Skip to main content

The Blood-Brain Barrier

  • Chapter
  • 184 Accesses

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

The main function of the cardiovascular system is the exchange of solutes between blood and tissue interstitial space. Thus, blood is the source of oxygen (O2) and nutrients such as glucose (GLU) for the tissue, and the mechanism by which waste products, such as carbon dioxide (CO2), are removed from tissue. The site of such exchange is the capillary. In most tissues of the body, plasma solutes (except plasma proteins) freely diffuse across or between the capillary endothelial cells (ECs). In such tissues, the stability of the tissue microenvironment (the interstitial fluid [ISF]) depends chiefly on the stability of plasma composition. In the case of the brain, stability of the microenvironment is essential for normal brain function, and the cerebral capillaries (with the exception of certain specialized regions: see Chapter 12) are structurally and functionally different from other capillaries, forming what is known as the blood-brain barrier (BBB). The cerebral capillary ECs are linked by tight junctions and form a diffusion barrier to the entry of many compounds from blood to brain. However, the cerebral capillaries are not just a passive barrier: There are many different transport processes at the cerebral capillaries to facilitate the movement of nutrients into brain, and to control the brain microenvironment. They also serve as an enzymatic barrier to the movement of compounds between blood and brain via degradation of unwanted compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldmann, E. (1909) Die äussere und innere Sekretion des Gesunden und Kranken organismus im Lichte der “vitalen Färbung”. Bietr Klin Chirurg 64, 192–265.

    Google Scholar 

  2. Reese, T. S. and Karnovsky, M. J. (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34, 207–217.

    Article  PubMed  CAS  Google Scholar 

  3. Brightman, M. W. and Reese, T. S. (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677.

    Article  PubMed  CAS  Google Scholar 

  4. Butt, A. M. and Jones, H. C. (1992) Effect of histamine and antagonists on electrical resistance across the blood-brain barrier in rat brain-surface microvessels. Brain Res. 569, 100–105.

    Article  PubMed  CAS  Google Scholar 

  5. Smith, Q. R. and Rapoport, S. I. (1986) Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J. Neurochem. 46, 1732–1742.

    Article  PubMed  CAS  Google Scholar 

  6. Tsukita, S., Furuse, M., and Itoh, M. (1999) Structural and signaling molecules come together at tight junctions. Curr. Opin. Cell Biol. 11, 628–633.

    Article  PubMed  CAS  Google Scholar 

  7. Stevenson, B. R. (1999) Understanding tight junction clinical physiology at the molecular level. J. Clin. Invest. 104, 3–4.

    Article  PubMed  CAS  Google Scholar 

  8. Olesen, S.-P. and Crone, C. (1986) Substances that rapidly augment ionic conductance of endothelium in cerebral venules. Acta Physiol. Scand. 127, 233–241.

    Article  PubMed  CAS  Google Scholar 

  9. Sarker, M. H., Easton, A. S., and Fraser, P. A. (1998) Regulation of cerebral microvascular permeability by histamine in the anaesthetized rat. J. Physiol. 507, 909–918.

    Article  PubMed  CAS  Google Scholar 

  10. de Boer, A. G., Gaillard, P. J., and Breimer, D. D. (1999) The transference of results between blood-brain barrier cell culture systems. Eur. J. Pharm. Sci. 8, 1–4.

    Article  PubMed  Google Scholar 

  11. Raub, T. J. (1996) Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junctions. Am. J. Physiol. 271, C495–503.

    PubMed  CAS  Google Scholar 

  12. Ramsohoye, P. V. and Fritz, I. B. (1998) Preliminary characterization of glial-secreted factors responsible for the induction of high electrical resistances across endothelial monolayers in a blood-brain barrier model. Neurochem. Res. 23, 1545–1551.

    Article  PubMed  CAS  Google Scholar 

  13. Meyer, J., Mischeck, U., Veyhl, M., Henzel, K., and Galla, H. J. (1990) Blood-brain barrier characteristic enzymatic properties in cultured brain capillary endothelial cells. Brain Res. 514, 305–309.

    Article  PubMed  CAS  Google Scholar 

  14. Hemmila, J. M. and Drewes, L. R. (1993) Glucose transporter (GLUT 1) expression by canine brain microvessel endothelial cells in culture: an immunohistochemical study. Adv. Exp. Med. Biol. 331, 13–18.

    Article  PubMed  CAS  Google Scholar 

  15. Rubin, L. L., Hall, D. E., Porter, S., Barbu, K., Cannon, C., Horner, H. C., et al. (1991) A cell culture model of the blood-brain barrier. J. Cell Biol. 115, 1725–1735.

    Article  PubMed  CAS  Google Scholar 

  16. Abbott, N. J. (1998) Role of intracellular calcium in regulation of brain endothelial permeability, in Introduction to the Blood-Brain Barrier. Methodology, Biology and Pathology (Pardridge, W. M., ed.), Cambridge University Press, Cambridge, pp. 345–353.

    Chapter  Google Scholar 

  17. Betz, A. L., Iannotti, F., and Hoff, J. T. (1989) Brain edema: a classification based on blood-brain barrier integrity. Cerebrovasc. Brain Metab. Rev. 1, 133–154.

    PubMed  CAS  Google Scholar 

  18. Stewart, P. A. and Mikulis, D. (1998) The blood-brain barrier in brain tumors, in Introduction to the Blood-Brain Barrier. Methodology, Biology and Pathology (Pardridge, W. M., ed.), Cambridge University Press, Cambridge, pp. 434–440.

    Chapter  Google Scholar 

  19. Menzies, S. A., Betz, A. L., and Hoff, J. T. (1993) Contributions of ions and albumin to the formation and resolution of ischemic brain edema. J. Neurosurg. 78, 257–266.

    Article  PubMed  CAS  Google Scholar 

  20. Hiesiger, E. M., Voorhies, R. M., Basler, G. A., Lipschutz, L. E., Posner, J. B., and Shapiro, W. R. (1986) Opening the blood-brain and blood-tumor barriers in experimental rat brain tumors: the effect of intracarotid hyperosmolar mannitol on capillary permeability and blood flow. Ann. Neurol. 19, 50–59.

    Article  PubMed  CAS  Google Scholar 

  21. Preston, E. and Foster, D. O. (1997) Evidence for pore-like opening of the blood-brain barrier following forebrain ischemia in rats. Brain Res. 761, 4–10.

    Article  PubMed  CAS  Google Scholar 

  22. Klatzo, I. (1967) Neuropathological aspects of brain edema. J. Neuropathol. Exp. Neurol. 26, 1–14.

    Article  PubMed  CAS  Google Scholar 

  23. Bodsch, W., Rommel, T., Ophoff, B. G., and Menzel, J. (1987) Factors responsible for the retention of fluid in human tumor edema and the effect of dexamethasone. J. Neurosurg. 67, 250–257.

    Article  PubMed  CAS  Google Scholar 

  24. Reichman, H. R., Farrell, C. R., and Del Maestro, R. F. (1986) Effect of steroids and non-steroid anti-inflammatory agents on vascular permeability in a rat glioma model. J. Neurosurg. 65, 233–237.

    Article  PubMed  CAS  Google Scholar 

  25. Rapoport, S. I. and Robinson, P. J. (1986) Tight junctional modification as the basis of osmotic opening of the blood-brain barrier. Ann. NY Acad. Sci. 481, 250–266.

    Article  PubMed  CAS  Google Scholar 

  26. Bartus, R. T. (1999) The blood-brain barrier as a target for pharmacological manipulation. Curr. Opin. Drug Disc. Dev. 2, 152–167.

    CAS  Google Scholar 

  27. Drewes, L. R. (1998) Biology of the blood-brain barrier glucose transporter, in Introduction to the Blood-Brain Barrier. Methodology, Biology and Pathology (Pardridge, W. M., ed.), Cambridge University Press, Cambridge, pp. 165–174.

    Chapter  Google Scholar 

  28. Gerhart, D. Z., Emerson, B. E., Zhdankina, O. Y., Leino, R. L., and Drewes, L. R. (1997) Expression of monocarboxylate transporter MCT 1 by brain endothelium and glia in adult and suckling rats. Am. J. Physiol. 273, E207-E213.

    PubMed  CAS  Google Scholar 

  29. Drewes, L. R. (1999) Transport of the brain fuels, glucose and lactate, in Brain Barrier Systems (Paulson, O. B., Knudsen, G. M., and Moos, T., eds.), Munksgaard, Copenhagen, pp. 285–295.

    Google Scholar 

  30. Smith, Q. R. and Stoll, J. (1998) Blood-brain barrier amino acid transport, in Introduction to the Blood-Brain Barrier. Methodology, Biology and Pathology (Pardridge, W. M., ed.), Cambridge University Press, Cambridge, pp. 188–197.

    Chapter  Google Scholar 

  31. Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., Takeda, E., and Endou, H. (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J. Biol. Chem. 273, 23,629–23,632.

    Article  CAS  Google Scholar 

  32. Boado, R. J., Li, J. Y., Nagaya, M., Zhang, C., and Pardridge, W. M. (1999) Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc. Natl. Acad. Sci. USA 96, 12,079–12,084.

    Article  CAS  Google Scholar 

  33. Ennis, S. R., Kawai, N., Ren, X.-D., Abdelkarim, G. E., and Keep, R. F. (1998) Glutamine uptake at the blood-brain barrier is mediated by System-N transport. J. Neurochem. 71, 2565–2573.

    Article  PubMed  CAS  Google Scholar 

  34. Kilberg, M. S., Handlogten, M. E., and Christensen, H. N. (1980) Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine and closely related analogs. J. Biol. Chem. 255, 4011–4019.

    PubMed  CAS  Google Scholar 

  35. Chaudhry, F. A., Reimer, R. J., Krizaj, D., Barber, D., Storm-Mathisen, J., Copenhagen, D. R., and Edwards, R. H. (1999) Molecular analysis of System N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99, 769–780.

    Article  PubMed  CAS  Google Scholar 

  36. Laterra, J., Keep, R. F., Betz, A. L., and Goldstein, G. W. (1998) Blood-brain-cerebrospinal fluid barriers, in Basic Neurochemistry: Molecular Cellular and Medical Aspects (Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K., and Uhler, M. D., eds.), Lippincott-Raven, Philadelphia, pp. 671–689.

    Google Scholar 

  37. Cohen, E. and Wurtman, R. J. (1976) Brain acetylcoline synthesis: Control by dietary choline. Science 191, 561–562.

    Article  PubMed  CAS  Google Scholar 

  38. Seidner, G., Alvarez, M. G., Yeh, J. I., O’Driscoll, K. R., Klepper, J., Stump, T. S., et al. (1998) GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nature Genet. 18, 188–191.

    Article  PubMed  CAS  Google Scholar 

  39. Klepper, J., Wang, D., Fischbarg, J., Vera, J. C., Jarjour, I. T., O’Driscoll, K. R., and De Vivo, D. C. (1999) Defective glucose transport across brain tissue barriers: a newly diagnosed neurological syndrome. Neurochem. Res. 24, 587–594.

    Article  PubMed  CAS  Google Scholar 

  40. Pulsinelli, W. A. and Cooper, A. J. L. (1994) Metabolic encephalopathies and coma, in Basic Neurochemistry (Siegel, G. J., Agranoff, B. W., Albers, R. W., and Molinoff, P. B., eds.), Raven, New York, pp. 841–857.

    Google Scholar 

  41. Hawkins, R. A. and Jessy, J. (1991) Hyperammonemia does not impair brain function in the absence of glutamine synthesis. Biochem. J. 277, 697–703.

    PubMed  CAS  Google Scholar 

  42. Rigotti, P., Jonung, T., Peters, J. C., James, J. H., and Fischer, J. E. (1985) Methionine sulfoximine prevents the accumulation of large amino acids in brain of portacaval-shunted rats. J. Neurochem. 44, 929–933.

    Article  PubMed  CAS  Google Scholar 

  43. Zanchin, G., Rigotti, P., Dussini, N., Vassanelli, P., and Battistin, L. (1979) Cerebral amino acid levels and uptake in rats after portocaval anastomosis: II. Regional studies in vivo. J. Neurosci. Res. 4, 301–310.

    Article  PubMed  CAS  Google Scholar 

  44. Oldendorf, W. H. (1973) Saturation of blood-brain barrier transport of amino acids in phenylketonuria. Arch Neurol. 28, 45–48.

    Article  PubMed  CAS  Google Scholar 

  45. Wade, L. A. and Katzman, R. (1975) Synthetic amino acids and the nature of L-DOPA transport at the blood-brain barrier. J. Neurochem. 25, 837–842.

    Article  PubMed  CAS  Google Scholar 

  46. Takada, Y., Vistica, D. T., Greig, N. H., Purdon, D., Rapoport, S. I., and Smith, Q. R. (1992) Rapid high-affinity transport of a chemotherapeutic amino acid across the bloodbrain barrier. Cancer Res. 52, 2191–2196.

    PubMed  CAS  Google Scholar 

  47. Pardridge, W. M. (1995) Blood-brain barrier peptide transport and peptide drug delivery to the brain, in Peptide-Based Drug Design (Taylor, M. D. and Amidon, G. L., eds.), pp. 265–296.

    Google Scholar 

  48. Bradbury, M. W. B. (1979) The Concept of a Blood-Brain Barrier. John Wiley & Sons, Chichester, UK.

    Google Scholar 

  49. Jones, H. C. and Keep, R. F. (1987) The control of potassium concentration in the cerebrospinal fluid and brain interstitial fluid of developing rats. J. Physiol. 383, 441–453.

    PubMed  CAS  Google Scholar 

  50. Jones, H. C. and Keep, R. F. (1988) Brain fluid calcium concentration and response to acute hypercalcaemia during development in the rat. J. Physiol. 402, 579–593.

    PubMed  CAS  Google Scholar 

  51. Stummer, W., Betz, A. L., and Keep, R. F. (1995) Mechanisms of brain ion homeostasis during acute and chronic variations of plasma potassium. J. Cereb. Blood Flow Metab. 15, 336–344.

    Article  PubMed  CAS  Google Scholar 

  52. Stummer, W., Keep, R. F., and Betz, A. L. (1994) Rubidium entry into brain and cerebrospinal fluid during acute and chronic alterations in plasma potassium. Am. J. Physiol. 266, H2239-H2246.

    PubMed  CAS  Google Scholar 

  53. Walz, W. and Hertz, L. (1983) Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Progr. Neurobiol. 20, 133–183.

    Article  CAS  Google Scholar 

  54. Kimelberg, H. K. and Norenberg, M. D. (1989) Astrocytes. Sci. Am. 260, 66–76.

    Article  PubMed  CAS  Google Scholar 

  55. Harris, P. and Snow, D. H. (1986) Alterations in plasma potassium concentrations during and following short-term strenuous exercise in the horse. J. Physiol. 357, 46P.

    Google Scholar 

  56. Murphy, V. A. and Rapoport, S. I. (1988) Increased transfer of 45Ca into brain and cerebrospinal fluid from plasma during chronic hypocalcemia in rats. Brain Res. 454, 315–320.

    Article  PubMed  CAS  Google Scholar 

  57. Betz, A. L., Firth, J. A., and Goldstein, G. W. (1980) Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 192, 17–28.

    Article  PubMed  CAS  Google Scholar 

  58. Vorbrodt, A. W. (1988) Ultrastructural cytochemistry of blood-brain barrier endothelia. Progress in Histochemistry and Cytochemistry 18, 1–99.

    Article  PubMed  CAS  Google Scholar 

  59. Bradbury, M. W. B. and Stulcova, B. (1970) Efflux mechanism contributing to the stability of the potassium concentration in cerebrospinal fluid. J. Physiol. 208, 415–430.

    PubMed  CAS  Google Scholar 

  60. Sanchez del Pino, M. M., Hawkins, R. A., and Peterson, D. R. (1995) Biochemical discrimination between luminal and abluminal enzyme and transport activities of the bloodbrain barrier. J. Biol. Chem. 270, 14,907–14,912.

    Article  Google Scholar 

  61. Ennis, S. R., Keep, R. F., Ren, X.-D., and Betz, A. L. (1997) Potassium transport at the luminal membrane of the blood-brain barrier. J. Cereb. Blood Flow Metab. 17(Suppl.), S515.

    Google Scholar 

  62. Zlokovic, B. V., Mackic, J. B., Wang, L., McComb, J. G., and McDonough, A. (1993) Differential expression of Na,K-ATPase a and b subunit isoforms at the blood-brain barrier and the choroid plexus. J. Cell Biol. 268, 8019–8025.

    CAS  Google Scholar 

  63. Keep, R. F., Ulanski, L. J., Xiang, J., Ennis, S. R., and Betz, A. L. (1999) Blood-brain barrier mechanisms involved in brain calcium and potassium homeostasis. Brain Res. 815, 200–205.

    Article  PubMed  CAS  Google Scholar 

  64. Paulson, O. B. and Newman, E. A. (1987) Does the release of potassium from astrocyte endfeet regulate cerebral blood flow. Science 237, 896–898.

    Article  PubMed  CAS  Google Scholar 

  65. Cserr, H. F., DePasquale, M., Nicholson, C., Patlak, C. S., Pettigrew, K. D., and Rice, M. E. (1991) Extracellular volume decreases while cell volume is maintained by ion uptake in rat brain during acute hypernatremia. J. Physiol. 442, 277–295.

    PubMed  CAS  Google Scholar 

  66. Cserr, H. F., Depasquale, M., and Patlak, C. S. (1987) Regulation of brain water and electrolytes during acute hyperosmolality in rats. Am. J. Physiol. 253, F522-F529.

    PubMed  CAS  Google Scholar 

  67. Pullen, R. G. L., Depasquale, M., and Cserr, H. F. (1987) Bulk flow of cerebrospinal fluid into brain in response to acute hyperosmolality. Am. J. Physiol. 253, F538-F545.

    PubMed  CAS  Google Scholar 

  68. Cserr, H. F., DePasquale, M., and Patlak, C. S. (1987) Volume regulatory influx of electrolytes from plasma to brain during acute hyperosmolality. Am. J. Physiol. 253, F530-F537.

    PubMed  CAS  Google Scholar 

  69. Masuzawa, T., Saito, T., and Sato, F. (1981) Cytochemical study on enzyme activity associated with cerebrospinal fluid secretion in the choroid plexus and ventricular ependyma. Brain Res. 222, 309–322.

    Article  PubMed  CAS  Google Scholar 

  70. Betz, A. L. (1986) Transport of ions across the blood-brain barrier. Fed. Proc. 45, 2050–2054.

    PubMed  CAS  Google Scholar 

  71. Crone, C. (1986) The blood-brain barrier as a tight epithelium: where is information lacking? Ann. NYAcad. Sci. 481, 174–185.

    Article  CAS  Google Scholar 

  72. Milhorat, T. H., Hammock, M. K., Fenstermacher, J. D., Rall, D. P., and Levin, V. A. (1971) Cerebrospinal fluid production by the choroid plexus and brain. Science 173, 330–332.

    Article  PubMed  CAS  Google Scholar 

  73. Cserr, H. F., Cooper, D. N., Suri, P. K., and Patlak, C. S. (1981) Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am. J. Physiol. 240, F319-F328.

    PubMed  CAS  Google Scholar 

  74. Szentistványi, I., Patlak, C. S., Ellis, R. A., and Cserr, H. F. (1984) Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 246, F835-F844.

    PubMed  Google Scholar 

  75. Thurston, J. H. and Hauhart, R. E. (1987) Brain amino acids decrease in chronic hyponatremia and rapid correction causes brain dehydration: possible clinical significance. Life Sci. 40, 2539–2542.

    Article  PubMed  CAS  Google Scholar 

  76. Huxtable, R. J. (1989) Taurine in the central nervous system and the mammalian actions of taurine. Prog. Neurobiol. 32, 471–533.

    Article  PubMed  CAS  Google Scholar 

  77. Tayarani, I., Cloez, I., Lefauconnier, J.-M., and Bourre, J.-M. (1989) Sodium-dependent high affinity uptake of taurine by isolated rat brain capillaries. Biochim. Biophys. Acta 985, 168–172.

    Article  PubMed  CAS  Google Scholar 

  78. Keep, R. F. and Xiang, J. (1996) Choroid plexus taurine transport. Brain Res. 715, 17–24.

    Article  PubMed  CAS  Google Scholar 

  79. Wade, J. V., J. P. O., Samson, F. E., Nelson, S. R., and Pazdernik, T. L. (1988) A possible role for taurine in osmoregulation within the brain. J. Neurochem. 51, 740–745.

    Article  PubMed  CAS  Google Scholar 

  80. Smith, Q. R. (1990) Transport of calcium and other metals across the blood-brain barrier: mechanisms and implications for neurodegenerative disorders. Adv. Neurol. 51, 217–222.

    PubMed  CAS  Google Scholar 

  81. Schielke, G. P., Moises, H. C., and Betz, A. L. (1991) Blood to brain sodium transport and interstitial fluid potassium concentration during early focal ischemia in the rat. J. Cereb. Blood Flow Metab. 11, 466–471.

    Article  PubMed  CAS  Google Scholar 

  82. Betz, A. L., Keep, R. F., Beer, M. E., and Ren, X.-D. (1994) Blood-brain barrier permeability and brain concentration of sodium, potassium, and chloride during focal ischemia. J. Cereb. Blood Flow Metab. 14, 29–37.

    Article  PubMed  CAS  Google Scholar 

  83. Betz, A. L., Ennis, S. R., and Schielke, G. P. (1989) Blood-brain barrier sodium transport limits development of brain edema during partial ischemia in gerbils. Stroke 20, 1253–1259.

    Article  PubMed  CAS  Google Scholar 

  84. Gjerris, F. and Borgesen, S. E. (2000) Pathophysiology of cerebrospinal fluid circulation, in Neurosurgery (Crockard, A., Hayward, R., and Hoff, J. T., eds.), The Scientific Basis of Clinical Practice. Blackwell Science, Oxford, pp. 147–168.

    Google Scholar 

  85. Hansen, A. J. and Olsen, C. E. (1980) Brain extracellular space during spreading depression and ischemia. Acta Physiol. Scand. 108, 355–365.

    Article  PubMed  CAS  Google Scholar 

  86. Syková, E., Svoboda, J., Polák, J., and Chvátal, A. (1994) Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat. J. Cereb. Blood Flow Metab. 14, 301–311.

    Article  PubMed  Google Scholar 

  87. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J. M. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432.

    Article  PubMed  CAS  Google Scholar 

  88. Tartaglia, L. A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., et al. (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271.

    Article  PubMed  CAS  Google Scholar 

  89. Golden, P. L., Maccagnan, T. J., and Pardridge, W. M. (1997) Human blood-brain barrier leptin receptor. J. Clin. Invest. 99, 14–18.

    Article  PubMed  CAS  Google Scholar 

  90. Banks, W. A., Kastin, A. J., Huang, W., Jaspan, J. B., and Maness, L. M. (1996) Leptin enters the brain by a saturable system independent of insulin. Peptides 17, 305–311.

    Article  PubMed  CAS  Google Scholar 

  91. Vaisse, C., Halaas, J. L., Horvarth, C. M., Darnell, J. E., Stoffel, M., and Friedman, J. M. (1996) Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat. Genet. 14, 95–97.

    Article  PubMed  CAS  Google Scholar 

  92. Ghilardi, N., Ziegler, S., Wiestner, A., Stoffel, R., Heim, M. H., and Skoda, R. C. (1996) Defective STAT signaling by the leptin receptor in diabetic mice. Proc. Natl. Acad. Sci. USA 93, 6231–6235.

    Article  PubMed  CAS  Google Scholar 

  93. Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R., and Burn, P. (1995) Recombinant mouse ob protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546–549.

    Article  PubMed  CAS  Google Scholar 

  94. Jacob, R. J., Dziura, J., Medwick, M. B., Leone, P., Caprio, S., During, M., Shulman, G. I., and Sherwin, R. S. (1997) The effect of leptin is enhanced by microinjection into the ventromedial hypothalamus. Diabetes 46, 150–152.

    Article  PubMed  CAS  Google Scholar 

  95. Boado, R. J., Golden, P. L., Levin, N., and Pardridge, W. M. (1998) Upregulation of blood-brain barrier short-form leptin receptor gene products in rats fed a high fat diet. J. Neurochem. 71, 1761–1764.

    Article  PubMed  CAS  Google Scholar 

  96. Lee, G.-H., Proenca, R., Montez, J. M., Carroll, K. M., Darvishzadeh, J. G., Lee, J. I., and Friedman, J. M. (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635.

    Article  PubMed  CAS  Google Scholar 

  97. Takaya, K., Ogawa, Y., Isse, N., Okazaki, T., Satoh, N., Masuzaki, H., et al. (1996) Molecular cloning of rat leptin receptor isoform complementary DNAs: identification of a missense mutation in Zucker Fatty (fa/fa) rats. Biochem. Biophys. Res. Commun. 225, 75–83.

    Article  PubMed  CAS  Google Scholar 

  98. Wu-Peng, X. S., Chua, S. C., Okada, N., Liu, S.-M., Nicholson, M., and Leibel, R. L. (1997) Phenotype of the obese Koletsky (f) rat due to Tyr763Stop mutation in the extracellular domain of the leptin receptor (Lepr). Diabetes 46, 513–518.

    Article  PubMed  CAS  Google Scholar 

  99. Pelleymounter, M., Cullen, M., Baker, M., et al. (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543.

    Article  PubMed  CAS  Google Scholar 

  100. Halaas, J. L., Boozer, C., Blair-West, J., Fidahusein, N., Denton, D. A., and Friedman, J. M. (1997) Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl. Acad. Sci. USA 94, 8878–8883.

    Article  PubMed  CAS  Google Scholar 

  101. Considine, R. V., Sinha, M. K., Heiman, M. L., Kriauciunas, A., Tephens, T. W., Nyce, M. R., et al. (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295.

    Article  PubMed  CAS  Google Scholar 

  102. Schinkel, A. H. (1997) The physiological function of drug-transporting P-glycoproteins. Semin. Cancer Biol. 8, 161–170.

    Article  PubMed  CAS  Google Scholar 

  103. Pardridge, W. M., Golden, P. L., Kang, Y. S., and Bickel, U. (1997) Brain microvascular and astrocyte localization of P-glycoprotein. J. Neurochem. 68, 1275–1285.

    Google Scholar 

  104. Borst, P. and Schinkel, A. H. (1998) P-glycoprotein, a guardian of the brain, in Introduction to the Blood-Brain Barrier. Methodology, Biology and Pathology (Pardridge, W. M., ed.), Cambridge University Press, Cambridge, pp. 198–206.

    Chapter  Google Scholar 

  105. Schinkel, A. H., Smit, J. J. M., van Tellingen, O., Beijnen, J. H., Wagenaar, E., van Deemter, L., et al. (1994) Disruption of the mouse mdrla P-glycoprotein gene leads to a deficient in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491–502.

    Article  PubMed  CAS  Google Scholar 

  106. Schinkel, A. H., Wagenaar, E., Mol, C. A. A. M., and van Deemter, L. (1996) P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest. 97, 2517–2524.

    Article  PubMed  CAS  Google Scholar 

  107. Huai-Yun, H., Secrest, D. T., Mark, K. S., Carney, D., Branquist, C., Elmquist, W. F., and Miller, D. W. (1998) Expression of multidrug resistance-associated protein (MRP) in brain microvessel endothelial cells. Biochem. Biophys. Res. Commun. 243, 816–820.

    Article  PubMed  CAS  Google Scholar 

  108. Loe, D. W., Deeley, R. G., and Cole, S. P. (1996) Biology of the multidrug resistanceassociated protein, MRP. Eur. J. Cancer 32A, 945–957.

    Article  PubMed  CAS  Google Scholar 

  109. Barrand, M. A., Bagrij, T., and Neo, S. Y. (1997) Multidrug resistance-associated protein: a protein distinct from P-glycoprotein involved in cytotoxic drug expulsion. Gen. Pharmacol. 28, 639–645.

    Article  PubMed  CAS  Google Scholar 

  110. Kakee, A., Terasaki, T., and Sugiyama, Y. (1997) Selective brain to blood efflux transport of para-aminohippuric acid across the blood-brain barrier: in vivo evidence by use of the brain efflux index method. J. Pharmacol. Exp. Ther. 283, 1018–1025.

    PubMed  CAS  Google Scholar 

  111. Kusuhara, H., Seline, T., Utsunomiya-Tate, N., Tsuda, M., Kojima, R., Cha, S. H., et al. (1999) Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J. Biol. Chem. 274, 13,675–13,680.

    Article  CAS  Google Scholar 

  112. Angeletti, R. H., Novikoff, P. M., Juvvadi, S. R., Fritschy, J. M., Meier, P. J., and Wolkoff, A. W. (1997) The choroid plexus epithelium is the site of the organic anion transport protein in the brain. Proc. Natl. Acad. Sci. USA 94, 283–286.

    Article  PubMed  CAS  Google Scholar 

  113. Gao, B., Stieger, B., Noe, B., Fritschy, J. M., and Meier, P. J. (1999) Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary endothelium and choroid plexus epithelium of rat brain. J. Histochem. Cytochem. 47, 1255–1264.

    Article  PubMed  CAS  Google Scholar 

  114. Clarke, D. D., Lajtha, A. L., and Maker, H. (1989) Intermediary metabolism, in Basic Neurochemistry (Siegel, G. J., Agranoff, B. W., Albers, R. W., and Molinoff, P. B., eds.), Raven, New York, pp. 541–564.

    Google Scholar 

  115. Betz, A. L. and Goldstein, G. W. (1978) Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries. Science 202, 225–227.

    Article  PubMed  CAS  Google Scholar 

  116. Dingledine, R. and McBain, C. J. (1998) Glutamate and aspartate, in Basic Neurochemistry: Molecular Cellular and Medical Aspects (Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K., and Uhler, M. D., eds.), Lippincott-Raven, Philadelphia, pp. 315–333.

    Google Scholar 

  117. Choi, D. W. (1997) The excitotoxic concept, in Primer on Cerebrovascular Diseases (Welch, K. M. A., Caplan, L. R., Reis, D. J., Siesjo, B. K., and Weir, B., eds.), Academic, San Diego, pp. 187–190.

    Chapter  Google Scholar 

  118. O’ Kane, R. L., Martinez-Lopez, I., DeJoseph, M. R., Vina, J. R., and Hawkins, R. A. (1999) Na+-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. J. Biol. Chem. 274, 31,891–31,895.

    Google Scholar 

  119. Benrabh, H., Bourre, J.-M., and Lefauconnier, J.-M. (1995) Taurine transport at the bloodbrain barrier: an in vivo brain perfusion study. Brain Res. 692, 57–65.

    Article  PubMed  CAS  Google Scholar 

  120. Lee, W.-J., Hawkins, R. A., Vina, J. R., and Peterson, D. R. (1998) Glutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal. Am. J. Physiol. 274, C1101—C1107.

    PubMed  Google Scholar 

  121. Ohnishi, T., Tamai, I., Sakanaka, K., Sakata, A., Yamashita, J., and Tsuji, A. (1995) In vivo and in vitro evidence for ATP-dependency of P-glycoprotein-mediated efflux of doxorubicin at the blood-brain barrier. Biochem. Pharmacol. 49, 1541–1544.

    Article  PubMed  CAS  Google Scholar 

  122. Spector, R. and Lorenzo, A. V. (1974) Inhibition of penicillin transport from cerebrospinal fluid after intracisternal inoculation of bacteria. J. Clin. Invest. 54, 316–325.

    Article  PubMed  CAS  Google Scholar 

  123. Hardebo, J. E. and Owman, C. (1979) Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain barrier. Ann. Neurol. 8, 1–31.

    Article  Google Scholar 

  124. Hardebo, J. E., Emson, P. C., Falck, B., Owman, C., and Rosengren, E. (1980) Enzymes related to monoamine transmitter metabolism in brain microvessels. J. Neurochem. 35, 1388–1393.

    Article  PubMed  CAS  Google Scholar 

  125. Kalaria, R. N. and Harik, S. I. (1987) Blood-brain barrier monoamine oxidase: enzyme characterization in cerebral microvessels and other tissues from six mammalian species, including human. J. Neurochem. 49, 856–864.

    Article  PubMed  CAS  Google Scholar 

  126. Minn, A., Ghersi-Egea, J. F., Perrin, R., Leininger, B., and Siest, G. (1991) Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res. 16, 65–82.

    Article  CAS  Google Scholar 

  127. Ghersi-Egea, J.-F., Leininger-Muller, B., Cecchelli, R., and Fenstermacher, J. D. (1995) Blood-brain interfaces: relevance to cerebral drug metabolism. Toxicol. Lett. 82/83, 645–653.

    Article  CAS  Google Scholar 

  128. Ghersi-Egea, J. F., Leninger-Muller, B., Suleman, G., Siest, G., and Minn, A. (1994) Localization of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. J. Neurochem. 62, 1089–1096.

    Article  PubMed  CAS  Google Scholar 

  129. Johnson, J. A., El Barbary, A., Kornguth, S. E., Brugge, J. F., and Siegel, F. L. (1993) Glutathione-S-transferase isoenzymes in rat brain neurons and glia. J. Neurosci. 13, 2013–2023.

    PubMed  CAS  Google Scholar 

  130. Frey, A. (1993) Gamma-glutamyl transpeptidase: molecular cloning and structural and functional features of a blood-brain barrier marker protein, in The Blood-Brain Barrier (Pardridge, W. M., ed.), Raven, New York, pp. 339–368.

    Google Scholar 

  131. Black, K. L., King, W. A., and Ikezaki, K. (1990) Selective opening of the blood-tumor barrier by intracarotid infusion of leukotriene C4. J. Neurosurg. 72, 912–916.

    Article  PubMed  CAS  Google Scholar 

  132. Black, K. L. and Hoff, J. T. (1985) Leukotrienes increase blood-brain barrier permeability following intraparenchymal injections in rats. Ann. Neurol. 18, 349–351.

    Article  PubMed  CAS  Google Scholar 

  133. Riachi, N. J., Harik, S. I., Kalaria, R. N., and Sayre, L. M. (1988) On the mechanisms underlying 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. II Susceptibility among mammalian species correlates with the toxin’s metabolic patter in brain microvessels and liver. J. Pharmacol. Exp. Ther. 244, 443–448.

    PubMed  CAS  Google Scholar 

  134. Risau, W., Dingler, A., Albrecht, U., Dehouck, M.-P., and Cecchelli, R. (1992) Bloodbrain barrier pericytes are the main source of y-glutamyltranspeptidase activity in brain capillaries. J. Neurochem. 58, 667–672.

    Article  PubMed  CAS  Google Scholar 

  135. Dehouck, M.-P., Méresse, S., Delorme, P., Fruchart, J.-C., and Cecchelli, R. (1990) An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J. Neurochem. 54, 1798–1801.

    Article  PubMed  CAS  Google Scholar 

  136. Krum, J. and Rosenstein, J. M. (1993) Effect of astroglial degeneration on the bloodbrain barrier to protein in neonatal rats. Dev. Brain Res. 74, 41–50.

    Article  CAS  Google Scholar 

  137. Krum, J. M. (1994) Experimental gliopathy in the adult rat CNS: effect on the bloodspinal cord barrier. Glia 11, 354–366.

    Article  PubMed  CAS  Google Scholar 

  138. Kalaria, R. N., Stockmeier, C. A., and Harik, S. I. (1989) Brain microvessels are innervated by locus ceruleus noradrenergic neurons. Neurosci. Lett. 97, 203–208.

    Article  PubMed  CAS  Google Scholar 

  139. Harik, S. I. (1986) Blood-brain barrier sodium/potassium pump: modulation by central noradrenergic innervation. Proc. Natl. Acad. Sci. USA 83, 4067–4070.

    Article  PubMed  CAS  Google Scholar 

  140. Frederici, C., Camoin, L., Hattab, M., Strosberg, A. D., and Couraud, P. O. (1996) Association of the cytoplasmic domain of intercellular-adhesion molecule-1 with glyceraldehyde-3-phosphate dehydrogenase and beta-tubulin. Eur. J. Biochem. 238, 173–180.

    Article  Google Scholar 

  141. Betz, A. L. (1992) An overview of the multiple functions of the blood-brain barrier. NIDA Res. Monogr. 120, 54–72.

    PubMed  CAS  Google Scholar 

  142. Ibaragi, M.-A., Niwa, M., and Ozaki, M. (1989) Atrial natriuretic peptide modulates amiloride-sensitive Na+ transport across the blood-brain barrier. J. Neurochem. 53, 1802–1806.

    Article  PubMed  CAS  Google Scholar 

  143. Hoyer, J., Popp, R., Meyer, J., Galla, H.-J., and Gögelein, H. (1991) Angiotensin II, vasopressin and GTP[γ-S] inhibit inward-rectifying K+ channels in porcine cerebral capillary endothelial cells. J. Membrane Biol. 123, 55–62.

    Article  CAS  Google Scholar 

  144. Smith, Q. R., Momma, S., Aoyagi, M., and Rapoport, S. I. (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 49, 1651–1658.

    Article  PubMed  CAS  Google Scholar 

  145. Rapoport, S. I. (1992) Drug delivery to the brain: barrier modification and drug modification methodologies, in Bioavailability of Drugs to the Brain and Blood-Brain Barrier (Frankenheim, J. and Brown, R. M., eds.), US Department of Health and Human Services, Rockville, MD, pp. 121–137.

    Google Scholar 

  146. Fenstermacher, J. D. (1983) Drug transfer across the blood-brain barrier, in Topics in Pharmaceutical Sciences 1983 (Breimer, D. D. and Speiser, P., eds.), Elsevier Science, Amsterdam, pp. 143–154.

    Google Scholar 

  147. Robinson, P. J. and Rapoport, S. I. (1992) Transport of drugs, in Physiology and Pharmacology of the Blood-Brain Barrier (Bradbury, M. W. B., ed.), Springer-Verlag, Berlin, pp. 279–300.

    Chapter  Google Scholar 

  148. Balabanov, R. and Dore-Duffy, P. (1998) Cytokines and the blood-brain barrier, in Introduction to the Blood-Brain Barrier: Methodology, Biology and Pathology (Pardridge, W. M., ed.), Cambridge University Press, Cambridge, pp. 354–361.

    Chapter  Google Scholar 

  149. Dayson, H. and Welch, K. (1971) The permeation of several materials into the fluids of the rabbit’s brain. J. Physiol. 218, 337–351.

    Google Scholar 

  150. Ennis, S. R., Keep, R. F., Schielke, G. P., and Betz, A. L. (1990) Decrease in perfusion of cerebral capillaries during incomplete ischemia and reperfusion. J. Cereb. Blood Flow Metab. 10, 213–220.

    Article  PubMed  CAS  Google Scholar 

  151. Frelin, C. and Vigne, P. (1998) Ion channels in endothelial cells, in Introduction to the Blood-Brain Barrier: Methodology, Biology and Pathology (Pardridge, W. M., ed.), Cambridge University Press, Cambridge, pp. 214–220.

    Chapter  Google Scholar 

  152. Keep, R. F., Ennis, S. R., and Betz, A. L. (1998) Blood-brain barrier ion transport, in Introduction to the Blood-Brain Barrier: Methodology, Biology and Pathology (Pardridge, W. M., ed.), Cambridge University Press, Cambridge, pp. 207–213.

    Chapter  Google Scholar 

  153. Ennis, S. R., Keep, R. F., Abdelkarim, G. E., and Betz, A. L. (1997) Chloride transport at the luminal membrane of the blood-brain barrier. J. Cereb. Blood Flow Metab. 19(Suppl.), S246.

    Google Scholar 

  154. Domotor, E., Abbott, N. J., and Adam-Vizi, V. (1999) Na+ — Ca2+ exchange and its implications for calcium homeostasis in primary cultured rat brain microvascular endothelial cells. J. Physiol. 515, 147–155.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keep, R.F. (2002). The Blood-Brain Barrier. In: Walz, W. (eds) The Neuronal Environment. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-108-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-108-4_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-235-3

  • Online ISBN: 978-1-59259-108-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics