokines and immune (gamma) interferon in the acquired immunodeficiency syndrome. N Engl J Med 1984; 310: 883–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Rook AH, Hooks JJ, Quinnan GV, Lane HC, Manischewitz J F, Macher AM, et al. Interleukin 2 enhances the natural killer cell activity of acquired immunodeficiency syndrome patients through a gamma-interferon-independent mechanism. J Immunol 1985; 134: 1503–7.PubMedGoogle Scholar
  52. 52.
    Honda M, Kitamura K, Matsuda K. Soluble IL-2 receptor in AIDS. Correlation of its serum level with the classification of HIV-induced diseases and its characterization. J Immunol 1989; 142: 4248–55.PubMedGoogle Scholar
  53. 53.
    Lane HC, Depper JM, Greene WC, Whalen G, Waldmann TA, Fauci AS. Qualitative analysis of immune function in patients with the acquired immunodeficiency syndrome. Evidence for a selective defect in soluble antigen recognition. N Engl J Med 1985; 313: 79–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Chehimi J, Starr SE, Frank I, D’ Andrea A, Ma X, MacGragor RR, et al. Impaired interleukin-12 production in human immunodeficiency virus-infected patients. J Exp Med 1994; 179: 1361–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Trinchieri G. Interleukin-12 and its role in the generation of TH1 cells. Immunol Today 1993; 14: 335–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Ho DD, Hartshorn KL, Rota TR, Andrews CA, Kaplan JC, Schooley RT, Hirsch MS. Recombinant human interferon alpha-A suppresses HTLV-III replication in vitro. Lancet 1985; 1: 602–4.Google Scholar
  57. 57.
    Poli G, Orenstein JM, Kinter A, Folks TM, Fauci AS. Interferon-alpha but not AZT suppresses HIV expression in chronically infected cell lines. Science 1989; 244: 575–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Shirazi Y, Pitha PM. Alpha interferon inhibits early stages of the human immunodeficiency virus type 1 replication cycle. J Virol 1992; 66: 1321–8.PubMedGoogle Scholar
  59. 59.
    Honda Y, Rogers L, Nakata K, Zhao BY, Pine R, Nakai Y, et al. Type I interferon induces inhibitory 16-kD CCAAT/enhancer binding protein (C/EBP)beta, repressing the HIV-1 long terminal repeat in macrophages: pulmonary tuberculosis alters C/EBP expression, enhancing HIV-1 replication. J Exp Med 1998; 188: 1255–65.PubMedCrossRefGoogle Scholar
  60. 60.
    Lane HC, Kovacs JA, Feinberg J, Herpin B, Davey V, Walker R, et al. Anti-retroviral effects of interferon-a in AIDS-associated Kaposi’s sarcoma. Lancet 1988; 11: 1218–22.CrossRefGoogle Scholar
  61. 61.
    Collette Y, Chang HL, Cerdan C, Chambost H, Algarte M, Mawas C, et al. Specific Th l cytokine down-regulation associated with primary clinically derived human immunodeficiency virus type 1 Nef gene-induced expression. J Immunol 1996; 156: 360–70.PubMedGoogle Scholar
  62. 62.
    Mikovits JA, Young HA, Vertino P, Issa JP, Pitha PM, Turcoski-Corrales S, et al. Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-gamma) promoter and subsequent downregulation of IFN-gamma production. Mol Cell Biol 1998; 18: 5166–77.PubMedGoogle Scholar
  63. 63.
    Gazzinelli RT, Bala S, Stevens R, Baseler M, Wahl L, Kovacs J, Sher A. HIV infection suppresses type 1 lymphokine and IL-12 responses to Toxoplasma gondii but fails to inhibit the synthesis of other parasite-induced monokines. J Immunol 1995; 155: 1565–74.PubMedGoogle Scholar
  64. 64.
    Maggi E, Mazzetti M, Ravina A, Annunziato F, de Carli M, Piccinni MP, et al. Ability of HIV to promote a TH1 to THO shift and to replicate preferentially in TH2 and THO cells. Science 1994; 265: 244–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Graziosi C, Gantt KR, Vaccarezza M, Demarest JF, Daucher M, Saag MS, et al. Kinetics of cytokine expression during primary human immunodeficiency virus type 1 infection. Proc Natl Acad Sci USA 1996; 93: 4386–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Fakoya A, Matear PM, Filley E, Rook GA, Stanford J, Gilson RJ, et al. HIV infection alters the production of both type 1 and 2 cytokines but does not induce a polarized type l or 2 state. AIDS 1997; 11: 1445–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Jourdan P, Abbal C, Nora N, Hori T, Uchiyama T, Vendrell J-P, et al. Cutting Edge: IL-4 induces functional cell-surface expression of CXCR4 on human T cells. J Immunol 1998; 160: 4153–7.PubMedGoogle Scholar
  68. 68.
    Galli G, Annunziato F, Mavilia C, Romagnani P, Cosmi L, Manetti R, et al. Enhanced HIV expression during Th2-oriented responses explained by the opposite regulatory effect of IL-4 and IFN-gamma of fusin/CXCR4. Eur J Immunol 1998; 28: 3280–90.PubMedCrossRefGoogle Scholar
  69. 69.
    Valentin A, Lu W, Rosati M, Schneider R, Albert J, Karlsson A, Pavlakis GN. Dual effect of interleukin 4 on HIV-1 expression: implications for viral phenotypic switch and disease progression. Proc Natl Acad Sci USA 1998; 95: 8886–91.PubMedCrossRefGoogle Scholar
  70. 70.
    Menill JE, Koyanagi Y, Chen ISY. Interleukin-1 and tumor necrosis factor a can be induced from mononuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor. J Virol 1989; 63: 4404–8.Google Scholar
  71. 71.
    Clouse KA, Robbins PB, Fernie B, Ostrove JM, Fauci AS. Viral antigen stimulation of the production of human monokines capable of regulating HIV-1 expression. J Immunol 1989; 143: 470–5.PubMedGoogle Scholar
  72. 72.
    Popik W, Pitha PM. Binding of human immunodeficiency virus type 1 to CD4 induces association of Lck and Raf-1 and activates Raf-1 by a Ras-independent pathway. Mol Cell Biol 1996; 16: 6532–41.PubMedGoogle Scholar
  73. 73.
    Popik W, Pitha P.M. Early activation of mitogen-activated protein kinase kinase, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and c-Jun N-terminal kinase in response to binding of simian immunodeficiency virus to Jurkat T cells expressing CCR5 receptor. Virology 1998; 252: 210–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Popik W, Hesselgesser JE, Pitha PM. Binding of human immunodeficiency virus type 1 to CD4 and CXCR4 receptors differentially regulates expression of inflammatory genes and activates the MEK/ERK signaling pathway. J Virol 1998; 72: 6406–13.PubMedGoogle Scholar
  75. 75.
    Popik W, Pitha PM. Inhibition of CD3/CD28-mediated activation of the MEK/ERK signaling pathway represses replication of X4 but not R5 human immunodeficiency virus type 1 in peripheral blood CD4(+) T lymphocytes. J Virol 2000; 74: 2558–66.PubMedCrossRefGoogle Scholar
  76. 76.
    Clouse KA, Cosentino LM, Weih KA, Pyle SW, Robbins PB, Hochstein HD, et al. The HIV-1 gp120 envelope protein has the intrinsic capacity to stimulate monokine secretion. J Immunol 1991; 147: 2892–901.PubMedGoogle Scholar
  77. 77.
    Pericle F, Pinto LA, Hicks S, Kirken RA, Sconocchia G, Rusnak J, et al. HIV-1 infection induces a selective reduction in STATS protein expression. J Immunol 1998; 160: 28–31.PubMedGoogle Scholar
  78. 78.
    Bovolenta C, Camorali L, Lorini AL, Ghezzi S, Vicenzi E, Lazzarin A, Poli G. Constitutive activation of STATs upon in vivo human immunodeficiency virus infection. Blood 1999; 94: 4202–9.PubMedGoogle Scholar
  79. 79.
    Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol 1998; 16: 293–322.PubMedCrossRefGoogle Scholar
  80. 80.
    Collette Y, Dutartre H, Benziane A, Ramos M, Benarous R, Harris M, Olive D. Physical and functional interaction of Nef with Lck. HIV-1 Nef-induced T-cell signaling defects. J Biol Chem 1996; 271: 6333–41.PubMedCrossRefGoogle Scholar
  81. 81.
    De SK, Venkateshan CN, Seth P, Gajdusek DC, Gibbs CJ. Adenovirus-mediated human immunodeficiency virus-1 Nef expression in human monocytes/macrophages and effect of Nef on down-modulation of Fcgamma receptors and expression of monokines. Blood 1998; 91: 2108–17.PubMedGoogle Scholar
  82. 82.
    Scala G, Ruocco MR, Ambrosino C, Mallardo M, Giordano V, Baldassare F, et al. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med 1994; 179: 961–71.PubMedCrossRefGoogle Scholar
  83. 83.
    Buonaguro L, Buonaguro FM, Giraldo G, Ensoli B. The human immunodeficiency virus type 1 Tat protein transactivates tumor necrosis factor beta gene expression through a TAR-like structure. J Virol 1994; 68: 2677–82.PubMedGoogle Scholar
  84. 84.
    Zauli G, Davis BR, Re MC, Visani G, Furlini G, La Placa M. tat protein stimulates production of transforming growth factor-beta 1 by marrow macrophages: a potential mechanism for human immunodeficiency virus-1-induced hematopoietic suppression. Blood 1992; 80: 3036–43.PubMedGoogle Scholar
  85. 85.
    Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, et al. Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci USA 1998; 95: 3117–21.PubMedCrossRefGoogle Scholar
  86. 86.
    Mengozzi M, De Filippi C, Transidico P, Biswas P, Cota M, Ghezzi S, et al. Human immunodeficiency virus replication induces monocyte chemotactic protein-1 in human macrophages and U937 promonocytic cells. Blood 1999; 93: 1851–7.PubMedGoogle Scholar
  87. 87.
    Ghezzi S, Noonan DM, Aluigi MG, Vallanti G, Cota M, Benelli R, et al. Inhibition of CXCR4dependent HIV-1 infection by extracellular HIV-1 Tat. Biochem Biophys Res Commun 2000; 270: 992–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Xiao H, Neuveut C, Tiffany HL, Benkirane M, Rich EA, Murphy PM, Jeang KT. Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci USA 2000; 97: 11466–71.PubMedCrossRefGoogle Scholar
  89. 89.
    Welker R, Harris M, Cardel B, Krausslich HG. Virion incorporation of human immunodeficiency virus type 1 nef is mediated by a bipartite membrane-targeting signal: analysis of its role in enhancement of viral infectivity. J Virol 1998; 72: 8833–40.PubMedGoogle Scholar
  90. 90.
    Wong GH, Krowka JF, Stites DP, Goeddel DV. In vitro anti-human immunodeficiency virus activities of tumor necrosis factor-alpha and interferon-gamma. J Immunol 1988; 140: 120–4.PubMedGoogle Scholar
  91. 91.
    Wong GH, Goeddel DV. Tumour necrosis factors alpha and beta inhibit virus replication and synergize with interferons. Nature 1986; 323: 819–22.PubMedCrossRefGoogle Scholar
  92. 92.
    Folks TM, Clouse KA, Justement J, Rabson A, Duh E, Kehrl JH, Fauci AS. Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci USA 1989; 86: 2365–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Duh EJ, Maury WJ, Folks TM, Fauci AS, Rabson AB. Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. Proc Natl Acad Sci USA 1989; 86: 5974–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Griffin GE, Leung K, Folks TM, Kunkel S, Nabel GJ. Activation of HIV gene expression during monocyte differentiation by induction of NF-kappa B. Nature 1989; 339: 70–3.PubMedCrossRefGoogle Scholar
  95. 95.
    Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci USA 1989; 86: 2336–40.PubMedCrossRefGoogle Scholar
  96. 96.
    Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-KB. Annu Rev Cell Biol 1994; 10: 405–55.PubMedCrossRefGoogle Scholar
  97. 97.
    Antoni BA, Rabson AB, Kinter A, Bodkin M, Poli G. NF-kappa B-dependent and -independent pathways of HIV activation in a chronically infected T cell line. Virology 1994; 202: 684–94.PubMedCrossRefGoogle Scholar
  98. 98.
    Poli G, Kinter AL, Fauci AS. Interleukin 1 induces expression of the human immunodeficiency virus alone and in synergy with interleukin 6 in chronically infected Ul cells: inhibition of inductive effects by the interleukin 1 receptor antagonist. Proc Natl Acad Sci USA 1994; 91: 108–12.PubMedCrossRefGoogle Scholar
  99. 99.
    Vicenzi E, Biswas P, Mengozzi M, Poli G. Role of pro-inflammatory cytokines and betachemokines in controlling HIV replication. J Leukoc Biol 1997; 62: 34–40.PubMedGoogle Scholar
  100. 100.
    Yang X, Chen Y, Gabuzda D. ERK MAP kinase links cytokine signals to activation of latent HIV-1 infection by stimulating a cooperative interaction of AP-1 and NF- kappaB. J Biol Chem 1999; 274: 27981–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Shapiro L, Puren AJ, Barton HA, Novick D, Peskind RL, Shenkar R, et al. Interleukin 18 stimulates HIV type 1 in monocytic cells. Proc Natl Acad Sci USA 1998; 95: 12550–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Poli G, Bressler P, Kinter A, Duh E, Timmer WC, Rabson A, et al. Interleukin 6 induces human immunodeficiency virus expression in infected monocytic cells alone and in synergy with tumor necrosis factor alpha by transcriptional and posttranscriptional mechanisms. J Exp Med 1990; 172: 151–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Biswas P, Poli G, Kinter AL, Justement JS, Stanley SK, Maury WJ, et al. Interferon gamma induces the expression of human immunodeficiency virus in persistently infected promonocytic cells (U1) and redirects the production of virions to intracytoplasmic vacuoles in phorbol myristate acetate-differentiated Ul cells. J Exp Med 1992; 176: 739–50.PubMedCrossRefGoogle Scholar
  104. 104.
    Poli G, Kinter A, Justement JS, Kehrl JH, Bressler P, Stanley S, Fauci AS. Tumor necrosis factor alpha functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proc Natl Acad Sci USA 1990; 87: 782–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Vyakarnam A, McKeating J, Meager A, Beverley PC. Tumour necrosis factors (a, f3) induced by HIV-1 in peripheral blood mononuclear cells potentiate virus replication. AIDS 1990; 4: 21–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Weissman D, Poli G, Fauci AS. Interleukin 10 blocks HIV replication in macrophages by inhibiting the autocrine loop of tumor necrosis factor alpha and interleukin 6 induction of virus. AIDS Res Hum Retrovir 1994; 10: 1199–206.PubMedCrossRefGoogle Scholar
  107. 107.
    Kinter AL, Poli G, Fox L, Hardy E, Fauci AS. HIV replication in IL-2-stimulated peripheral blood mononuclear cells is driven in an autocrine/paracrine manner by endogenous cytokines. J Immunol 1995; 154: 2448–59.PubMedGoogle Scholar
  108. 108.
    Ruocco MR, Chen X, Ambrosino C, Dragonetti E, Liu W, Mallardo M, et al. Regulation of HIV-1 long terminal repeats by interaction of C/EBP(NF-IL6) and NF-kappaB/Rel transcription factors. J Biol Chem 1996; 271: 22479–86.PubMedCrossRefGoogle Scholar
  109. 109.
    Hottiger MO, Nabel GJ. Interaction of human immunodeficiency virus type 1 Tat with the transcriptional coactivators p300 and CREB binding protein. J Virol 1998; 72: 8252–6.PubMedGoogle Scholar
  110. 110.
    Hottiger MO, Felzien LK, Nabel GJ. Modulation of cytokine-induced HIV gene expression by competitive binding of transcription factors to the coactivator p300. Embo J 1998; 17: 3124–34.PubMedCrossRefGoogle Scholar
  111. 111.
    Poli G, Kinter AL, Justement JS, Bressler P, Kehrl JH, Fauci AS. Retinoic acid mimics transforming growth factor beta in the regulation of human immunodeficiency virus expression in monocytic cells. Proc Natl Acad Sci USA 1992; 89: 2689–93.PubMedCrossRefGoogle Scholar
  112. 112.
    Weissman D, Poli G, Fauci AS. IL-10 synergizes with multiple cytokines in enhancing HIV production in cells of monocytic lineage. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 9: 442–9.PubMedGoogle Scholar
  113. 113.
    Barcellini W, Rizzardi GP, Marriott JB, Fain C, Shattock RJ, Meroni PL, et al. Interleukin-10induced HIV-1 expression is mediated by induction of both membrane-bound tumour necrosis factor (TNF)-alpha and TNF receptor type 1 in a promonocytic cell line. AIDS 1996; 10: 835–42.PubMedCrossRefGoogle Scholar
  114. 114.
    Lazdins JK, Klimkait T, Woods-Cook K, Walker M, Alteri E, Cox D, et al. In vitro effect of transforming growth factor-ß on progression of HIV-1 infection in primary mononuclear phagocytes. J Immunol 1991; 147: 1201–7.PubMedGoogle Scholar
  115. 115.
    Peterson PK, Molitor TW, Chao CC. The opioid-cytokine connection. J Neuroimmunol 1998; 83: 63–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Kazazi F, Mathijs JM, Chang J, Malafiej P, Lopez A, Dowton D, et al. Recombinant interleukin 4 stimulates human immunodeficiency virus production by infected monocytes and macrophages. J Gen Virol 1992; 73: 941–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Schuitemaker H, Kootstra NA, Koppelman MH, Bruisten SM, Huisman HG, Tersmette M, Miedema F. Proliferation-dependent HIV-1 infection of monocytes occurs during differentiation into macrophages. J Clin Invest 1992; 89: 1154–60.PubMedCrossRefGoogle Scholar
  118. 118.
    Mikovits JA, Meyers AM, Ortaldo JR, Minty A, Caput D, Ferrara P, Ruscetti FW. IL-4 and IL-13 have overlapping but distinct effects on HIV production in monocytes. J Leukoc Biol 1994; 56: 340–6.PubMedGoogle Scholar
  119. 119.
    Foli A, Saville MW, Baseler MW, Yarchoan R. Effects of the Thl and Th2 stimulatory cytokines interleukin-12 and interleukin-4 on human immunodeficiency virus replication. Blood 1995; 85: 2114–23.PubMedGoogle Scholar
  120. 120.
    Koyanagi Y, O’Brien WA, Zhao JQ, Golde DW, Gasson JC, Chen IS. Cytokines alter production of HIV-1 from primary mononuclear phagocytes. Science 1988; 241: 1673–5.PubMedCrossRefGoogle Scholar
  121. 121.
    Montaner LJ, Doyle AG, Collin M, Georges H, James W, Minty A et al. Interleukin 13 inhibits human immunodeficiency virus type 1 production in primary blood-derived human macrophages in vitro. J Exp Med 1993; 178: 743–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Herbein G, Montaner LJ, Gordon S. Tumor necrosis factor alpha inhibits entry of human immunodeficiency virus type 1 into primary human macrophages: a selective role for the 75kilodalton receptor. J Virol 1996; 70: 7388–97.PubMedGoogle Scholar
  123. 123.
    Brown CC, Poli G, Lubaki N, St. Louis M, Davachi F, Musey L, et al. Elevated levels of tumor necrosis factor-alpha in Zairian neonate plasmas: implications for perinatal infection with the human immunodeficiency virus. J Infect Dis 1994; 169: 975–80.PubMedCrossRefGoogle Scholar
  124. 124.
    Goletti D, Weissman D, Jackson RW, Graham NM, Vlahov D, Klein RS, et al. Effect of Mycobacterium tuberculosis on HIV replication. Role of immune activation. J Immunol 1996; 157: 1271–8.PubMedGoogle Scholar
  125. 125.
    Wahl SM, Greenwell-Wild T, Peng G, Hale-Donze H, Doherty TM, Mizel D, Orenstein JM. Mycobacterium avium complex augments macrophage HIV-1 production and increases CCR5 expression. Proc Natl Acad Sci USA 1998; 95: 12574–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Shapira-Nahor O, Kalinkovich A, Weisman Z, Greenberg Z, Nahmias J, Shapiro M, et al. Increased susceptibility to HIV-1 infection of peripheral blood mononuclear cells from chronically immune-activated individuals. AIDS 1998; 12: 1731–3.PubMedGoogle Scholar
  127. 127.
    Ryu SE, Kwong PD, Truneh A, Porter TG, Arthos J, Rosenberg M, et al. Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature 1990; 348: 419–26.PubMedCrossRefGoogle Scholar
  128. 128.
    Lores P, Boucher V, Mackay C, Pla M, Von Boehmer H, Jami J, et al. Expression of human CD4 in transgenic mice does not confer sensitivity to human immunodeficiency virus infection. AIDS Res Hum Retrovir 1992; 8: 2063–71.PubMedCrossRefGoogle Scholar
  129. 129.
    Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: cloning of a seven-transmembrane G protein-coupled receptor. Science 1996; 272: 872–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Walker CM, Moody DJ, Stites DP, Levy JA. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 1986; 234: 1563–6.PubMedCrossRefGoogle Scholar
  131. 131.
    Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270: 1811–5.PubMedCrossRefGoogle Scholar
  132. 132.
    Center DM, Kornfeld H, Cruikshank WW. Interleukin 16 and its function as a CD4 ligand. Immunol Today 1996; 17: 476–81.PubMedCrossRefGoogle Scholar
  133. 133.
    Mathy NL, Bannert N, Norley SG, Kurth R. Cutting edge: CD4 is not required for the functional activity of IL-16. J Immunol 2000; 164: 4429–32.PubMedGoogle Scholar
  134. 134.
    Baier M, Werner A, Bannert N, Metzner K, Kurth R. HIV suppression by interleukin-16. Nature 1995; 378: 563.PubMedCrossRefGoogle Scholar
  135. 135.
    Zhou P, Goldstein S, Devadas K, Tewari D, Notkins AL. Human CD4+ cells transfected with IL-16 cDNA are resistant to HIV-1 infection: inhibition of mRNA expression. Nat Med 1997; 3: 659–64.PubMedCrossRefGoogle Scholar
  136. 136.
    Maciaszek JW, Parada NA, Cruikshank WW, Center DM, Kornfeld H, Viglianti GA. IL-16 represses HIV-1 promoter activity. J Immunol 1997; 158: 5–8.PubMedGoogle Scholar
  137. 137.
    Amiel C, Darcissac E, Truong MJ, Dewulf J, Loyens M, Mouton Y, et al. Interleukin-16 (IL-16) inhibits human immunodeficiency virus replication in cells from infected subjects, and serum IL-16 levels drop with disease progression. J Infect Dis 1999; 179: 83–91.PubMedCrossRefGoogle Scholar
  138. 138.
    Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA. CC CKR5: a RANTES, MIP-la, MIP-113 receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272: 1955–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85: 1135–48.PubMedCrossRefGoogle Scholar
  140. 140.
    Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-lineadapted HIV-1. Nature 1996; 382: 833–5.PubMedCrossRefGoogle Scholar
  141. 141.
    Nagasawa T, Nakajima T, Tachibana K, Iizasa H, Bleul CC, Yoshie O, et al. Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc Natl Acad Sci USA 1996; 93: 14726–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Premack BA, Schall TJ. Chemokine receptors: gateways to inflammation and infection. Nat Med 1996; 2: 1174–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Littman DR. Chemokine receptors-keys to AIDS pathogenesis. Cell 1998; 93: 677–80.PubMedCrossRefGoogle Scholar
  144. 144.
    Murakami T, Nakajima T, Koyanagi Y, Tachibana K, Fujii N, Tamamura H, et al. A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J Exp Med 1997; 186: 1389–93.PubMedCrossRefGoogle Scholar
  145. 145.
    Mack M, Luckow B, Nelson PJ, Cihak J, Simmons G, Clapham PR, et al. AminooxypentaneRANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med 1998; 187: 1215–24.PubMedCrossRefGoogle Scholar
  146. 146.
    Sozzani S, Ghezzi S, Iannolo G, Luini W, Borsatti A, Polentarutti N, et al. Interleukin 10 increases CCR5 expression and HIV infection in human monocytes. J Exp Med 1998; 187: 439–44.PubMedCrossRefGoogle Scholar
  147. 147.
    Donzella GA, Schols D, Lin SW, Este JA, Nagashima KA, Maddon PJ, et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 1998; 4: 72–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Hwang SS, Boyle TJ, Lyerly HK, Cullen BR. Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 1991; 253: 71–3.PubMedCrossRefGoogle Scholar
  149. 149.
    Cocchi F, DeVico AL, Garzino-Demo A, Cara A, Gallo RC, Lusso P. The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nat Med 1996; 2: 1244–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Scarlatti G, Tresoldi E, Bjorndal A, Fredriksson R, Colognesi C, Deng HK, et al. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nat Med 1997; 3: 1259–65.PubMedCrossRefGoogle Scholar
  151. 151.
    Menzo S, Sampaolesi R, Vicenzi E, Santagostino E, Liuzzi G, Chirianni A, et al. Rare mutations in a domain crucial for V3-loop structure prevail in replicating HIV from long-term non-progressors. AIDS 1998; 12: 985–97.PubMedCrossRefGoogle Scholar
  152. 152.
    Michael NL, Moore JP. HIV-1 entry inhibitors: evading the issue. Nat Med 1999; 5: 740–2.PubMedCrossRefGoogle Scholar
  153. 153.
    Michael NL, Moore JP. Viral phenotype and CCR5 genotype. Nat Med 1999; 5: 1330.PubMedCrossRefGoogle Scholar
  154. 154.
    Zhang YJ, Moore JP. Will multiple coreceptors need to be targeted by inhibitors of human immunodeficiency virus type 1 entry? J Virol 1999; 73: 3443–8.PubMedGoogle Scholar
  155. 155.
    He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S, et al. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 1997; 385: 645–9.PubMedCrossRefGoogle Scholar
  156. 156.
    Rowland-Jones SL, McMichael A. Immune responses in HIV-exposed seronegatives: have they repelled the virus? Curr Opin Immunol 1995; 7: 448–55.PubMedCrossRefGoogle Scholar
  157. 157.
    Paxton WA, Dragic T, Koup RA, Moore JP. The beta-chemokines, HIV type 1 second receptors, and exposed uninfected persons. AIDS Res Hum Retrovir 1996; 12: 1203–7.PubMedCrossRefGoogle Scholar
  158. 158.
    Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 1996; 273: 1856–62.PubMedCrossRefGoogle Scholar
  159. 159.
    Berger EA, Doms RW, Fenyo EM, Korber BT, Littman DR, Moore JP, et al. A new classification for HIV-1. Nature 1998; 391: 240.PubMedCrossRefGoogle Scholar
  160. 160.
    Biti R, Ffrench R, Young J, Bennetts B, Stewart G, Liang T. HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nat Med 1997; 3: 252–3.PubMedCrossRefGoogle Scholar
  161. 161.
    Michael NL, Nelson JA, KewalRamani VN, Chang G, O’Brien SJ, Mascola JR, et al. Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 delta32. J Virol 1998; 72: 6040–7.PubMedGoogle Scholar
  162. 162.
    Zhu T, Wang N, Can A, Nam DS, Moor-Jankowski R, Cooper DA, Ho DD. Genetic characterization of human immunodeficiency virus type 1 in blood and genital secretions: evidence for viral compartmentalization and selection during sexual transmission. J Virol 1996; 70: 3098–107.PubMedGoogle Scholar
  163. 163.
    Zaitseva M, Blauvelt A, Lee S, Lapham CK, Klaus-Kovtun V, Mostowski H, et al. Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection. Nat Med 1997; 3: 1369–75.PubMedCrossRefGoogle Scholar
  164. 164.
    Patterson BK, Landay A, Andersson J, Brown C, Behbahani H, Jiyamapa D, et al. Repertoire of chemokine receptor expression in the female genital tract: implications for human immunodeficiency virus transmission. Am J Pathol 1998; 153: 481–90.PubMedCrossRefGoogle Scholar
  165. 165.
    Zhang Z, Schuler T, Zupancic M, Wietgrefe S, Staskus KA, Reimann KA, et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 1999; 286: 1353–7.PubMedCrossRefGoogle Scholar
  166. 166.
    Vicenzi E, Bordignon PP, Biswas P, Brambilla A, Bovolenta C, Cota M, et al. Envelope-dependent restriction of human immunodeficiency virus type 1 spreading in CD4(+) T lymphocytes: R5 but not X4 viruses replicate in the absence of T-cell receptor restimulation. J Virol 1999; 73: 7515–23.PubMedGoogle Scholar
  167. 167.
    Rucker J, Samson M, Doranz BJ, Libert F, Berson JF, Yi Y, et al. Regions in beta-chemokine receptors CCR5 and CCR2b that determine HIV-1 cofactor specificity. Cell 1996; 87: 437–46.PubMedCrossRefGoogle Scholar
  168. 168.
    Alfano M, Schmidtmayerova H, Amella CA, Pushkarsky T, Bukrinsky M. The B-oligomer of pertussis toxin deactivates CC chemokine receptor 5 and blocks entry of M-tropic HIV-1 strains. J Exp Med 1999; 190: 597–606.PubMedCrossRefGoogle Scholar
  169. 169.
    Wang JM, Oppenheim JJ. Interference with the signaling capacity of CC chemokine receptor 5 can compromise its role as an HIV-1 entry coreceptor in primary T lymphocytes. J Exp Med 1999; 190: 591–5.PubMedCrossRefGoogle Scholar
  170. 170.
    Alfano M, Pushkarsky T, Poli G, Bukrinsky M. The B-oligomer of pertussis toxin inhibits HIV-1 replication at multiple stages. J Virol 2000; 74: 8767–70.PubMedCrossRefGoogle Scholar
  171. 170a.
    Alfano M, Vallanti G, Biswas P, Bovolenta C, Vicenzi E, Rappuoli R, et al. The B-oligomeric subunit of pertussis toxin inhibits HIV replication in human macrophages and virus expression in chronically infected promonocytic U1 cells. J Immunol 2001; 166: 1863–70.PubMedGoogle Scholar
  172. 171.
    Pal R, Garzino-Demo A, Markham PD, Burns J, Brown M, Gallo RC, DeVico AL. Inhibition of HIV-1 infection by the beta-chemokine MDC. Science 1997; 278: 695–8.PubMedCrossRefGoogle Scholar
  173. 172.
    Arenzana-Seisdedos F, Amara A, Thomas D, Virelizier JL. 13-Chemokine MDC and HIV-1 infection. Science 1998; 281:487–87a.Google Scholar
  174. 173.
    Lee B, Rucker J, Doms RW, Tsang M, Hu X, Dietz M, et al. 13-Chemokine MDC and HIV-1 infection. Science 1998; 281: 487–87a.CrossRefGoogle Scholar
  175. 174.
    Cota M, Mengozzi M, Vicenzi E, Panina-Bordignon P, Sinigaglia F, Transidico P, et al. Selective inhibition of HIV replication in primary macrophages but not T lymphocytes by macrophage-derived chemokine. Proc Natl Acad Sci USA 2000; 97: 9162–7.PubMedCrossRefGoogle Scholar
  176. 175.
    Struyf S, De Meester I, Scharpe S, Lenaerts JP, Menten P, Wang JM, et al. Natural truncation of RANTES abolishes signaling through the CC chemokine receptors CCR1 and CCR3, impairs its chemotactic potency and generates a CC chemokine inhibitor. Eur J Immunol 1998; 28: 1262–71.PubMedCrossRefGoogle Scholar
  177. 176.
    Struyf S, Proost P, Sozzani S, Mantovani A, Wuyts A, De Clercq E, et al. Enhanced anti-HIV-1 activity and altered chemotactic potency of NH2-terminally processed macrophage-derived chemokine (MDC) imply an additional MDC receptor. J Immunol 1998; 161: 2672–5.PubMedGoogle Scholar
  178. 177.
    Schmidtmayerova H, Sherry B, Bukrinsky M. Chemokines and HIV replication. Nature 1996; 382: 767.PubMedCrossRefGoogle Scholar
  179. 178.
    Kelly MD, Naif HM, Adams SL, Cunningham AL, Lloyd AR. Dichotomous effects of betachemokines on HIV replication in monocytes and monocyte-derived macrophages. J Immunol 1998; 160: 3091–5.PubMedGoogle Scholar
  180. 179.
    Kinter A, Catanzaro A, Monaco J, Ruiz M, Justement J, Moir S, et al. CC-chemokines enhance the replication of T-tropic strains of HIV-1 in CD4(+) T cells: role of signal transduction. Proc Natl Acad Sci USA 1998; 95: 11880–5.PubMedCrossRefGoogle Scholar
  181. 180.
    Dolei A, Biolchini A, Serra C, Curreli S, Gomes E, Dianzani E Increased replication of T-cell-tropic HIV strains and CXC-chemokine receptor-4 induction in T cells treated with macrophage inflammatory protein (MIP)-lalpha, MIP-lbeta and RANTES beta-chemokines. AIDS 1998; 12: 183–90.PubMedCrossRefGoogle Scholar
  182. 181.
    Koot M, Keet IP, Vos AH, de Goede RE, Roos MT, Coutinho RA, et al. Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med 1993; 118: 681–8.PubMedGoogle Scholar
  183. 182.
    Kutza J, Hayes MP, Clouse KA, Interleukin-2 inhibits HIV-1 replication in human macrophages by modulating expression of CD4 and CC-chemokine receptor-5. AIDS 1998; 12: F59–64.PubMedCrossRefGoogle Scholar
  184. 183.
    Wang J, Harada A, Matsushita S, Matsumi S, Zhang Y, Shioda T, Nagai Y, Matsushima K. IL-4 and a glucocorticoid up-regulate CXCR4 expression on human CD4+ T lymphocytes and enhance HIV-1 replication. J Leukoc Biol 1998; 64: 642–9.PubMedGoogle Scholar
  185. 184.
    Zella D, Barabitskaja O, Burns JM, Romerio F, Dunn DE, Revello MG, et al. Interferon-gamma increases expression of chemokine receptors CCR1, CCR3, and CCR5, but not CXCR4 in monocytoid U937 cells. Blood 1998; 91: 4444–50.PubMedGoogle Scholar
  186. 185.
    Biswas P, Mengozzi M, Mantelli B, Delfanti F, Brambilla A, Vicenzi E, Poli G. 1,25-Dihydroxyvitamin D3 upregulates functional CXCR4 human immunodeficiency virus type 1 coreceptors in U937 minus clones: NF- kappaB-independent enhancement of viral replication. J Virol 1998; 72: 8380–3.PubMedGoogle Scholar
  187. 186.
    Sallusto F, Mackay CR, Lanzavecchia A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 1997; 277: 2005–7.PubMedCrossRefGoogle Scholar
  188. 187.
    Sallusto F, Lenig D, Mackay CR, Lanzavecchia A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 1998; 187: 875–83.PubMedCrossRefGoogle Scholar
  189. 188.
    Bonecchi R, Bianchi G, Bordignon PP, D’Ambrosio D, Lang R, Borsatti A, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (This) and Th2s. J Exp Med 1998; 187: 129–34.PubMedCrossRefGoogle Scholar
  190. 189.
    Mikovits JA, Taub DD, Turcovski-Corrales SM, Ruscetti FW. Similar levels of human immunodeficiency virus type 1 replication in human TH1 and TH2 clones. J Virol 1998; 72: 5231–8.PubMedGoogle Scholar
  191. 190.
    Taub DD, Ortaldo JR, Turcovski-Corrales SM, Key ML, Longo DL, Murphy WJ. Beta chemokines costimulate lymphocyte cytolysis, proliferation, and lymphokine production. J Leukoc Biol 1996; 59: 81–9.PubMedGoogle Scholar
  192. 191.
    Wagner L, Yang OO, Garcia-Zepeda EA, Ge Y, Kalams SA, Walker BD, et al. Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature 1998; 391: 908–11.PubMedCrossRefGoogle Scholar
  193. 192.
    Kim JJ, Nottingham LK, Sin JI, Tsai A, Morrison L, Oh J, et al. CD8 positive T cells influence antigen-specific immune responses through the expression of chemokines. J Clin Invest 1998; 102: 1112–24.PubMedCrossRefGoogle Scholar
  194. 193.
    Hadida F, Vieillard V, Autran B, Clark-Lewis I, Baggiolini M, Debre P. HIV-specific T cell cytotoxicity mediated by RANTES via the chemokine receptor CCR3. J Exp Med 1998; 188: 609–14.PubMedCrossRefGoogle Scholar
  195. 194.
    Pantaleo G. How immune-based interventions can change HIV therapy. Nat Med 1997; 3: 483–6.PubMedCrossRefGoogle Scholar
  196. 195.
    Lori F, Malykh A, Cara A, Sun D, Weinstein JN, Lisziewicz J, Gallo RC. Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication. Science 1994; 266: 801–5.PubMedCrossRefGoogle Scholar
  197. 196.
    Lori F, Malykh AG, Foli A, Maserati R, De Antoni A, Minoli L, et al. Combination of a drug targeting the cell with a drug targeting the virus controls human immunodeficiency virus type 1 resistance. AIDS Res Hum Retrovir 1997; 13: 1403–9.PubMedCrossRefGoogle Scholar
  198. 197.
    Chapuis AG, Paolo Rizzardi G, D’ Agostino C, Attinger A, Knabenhans C, Fleury S, et al. Effects of mycophenolic acid on human immunodeficiency virus infection in vitro and in vivo. Nat Med 2000; 6: 762–8.PubMedCrossRefGoogle Scholar
  199. 198.
    Miles S. The use of hematopoietic growth factors in treating HIV infection. Curr Opin Hematol 1995; 2: 227–33.PubMedCrossRefGoogle Scholar
  200. 199.
    Deresinski SC. Granulocyte-macrophage colony-stimulating factor: potential therapeutic, immunological and antiretroviral effects in HIV infection. AIDS 1999; 13: 633–43.PubMedCrossRefGoogle Scholar
  201. 200.
    Coffey MJ, Phare SM, Cinti S, Peters-Golden M, Kazanjian PH. Granulocyte-macrophage colony-stimulating factor upregulates reduced 5-lipoxygenase metabolism in peripheral blood monocytes and neutrophils in acquired immunodeficiency syndrome. Blood 1999; 94: 3897–905.PubMedGoogle Scholar
  202. 201.
    Skowron G, Stein D, Drusano G, Melbourne K, Bilello J, Mikolich D, et al. The safety and efficacy of granulocyte-macrophage colony-stimulating factor (Sargramostim) added to indinaviror ritonavir-based antiretroviral therapy: a randomized double-blind, placebo-controlled trial. J Infect Dis 1999; 180: 1064–71.PubMedCrossRefGoogle Scholar
  203. 202.
    Trinchieri G, Scott P. The role of interleukin 12 in the immune response, disease and therapy. Immunol Today 1994; 15: 460–3.PubMedCrossRefGoogle Scholar
  204. 203.
    Romani L, Puccetti P, Bistoni F. Interleukin-12 in infectious diseases. Clin Microbiol Rev 1997; 10: 611–36.PubMedGoogle Scholar
  205. 204.
    Moss RB, Giermakowska WK, Savary JR, Theofan G, Daigle AE, Richieri SP, et al. A primer on HIV type 1-specific immune function and REMUNE. AIDS Res Hum Retrovir 1998; 14:Suppl 2, S167–75.Google Scholar
  206. 205.
    Cafaro A, Caputo A, Fracasso C, Maggiorella MT, Goletti D, Baroncelli S, et al. Control of SHIV89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine. Nat Med 1990; 5: 643–50.Google Scholar
  207. 206.
    Bernstein ZP, Porter MM, Gould M, Lipman B, Bluman EM, Stewart CC, et al. Prolonged administration of low-dose interleukin-2 in human immunodeficiency virus-associated malignancy results in selective expansion of innate immune effectors without significant clinical toxicity. Blood 1995; 86: 3287–94.PubMedGoogle Scholar
  208. 207.
    Jacobson EL, Pilaro F, Smith KA. Rational interleukin 2 therapy for HIV positive individuals: daily low doses enhance immune function without toxicity. Proc Natl Acad Sci USA 1996; 93: 10405–10.PubMedCrossRefGoogle Scholar
  209. 208.
    Teppler H, Kaplan G, Smith KA, Montana AL, Meyn P, Cohn ZA. Prolonged immunostimulatory effect of low-dose polyethylene glycol interleukin 2 in patients with human immunodeficiency virus type 1 infection. J Exp Med 1993; 177: 483–92.PubMedCrossRefGoogle Scholar
  210. 209.
    Khatri VP, Fehniger TA, Baiocchi RA, Yu F, Shah MH, Schiller DS, et al. Ultra low dose interleukin-2 therapy promotes a type 1 cytokine profile in vivo in patients with AIDS and AIDS-associated malignancies. J Clin Invest 1998; 101: 1373–8.PubMedCrossRefGoogle Scholar
  211. 210.
    Kovacs JA, Baseler M, Dewar RJ, Vogel S, Davey RT Jr, Falloon J, et al. Increases in CD4 T lymphocytes with intermittent courses of interleukin- 2 in patients with human immunodeficiency virus infection. A preliminary study. N Engl J Med 1995; 332: 567–75.PubMedCrossRefGoogle Scholar
  212. 211.
    Kovacs JA, Vogel S, Albert JM, Falloon J, Davey RT Jr, Walker RE, et al. Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med 1996; 335: 1350–6.PubMedCrossRefGoogle Scholar
  213. 212.
    Connors M, Kovacs JA, Krevat S, Gea-Banacloche JC, Sneller MC, Flanigan M, et al. HIV infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T-cell repertoire that are not immediately restored by antiviral or immune-based therapies. Nat Med 1997; 3: 533–40.PubMedCrossRefGoogle Scholar
  214. 213.
    Walker RE, Carter CS, Muul L, Natarajan V, Herpin BR, Leitman SF, et al. Peripheral expansion of pre-existing mature T cells is an important means of CD4+ T-cell regeneration HIV-infected adults. Nat Med 1998; 4: 852–6.PubMedCrossRefGoogle Scholar
  215. 214.
    Levy Y, Capitant C, Houhou S, Carriere I, Viard JP, Goujard C, et al. Comparison of subcutaneous and intravenous interleukin-2 in asymptomatic HIV-1 infection: a randomised controlled trial. ANRS 048 study group, Lancet 1999; 353: 1923–9.PubMedCrossRefGoogle Scholar
  216. 215.
    Beverley PC, Michie CA, Young JL. Memory and the lifespan of human T lymphocytes. Leukemia 1993; 7:Suppl 2, S50–4.Google Scholar
  217. 216.
    Bell EB, Sparshott SM, Bunce C. CD4+ T-cell memory, CD45R subsets and the persistence of antigen-a unifying concept. Immunol Today 1998; 19: 60–4.PubMedCrossRefGoogle Scholar
  218. 217.
    De Paoli P, Zanussi S, Simonelli C, Bortolin MT, D’Andrea M, Crepaldi C, et al. Effects of subcutaneous interleukin-2 therapy on CD4 subsets and in vitro cytokine production in HIV+ subjects. J Clin Invest 1997; 100: 2737–43.PubMedCrossRefGoogle Scholar
  219. 218.
    Tambussi G, Ghezzi S, Guffanti M, Vallanti G, Nozza S, Magenta L, et al. Low-dose intermittent subcutaneous interleukin-2 in antiviral-experienced HIV-infected individuals. A controlled study, J Inf Dis, 2001, in press.Google Scholar
  220. 219.
    Bovolenta C, Camorali L, Lorini AL, Vallanti G, Ghezzi S, Tambussi G, et al. In vivo administration of recombinant IL-2 to individuals infected by HIV down-modulates the binding and expression of the transcription factors ying-yang-1 and leader binding protein-1/Late simian virus 40 factor. J Immunol 1999; 163: 6892–7.PubMedGoogle Scholar
  221. 220.
    Brinkman K, Huysmans F, Galama JM, Boucher CA. In-vivo anti-CD3-induced HIV-1 viraemia. Lancet 1998; 352: 1446.PubMedCrossRefGoogle Scholar
  222. 221.
    Unutmaz D, Pileri P, Abrignani S. Antigen-independent activation of naive and memory resting T cells by a cytokine combination. J Exp Med 1994; 180: 1159–64.PubMedCrossRefGoogle Scholar
  223. 222.
    Chun TW, Engel D, Mizell SB, Ehler LA, Fauci AS. Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J Exp Med 1998; 188: 83–91.PubMedCrossRefGoogle Scholar
  224. 223.
    Chun TW, Davey RT Jr, Ostrowski M, Shawn Justement J, Engel D, Mullins JI, Fauci AS. Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active antiretroviral therapy. Nat Med 2000; 6: 757–61.PubMedCrossRefGoogle Scholar
  225. 224.
    Ho DD, Zhang L. HIV-1 rebound after anti-retroviral therapy. Nat Med 2000; 6: 736–7.PubMedCrossRefGoogle Scholar
  226. 225.
    Davey RT Jr, Bhat N, Yoder C, Chun TW, Metcalf JA, Dewar R, et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci USA 1999; 96: 15109–14.PubMedCrossRefGoogle Scholar
  227. 226.
    Neumann AU, Tubiana R, Calvez V, Robert C, Li TS, Agut H, et al. HIV-1 rebound during interruption of highly active antiretroviral therapy has no deleterious effect on reinitiated treatment. Comet Study Group. AIDS 1999; 13: 677–83.PubMedCrossRefGoogle Scholar
  228. 227.
    Ruiz L, Martinez-Picadol J, Romeu J, Paredes R, Zayat MK, Marfil S, et al. Structured treatment interruption in chronically HIV-1 infected patients after long-term viral suppression. AIDS 2000; 14: 397–403.PubMedCrossRefGoogle Scholar
  229. 228.
    Friedrich MJ. HAART stopping news: experts examine structured therapy interruption for HIV. JAMA 2000; 283: 2917–8.PubMedCrossRefGoogle Scholar
  230. 229.
    Zou W, Foussat A, Houhou S, Durand-Gasselin I, Dulioust A, Bouchet L, et al. Acute upregulation of CCR-5 expression by CD4+ T lymphocytes in HIV-infected patients treated with interleukin-2. ANRS 048 IL-2 Study Group. AIDS 1999; 13: 455–63.PubMedCrossRefGoogle Scholar
  231. 230.
    Weissman D, Dybul M, Daucher MB, Davey RT Jr, Walker RE, Kovacs JA. Interleukin-2 up-regulates expression of the human immunodeficiency virus fusion coreceptor CCR5 by CD4+ lymphocytes in vivo. J Infect Dis 2000; 181: 933–8.PubMedCrossRefGoogle Scholar
  232. 231.
    Loetscher P, Seitz M, Baggiolini M, Moser B. Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes. J Exp Med 1996; 184: 569–77.PubMedCrossRefGoogle Scholar
  233. 232.
    Patterson BK, Czerniewski M, Andersson J, Sullivan Y, Su F, Jiyamapa D, et al. Regulation of CCR5 and CXCR4 expression by type 1 and type 2 cytokines: CCR5 expression is downregulated by IL-10 in CD4-positive lymphocytes. Clin Immunol 1999; 91: 254–62.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Guido Poli

There are no affiliations available

Personalised recommendations