Advertisement

Intrahost Selective Pressure and HIV-1 Heterogeneity During Progression to AIDS

  • Vladimir V. Lukashov
  • Jaap Goudsmit
Chapter
Part of the Infectious Disease book series (ID)

Abstract

One of the most striking characteristics of human immunodeficiency virus type 1 (HIV-1) is the immense genetic variation of this virus. Within a single individual, HIV-1 population exists at any given time point as a swarm of mutant viruses, in which all viruses are genetically related yet virtually every virus is unique (intrahost heterogeneity) and is changing over time on almost a daily basis (intrahost evolution). Moreover, infected individuals within a human population harbour distinct viruses (interhost or population-wide heterogeneity). The majority of HIV-1 strains could be grouped into genetic subtypes A–J of HIV-1 group M, based on phylogenetic analysis of their sequences (1–9). Many viruses have been shown to have mosaic genomes, in which different genes or gene regions are related to distinct HIV-1 subtypes (10,11). A few dozens of HIV-1 strains described so far belong to more distant HIV-1 groups O and N (12).

Keywords

Human Immunodeficiency Virus Type Acquire Immune Deficiency Syndrome Virus Population Acquire Immune Deficiency Syndrome Progression Acquire Immune Deficiency Syndrome Diagnosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hahn BH, Gonda MA, Shaw GM, et al. Genomic diversity of the acquired immune deficiency syndrome virus HTLV-III: different viruses exhibit greatest divergence in their envelope genes. Proc Natl Acad Sci USA 1985; 82: 4813–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Wong-Staal F, Shaw GM, Hahn BH, et al. Genomic diversity of human T-lymphotropic virus type III (HTLV III). Science 1985; 229: 759–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Kuiken CL, Zwart G, Baan E, Coutinho RA, Van den Hoek JAR, Goudsmit J. Increasing antigenic and genetic diversity of the V3 variable domain of the human immunodeficiency virus envelope protein in the course of the AIDS epidemic. Proc Natl Acad Sci USA 1993; 90: 9061–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Kuiken CL, Lukashov VV, Baan E, Dekker J, Leunissen JAM, Goudsmit J. Evidence for limited within-person evolution of the V3 domain of the HIV-1 envelope in the Amsterdam population. AIDS 1996; 10: 31–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Kalish ML, Luo C-C, Weniger BG, et al. Early HIV type 1 strains in Thailand were not responsible for the current epidemic. AIDS Res Hum Retrovir 1994; 10: 1573–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Ou C-Y, Takebe Y, Weniger BG, et al. Independent introduction of two major HIV-1 genotypes into distinct high-risk populations in Thailand. Lancet 1993; 341: 1171–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Lukashov VV, Cornelissen MTE, Goudsmit J, et al. Simultaneous introduction of distinct HIV-1 subtypes into different risk groups in Russia, Byelorussia and Lithuania. AIDS 1995; 9: 435–9.PubMedGoogle Scholar
  8. 8.
    Zhu T, Mo H, Wang N, et al. Genotypic and phenotypic characterization of HIV-1 in patients with primary infection. Science 1993; 261: 1179–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Lukashov VV, Kuiken CL, Boer K, Goudsmit J. HIV type 1 subtypes in The Netherlands circulating among women originating from AIDS endemic regions. AIDS Res Hum Retrovir 1996; 12: 951–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Robertson DL, Sharp PM, McCutchan FE, Hahn BH. Recombination in HIV-1. Nature 1995; 374: 124–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Cornelissen M, Kampinga G, Zorgdrager F, Goudsmit J, The UNAIDS Network for HIV Isolation and Characterization. Human immunodeficiency virus type 1 subtypes defined by env show high frequency of recombinant gag genes. J Virol 1996; 70: 8209–12.PubMedGoogle Scholar
  12. 12.
    Peeters M, Gueye A, Mboup S, et al. Geographical distribution of HIV-1 group O viruses in Africa. AIDS 1997; 11: 493–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science 1988; 242: 1171–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Bebenek K, Abbotts J, Roberts JD, Wilson SN, Kunkel TA. Specificity and mechanism of error-prone replication by human immunodeficiency virus-1 reverse transcriptase. J Biol Chem 1989; 264, 28: 16948–56.Google Scholar
  15. 15.
    Roberts JD, Preston BD, Johnston LA, Soni A, Loeb LA, Kunkel TA. Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro. Mol Cell Biol 1989; 9: 469–76.PubMedGoogle Scholar
  16. 16.
    Preston BD, Poiesz BJ, Loeb LA. Fidelity of HIV-1 reverse transcriptase. Science 1988; 242: 1168–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Ricchetti M, Buc H. Reverse transcriptases and genomic variability: the accuracy of DNA replication is enzyme specific and sequence dependent. EMBO J 1990; 9, 5: 1583–93.Google Scholar
  18. 18.
    Nowak M. HIV mutation rate. Nature 1990; 347: 522.PubMedCrossRefGoogle Scholar
  19. 19.
    Hu W, Temin HM. Retroviral recombination and reverse transcription. Science 1990; 250: 1227–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Pathak VK, Temin HM. Broad spectrum of in vivo forward mutations, hypermutations and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc Natl Acad Sci USA 1990; 87: 6019–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Pulsinelli GA, Temin HM. Characterization of large deletions occurring during a single round of retrovirus vector replication: novel deletion mechanism involving errors in strand transfer. J Virol 1991; 65: 4786–97.PubMedGoogle Scholar
  22. 22.
    Hu W-S, Temin HM. Retroviral recombination and reverse transcription. Science 1990; 250: 1227–33.PubMedCrossRefGoogle Scholar
  23. 23.
    Piatak M, Saag MS, Yang LC, et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 1993; 259: 1749–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Connor RI, Mohri H, Cao Y, Ho DD. Increased viral burden and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type-1 infected individuals. J Virol 1993; 67: 1772–7.PubMedGoogle Scholar
  25. 25.
    Daar ES, Moudgil T, Meyer RD, Ho DD. Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N Engl J Med 1991; 324: 961–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Graziosi C, Pantaleo G, Butini L, et al. Kinetics of human immunodeficiency virus type 1 (HIV-1) DNA and RNA synthesis during primary HIV-1 infection. Proc Natl Acad Sci USA 1993; 90: 6405–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Jurriaans S, Van Gemen B, Weverling GJ, et al. The natural history of HIV-1 infection: virus load and virus phenotype independent determinants of clinical course? Virology 1994; 204: 223–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Jurriaans S, Weverling GJ, Goudsmit J, et al. Distinct changes in HIV type 1 RNA versus p24 antigen levels in serum during short-term zidovudine therapy in asymptomatic individuals with and without progression to AIDS. AIDS Res Hum Retrovir 1995; 11: 473–9.PubMedGoogle Scholar
  29. 29.
    Hogervorst E, Jurriaans S, De Wolf F, et al. Predictors for non-and slow progression in human immunodeficiency virus type 1 infection: low viral RNA copy numbers in serum and maintenance of high HIV-1 p24-specific, but not V3-specific antibody levels. J Infect Dis 1995; 171: 811–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Mellors JW, Kingsley LA, Rinaldo CR Jr, Todd JA, Hoo BS, Kokka RP, Gupta P. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann Intern Med 1995; 122: 573–9.PubMedGoogle Scholar
  31. 31.
    Mellors JW, Rinaldo CR, Gupta P, White RM, Todd JA, Kingsley LA. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 1996; 272: 1167–70.PubMedCrossRefGoogle Scholar
  32. 32.
    Gupta P, Kingsley L, Armstrong J, Ding M, Cottrill M, Rinaldo C. Enhanced expression of human immunodeficiency virus type 1 correlates with development of AIDS. Virology 1993; 196: 586–95.PubMedCrossRefGoogle Scholar
  33. 33.
    Schechter MT, Neumann PW, Weaver MS, et al. Low HIV-1 proviral DNA burden detected by negative polymerase chain reaction in seropositive individuals correlates with slower disease progression. AIDS 1991; 5: 373–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Spijkerman IJ, Prins M, Goudsmit J, et al. Early and late HIV-1 RNA level and its association with other markers and disease progression in long-term AIDS-free homosexual men. AIDS 1997; 11: 1383–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Keet IP, Janssen M, Veugelers PJ, et al. Longitudinal analysis of CD4 T cell counts, T cell reactivity, and human immunodeficiency type 1 RNA levels in persons remaining AIDS-free despite CD4 cell counts 200 for 5 years. J Infect Dis 1997; 176: 665–71.PubMedCrossRefGoogle Scholar
  36. 36.
    Goudsmit J, De Ronde A, Ho DD, Perelson AS. Human immunodeficiency virus fitness in vivo: calculation based on a single zidovudine resistance mutation at codon 215 of reverse transcriptase. J Virol 1996; 70: 5662–4.PubMedGoogle Scholar
  37. 37.
    Blaak H, Brouwer M, Ran LJ, De Wolf F, Schuitemaker H. In vitro replication kinetics of human immunodeficiency virus type 1 (HIV-1) variants in relation to virus load in long-term survivors of HIV-1 infection. J Infect Dis 1998; 177: 600–10.PubMedCrossRefGoogle Scholar
  38. 38.
    Blaak H, De Wolf F, Van’t Wout AB, et al. Temporal relationship between human immunodeficiency virus type 1 RNA levels in serum and cellular infectious load in peripheral blood. J Infect Dis 1997; 176: 1383–7.PubMedCrossRefGoogle Scholar
  39. 39.
    De Wolf F, Spijkerman I, Schellekens PT, et al. AIDS prognosis based on HIV-1 RNA, CD4+ T-cell count and function: markers with reciprocal predictive value over time after seroconversion. AIDS 1997; 11: 1799–806.PubMedCrossRefGoogle Scholar
  40. 40.
    Goudsmit J, Debouck C, Meloen RH, et al. Human immunodeficiency virus type l neutralization epitope with conserved architecture elicits early type-specific antibodies in experimentally infected chimpanzees. Proc Natl Acad Sci USA 1988; 85: 4478–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Palker TJ, Clark ME, Langlois AJ, et al. Type-specific neutralization of the human immunodeficiency virus with antibodies to env-encoded synthetic peptides. Proc Natl Acad Sci USA 1988; 85: 1932–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Safrit JT, Lee AY, Andrews CA, Koup RA. A region of the third variable loop of HIV-1 gp120 is recognized by HLA-B7-restricted CTLs from two acute seroconversion patients. J Immunol 1994; 153: 3822–30.PubMedGoogle Scholar
  43. 43.
    Rusche JR, Javaherian K, McDanal C, et al. Antibodies that inhibit fusion of human immunodeficiency virus-infected cells bind a 24-amino acid sequence of the viral envelope, gp120. Proc Natl Acad Sci USA 1988; 85: 3198–202.PubMedCrossRefGoogle Scholar
  44. 44.
    Takahashi H, Cohen J, Hosmalin A, et al. An immunodominant epitope of the human immunodeficiency virus envelope glycoprotein gp160 recognized by class I major histocompatibility complex molecule-restricted murine cytotoxic T lymphocytes. Proc Natl Acad Sci USA 1988; 85: 3105–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Takahashi H, Germain RN, Moss B, Berzofsky JA. An immunodominant class I-restricted cytotoxic T lymphocyte determinant of human immunodeficiency virus type 1 induces CD4 Class II-restricted help for itself. J Exp Med 1990; 171: 571–6.PubMedCrossRefGoogle Scholar
  46. 46.
    De Jong JJ, Goudsmit J, Keulen W, et al. Human immunodeficiency virus type 1 clones chimeric for the envelope V3 domain differ in syncytium formation and replication capacity. J Virol 1992; 66: 757–65.PubMedGoogle Scholar
  47. 47.
    Kuiken CL, De Jong JJ, Baan E, Keulen W, Tersmette M, Goudsmit J. Evolution of the V3 envelope domain in proviral sequences and isolates of human immunodeficiency virus type 1 during transition of the viral biological phenotype. J Virol 1992; 66: 4622–7.PubMedGoogle Scholar
  48. 48.
    De Jong JJ, De Ronde A, Keulen W, Tersmette M, Goudsmit J. Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing (SI) phenotype: analysis by single amino acid substitution. J Virol 1992; 66: 6777–80.PubMedGoogle Scholar
  49. 49.
    Fouchier RAM, Groenink M, Kootstra NA, et al. Phenotype associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. J Virol 1992; 66: 3183–7.PubMedGoogle Scholar
  50. 50.
    De Wolf F, Hogervorst E, Goudsmit J, et al. Syncytium-inducing and non-syncytium-inducing capacity of human immunodeficiency virus type 1 subtypes other than B: phenotypic and genotypic characteristics. AIDS Res Hum Retrovir 1994; 10: 1387–400.PubMedCrossRefGoogle Scholar
  51. 51.
    Wolfs TFW, Zwart G, Bakker M, Goudsmit J. HIV-1 genomic RNA diversification following sexual and parental virus transmission. Virology 1992; 189: 103–10.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhu T, Wang N, Can A, et al. Genetic characterization of human immunodeficiency virus type 1 in blood and genital secretions: evidence for viral compartmentalization and selection during sexual transmission. J Virol 1996; 70: 3098–107.PubMedGoogle Scholar
  53. 53.
    Zhang LQ, Mackenzie P, Cleland A, Holmes EC, Leigh Brown AJ, Simmonds P. Selection for specific sequences in the external envelope protein of human immunodeficiency virus type 1 upon primary infection. J Virol 1993; 67: 3345–56.PubMedGoogle Scholar
  54. 54.
    Wolinsky SM, Wike CM, Korber BTM, et al. Selective transmission of human immunodeficiency virus type-1 variants from mothers to infant. Science 1992; 255: 1134–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Cornelissen M, Mulder-Kampinga G, Veenstra J, et al. Syncitium-inducing (SI) phenotype suppression at seroconversion after intramuscular inoculation of a non-syncytium-inducing/SI phenotypically mixed human immunodeficiency virus population. J Virol 1995; 69: 1810–8.PubMedGoogle Scholar
  56. 56.
    Mulder-Kampinga GA, Kuiken C, Dekker J, Scherpbier HJ, Boer K, Goudsmit J. Genomic human immunodeficiency virus type 1 RNA variation in mother and child following intra-uterine virus transmission. J Gen Virol 1993; 74: 1747–56.PubMedCrossRefGoogle Scholar
  57. 57.
    McNeamey T, Hornickova Z, Markham R, et al. Relationship of human immunodeficiency virus type 1 sequence heterogeneity to stage of disease. Proc Natl Acad Sci USA 1992; 89: 10247–51.CrossRefGoogle Scholar
  58. 58.
    Goudsmit J, Lukashov VV, Van Ameijden EJ, Zorgdrager F, Van den Burg R, Cornelissen M. Impact of sexual versus parenteral transmission events on the evolution of the gag and env genes of HIV type 1. AIDS Res Hum Retrovir 1998; 14: 1483–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Schuitemaker H, Kootstra NA, De Goede REY, De Wolf F, Miedema F, Tersmette M. Monocytotropic human immunodeficiency virus type 1 (HIV-l) variants detectable in all stages of HIV-1 infection lack T-cell line tropism and syncytium-inducing ability in primary T-cell culture. J Virol 1991; 65, 1: 356–63.Google Scholar
  60. 60.
    Van’t Wout AB, Kootstra NA, Mulder-Kampinga GA, et al. Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral and vertical transmission. J Clin Invest 1994; 94: 2060–7.CrossRefGoogle Scholar
  61. 61.
    Lukashov VV, Goudsmit J. Increasing genotypic and phenotypic selection from the original genomic RNA populations of HIV-1 strains LAI and MN (NM) by peripheral blood mononuclear cell culture, B-cell-line propagation and T-cell-line adaptation. AIDS 1995; 9: 1307–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Àsjö B, Morfeldt-Mânson L, Albert J, et al. Replicative capacity of human immunodeficiency virus from patients with varying severity of HIV infection. Lancet 1986; ii:660–2.Google Scholar
  63. 63.
    Groenink M, Fouchier RAM, Broersen S, et al. Relation of phenotype evolution of HIV-1 to envelope V2 configuration. Science 1993; 260: 1513–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Groenink M, Andeweg AC, Fouchier RAM, et al. Phenotype-associated env gene variation among eight related human immunodeficiency virus type 1 clones: evidence for in vivo recombination and determinants of cytotropism outside the V3 domain. J Virol 1992; 66: 6175–80.PubMedGoogle Scholar
  65. 65.
    Berger EA, Doms RW, Fenyo EM, et al. A new classification for HIV-1 [letter]. Nature 1998; 391: 240.PubMedCrossRefGoogle Scholar
  66. 66.
    Koot M, Keet IPM, Vos AHV, et al. Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression of AIDS. Ann Intern Med 1993; 118: 681–8.PubMedGoogle Scholar
  67. 67.
    Spijkerman IJB, Koot M, Prins M, et al. Lower prevalence and incidence of HIV-1 syncytiuminducing phenotype among injecting drug users compared with homosexual men. AIDS 1995; 9: 1085–92.PubMedCrossRefGoogle Scholar
  68. 67a.
    Abebe A, Demissie D, Goudsmit J, Brouwer M, Kuiken CL, Pollakis G, et al. HIV-1 subtype C syncytium-and non-syncytium-inducing phenotypes and coreceptor usage among Ethiopian patients with AIDS. AIDS 1999; 13: 1305–11.PubMedCrossRefGoogle Scholar
  69. 68.
    Tersmette M, Lange JMA, De Goede REY, et al. Association between biological properties of human immunodeficiency virus variants and risk for AIDS and AIDS mortality. Lancet 1989; i:983–5.Google Scholar
  70. 69.
    Tersmette M, Gruters RA, De Wolf F, et al. Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV isolates. J Virol 1989; 63: 2118–25.PubMedGoogle Scholar
  71. 70.
    Schuitemaker H, Koot M, Kootstra NA, et al. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus populations. J Virol 1992; 66: 1354–60.PubMedGoogle Scholar
  72. 71.
    Fouchier RAM, Schuitemaker H. Molecular determinants of human immunodeficiency virus type 1 phenotype variability. Eur J Clin Invest 1996; 26: 175–85.PubMedCrossRefGoogle Scholar
  73. 72.
    Fouchier RA, Meyaard L, Brouwer M, Hovenkamp E, Schuitemaker H. Broader tropism and higher cytopathicity for CD4+ T cells of a syncytium-inducing compared to a non-syncytiuminducing HIV-1 isolate as a mechanism for accelerated CD4+ T cell decline in vivo. Virology 1996; 219: 87–95.PubMedCrossRefGoogle Scholar
  74. 73.
    Cheng-Mayer C, Weiss C, Seto D, Levy JA. Isolates of human immunodeficiency virus type 1 from the brain may constitute a special group of the AIDS virus. Proc Natl Acad Sci USA 1989; 86: 8575–9.PubMedCrossRefGoogle Scholar
  75. 74.
    Epstein LG, Kuiken C, Blumberg BM, et al. HIV-1 V3 domain variation in brain and spleen of children with AIDS: tissue-specific evolution within host-determined quasispecies. Virology 1991; 180: 583–90.PubMedCrossRefGoogle Scholar
  76. 75.
    Kuiken CL, Goudsmit J, Weiller GF, et al. Differences in human immunodeficiency virus type 1 V3 sequences from patients with and without AIDS dementia complex. J Gen Virol 1995; 76: 175–80.PubMedCrossRefGoogle Scholar
  77. 76.
    Van der Hoek L, Sol CJA, Maas J, Lukashov VV, Kuiken CL, Goudsmit J. Genetic differences between human immunodeficiency virus type 1 subpopulations in faeces and serum. J Gen Virol 1998; 79: 259–67.PubMedGoogle Scholar
  78. 77.
    Van der Hoek L, Sol CJA, Snijders F, Bartelsman JFW, Boom R, Goudsmit J. Human immunodeficiency virus type 1 RNA populations in faeces with higher homology to intestinal populations than to blood populations. J Gen Virol 1996; 77: 2415–25.PubMedCrossRefGoogle Scholar
  79. 78.
    Bou-Habib DC, Roderiquez G, Oravecz T, Berman PW, Lusso P, Norcross MA. Cryptic nature of envelope V3 region epitopes protects primary monocytotropic human immunodeficiency virus type 1 from antibody neutralization. J Virol 1994; 68: 6006–13.PubMedGoogle Scholar
  80. 79.
    Hogervorst E, De Jong JJ, Van Wijk A, et al. Insertion of primary syncytium-inducing (SI) and non-SI envelope V3 loops in human immunodeficiency virus type 1 LAI (HIV-ILAI) reduces neutralization sensitivity to autologous, but not heterologous HIV-1 antibodies. J Virol 1995; 69: 6342–51.PubMedGoogle Scholar
  81. 80.
    Wolfs TFW, Zwart G, Bakker M, Valk M, Kuiken CL, Goudsmit J. Naturally occurring mutations within HIV-1 V3 genomic RNA lead to antigenic variation dependent on a single amino acid substitution. Virology 1991; 185: 195–205.PubMedCrossRefGoogle Scholar
  82. 81.
    Zwart G, Wolfs TFW, Valk M, Van der Hoek L, Kuiken CL, Goudsmit J. Characterization of the specificity of the human antibody response to the V3 neutralization domain of 11IV-1. AIDS Res Hum Retrovir 1992; 8: 1897–908.PubMedCrossRefGoogle Scholar
  83. 82.
    Zwart G, Langedijk H, Van der Hoek L, et al. Immunodominance and antigenic variation of the principal neutralization domain of HIV-1. Virology 1991; 181: 481–9.PubMedCrossRefGoogle Scholar
  84. 83.
    Arendrup M, Nielsen C, Hansen J-ES, Pedersen C, Mathiesen L, Nielsen JO. Autologous HIV-1 neutralizing antibodies: emergence of neutralization-resistant escape virus and subsequent development of escape virus neutralizing antibodies. J AIDS 1992; 5: 303–7.Google Scholar
  85. 84.
    Arendrup M, Sönnerborg A, Svennerholm B, et al. Neutralizing antibody response during human immunodeficiency virus type 1 infection: type and group specificity and viral escape. J Gen Virol 1993; 74: 855–63.PubMedCrossRefGoogle Scholar
  86. 85.
    Watkins BA, Buge S, Aldrich K, et al. Resistance of human immunodeficiency virus type 1 to neutralization by natural antisera occurs through single amino acid substitutions that cause changes in antibody binding at multiple sites. J Virol 1996; 70: 8431–7.PubMedGoogle Scholar
  87. 86.
    Sirko DA, Ehrlich GD. Genotypic and phenotypic characterization of a neutralization-resistant breakthrough population of HIV-1. Virology 1997; 218: 238–42.CrossRefGoogle Scholar
  88. 87.
    Bongertz V, Costa CI, Santos VG, Filho EC, Galvao-Castro B, Morgado MG. Correlation between susceptibility of primary HIV-1 isolates to autologous and heterologous neutralizing antibodies. AIDS 1997; 11: 969–75.PubMedCrossRefGoogle Scholar
  89. 88.
    Tsang ML, Evans LA, McQueen P, et al. Neutralizing antibodies against sequential autologous human immunodeficiency virus type 1 isolates after seroconversion. J Infect Dis 1994; 170: 1141–7.PubMedCrossRefGoogle Scholar
  90. 89.
    Yoshida K, Nakamura M, Ohno T. Mutations of the HIV type I V3 loop under selection pressure with neutralizing monoclonal antibody NM-01. AIDS Res Hum Retrovir 1997; 13: 1283–90.PubMedCrossRefGoogle Scholar
  91. 90.
    Back NKT, Smit L, De Jong JJ, et al. An N-glycan within the human immunodeficiency virus type 1 gp120 V3 loop affects virus neutralization. Virology 1994; 199: 431–8.PubMedCrossRefGoogle Scholar
  92. 91.
    Back NKT, Smit L, Schutten M, Nara PL, Tersmette M, Goudsmit J. Mutations in HIV-1 gp41 affect sensitivity to neutralization by gp120 antibodies and soluble CD4. J Virol 1993; 67: 6897–902.PubMedGoogle Scholar
  93. 92.
    Cao Y, Qing L, Zhang L, Safrit J, Ho DD. Virologie and immunologic characterization of longterm survivors of human immunodeficiency virus type 1 infection. N Engl J Med 1995; 332: 201–8.PubMedCrossRefGoogle Scholar
  94. 93.
    Pantaleo G, Menzo S, Vaccarezza M, et al. Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. N Engl J Med 1995; 332: 209–16.PubMedCrossRefGoogle Scholar
  95. 94.
    Carotenuto P, Looij D, Keldermans L, De Wolf F, Goudsmit J. Neutralizing antibodies are positively associated with CD4+ T-cell counts and T-cell function in long-term AIDS-free infection. AIDS 1998; 12: 1591–600.PubMedCrossRefGoogle Scholar
  96. 95.
    Igarashi T, Brown C, Azadegan A, et al. Human immunodeficiency virus type 1 neutralizing antibodies accelerate clearance of cell-free virions from blood plasma. Nat Med 1999; 5: 211–6.PubMedCrossRefGoogle Scholar
  97. 96.
    Zwart G, Van der Hoek L, Valk M, et al. Antibody responses to HIV-1 envelope and gag epitopes in HIV-1 seroconverters with rapid versus slow disease progression. Virology 1994; 201: 285–93.PubMedCrossRefGoogle Scholar
  98. 97.
    Montefiori DC, Pantaleo G, Fink LM, et al. Neutralizing and infection enhancing antibody responses to human immunodeficiency virus type 1 in long-term nonprogressors. J Infect Dis 1996; 173: 60–7.PubMedCrossRefGoogle Scholar
  99. 98.
    Harper T, Harrer E, Kalams SA, et al. Strong cytotoxic T cell and weak neutralising antibody responses in a subset of persons with stable nonprogressing HIV type 1 infection. AIDS Res Hum Retrovir 1996; 12: 585–92.CrossRefGoogle Scholar
  100. 99.
    Robinson WE Jr, Montefiori DC, Mitchell WM. Antibody-dependent enhancement of human immunodeficiency virus type I infection. Lancet 1988; i:790–4.Google Scholar
  101. 100.
    Kliks SC, Shioda T, Haigwood NL, Levy JA. V3 variability can influence the ability of an antibody to neutralize or enhance infection by diverse strains of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1993; 90: 11518–22.PubMedCrossRefGoogle Scholar
  102. 101.
    Klein MR, Van Baalen CA, Holwerda AM, et al. Kinetics of gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: a longitudinal analysis of rapid progressors and long-term asymptomatics. J Exp Med 1995; 181: 1365–72.PubMedCrossRefGoogle Scholar
  103. 102.
    McMichael AJ, Phillips RE. Escape of human immunodeficiency virus from immune control. Annu Rev Immunol 1997; 15: 271–96.PubMedCrossRefGoogle Scholar
  104. 103.
    Harrer T, Harrer E, Kalams SA, et al. Cytotoxic T lymphocytes in asymptomatic long-term non-progressing HIV-1 infection. Breadth and specificity of the response and relation to in vivo viral quasispecies in a person with prolonged infection and low viral load. J Immunol 1996; 156: 2616–23.PubMedGoogle Scholar
  105. 104.
    Bariou C, Genetet N, Ruffault A, Michelet C, Cartier F, Genetet B. Longitudinal study of HIV-specific cytotoxic lymphocytes in HIV type 1-infected patients: relative balance between host immune response and the spread of HIV type 1 infection. AIDS Res Hum Retrovir 1997; 13: 1301–12.PubMedCrossRefGoogle Scholar
  106. 105.
    Pontesilli O, Klein MR, Kerkhof-Garde SR, et al. Longitudinal analysis of human immunodeficiency virus type 1-specific cytotoxic T lymphocyte responses: a predominant gag-specific response is associated with nonprogressive infection. J Infect Dis 1998; 178: 1008–18.PubMedCrossRefGoogle Scholar
  107. 106.
    Pellegrin I, Legrand E, Neau D, et al. Kinetics of appearance of neutralizing antibodies in 12 patients with primary or recent HIV-1 infection and relationship with plasma and cellular viral loads. J AIDS Retrovirol 1997; 11: 438–47.Google Scholar
  108. 107.
    Koup RA, Safrit JT, Cao Y, et al. Temporal association of cellular immune response with the initial control of viremia in primary HIV-1 syndrome. J Virol 1994; 68: 4650–5.PubMedGoogle Scholar
  109. 108.
    Borrow P, Lewicki H, Wei X, et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 1997; 3: 205–11.PubMedCrossRefGoogle Scholar
  110. 109.
    Goulder PJR, Phillips RE, Colbert RA, et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med 1997; 3: 212–7.PubMedCrossRefGoogle Scholar
  111. 110.
    Price DA, Goulder PJR, Klenerman P, et al. Positive selection of HIV-1 cytotoxic T-lymphocyte escape variants during primary infection. Proc Natl Acad Sci USA 1997; 94: 1890–5.PubMedCrossRefGoogle Scholar
  112. 111.
    Zhang WH, Hockley DJ, Nermut MV, Jones IM. Functional consequences of mutations in HIV-1 gag p55 selected by CTL pressure. Virology 1994; 203: 101–5.PubMedCrossRefGoogle Scholar
  113. 112.
    Johnson RP, Trocha A, Buchanan TM, Walker BD. Recognition of a highly conserved region of human immunodeficiency virus type 1 gp120 by an HLA-Cw4-restricted cytotoxic T-lymphocyte clone. J Virol 1993; 67: 438–45.PubMedGoogle Scholar
  114. 113.
    Nowak MA, May RM, Anderson RM. The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease. AIDS 1990; 4: 1095–3.PubMedCrossRefGoogle Scholar
  115. 114.
    Nowak MA, Anderson RM, McLean AR, Wolfs TFW, Goudsmit J, May RM. Antigenic diversity thresholds and the development of AIDS. Science 1991; 254: 963–9.PubMedCrossRefGoogle Scholar
  116. 115.
    McLean AR. The balance of power between HIV and the immune system. Trends Microbiol 1993; 1: 9–13.PubMedCrossRefGoogle Scholar
  117. 116.
    Lukashov VV, Goudsmit J. HIV heterogeneity and disease progression in AIDS: a model of continuous virus adaptation. AIDS 1998; 12: 543 - S52.CrossRefGoogle Scholar
  118. 117.
    Lukashov VV, Kuiken CL, Goudsmit J. Intrahost human immunodeficiency virus type 1 evolution is related to length of the immunocompetent period. J Virol 1995; 69: 6911–6.PubMedGoogle Scholar
  119. 118.
    Wolinsky SM, Korber BTM, Neumann AU, et al. Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection. Science 1996; 272: 537–42.PubMedCrossRefGoogle Scholar
  120. 119.
    Shioda T, Oka S, Xin SM, et al. In vivo sequence variability of human immunodeficiency virus type 1 envelope gp120-association of V2 extension with slow disease progression. J Virol 1997; 71: 4871–1.PubMedGoogle Scholar
  121. 120.
    Liu SL, Schacker T, Musey L, et al. Divergent patterns of progression to AIDS after infection from the same source-human immunodeficiency virus type 1 evolution and antiviral response. J Virol 1997; 71: 4284–95.PubMedGoogle Scholar
  122. 121.
    Salvatori F, Masiero S, Giaquinto C, et al. Evolution of human immunodeficiency virus type 1 in perinatally infected infands with rapid and slow progression to disease. J Virol 1997; 71: 4694–706.PubMedGoogle Scholar
  123. 122.
    McDonald RA, Mayers DL, Chung RCY, et al. Evolution of human immunodeficiency virus type 1 env sequence variation in patients with diverse rates of disease progression and T-cell function. J Virol 1997; 71: 1871–9.PubMedGoogle Scholar
  124. 123.
    Yamaguchi Y, Gojobori T. Evolutionary mechanisms and population dynamics of the 3rd variable envelope region of HIV within single hosts. Proc Natl Acad Sci USA 1997; 94: 1264–9.PubMedCrossRefGoogle Scholar
  125. 124.
    Zhang LQ, Diaz RS, Ho DD, Mosley JW, Busch MP, Mayer A. Host-specific driving force in human immunodeficiency virus type 1 evolution in vivo. J Virol 1997; 71: 2555–61.PubMedGoogle Scholar
  126. 125.
    Ganeshan S, Dickover RE, Korber BTM, Bryson YJ, Wolinsky SM. Human immunodeficiency virus type 1 genetic evolution in children with different rates of development of disease. J Virol 1997; 71: 663–77.PubMedGoogle Scholar
  127. 126.
    Delwart EL, Sheppard HW, Walker BD, Goudsmit J, Mullins JI. Human immunodeficiency virus type 1 evolution in vivo tracked by DNA heteroduplex mobility assays. J Virol 1994; 68: 6672–83.PubMedGoogle Scholar
  128. 127.
    Halapi E, Leitner T, Jansson M, et al. Correlation between HIV sequence evolution, specific immune response and clinical outcome in vertically infected infants. AIDS 1997; 11: 1709–17.PubMedCrossRefGoogle Scholar
  129. 128.
    Wolinsky SM, Kunstman KJ, Safrit JT, Koup RA, Neumann AU, Korber BTM. HIV-1 evolution and disease progression. Science 1996; 274: 1010–11.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Vladimir V. Lukashov
  • Jaap Goudsmit

There are no affiliations available

Personalised recommendations