Skip to main content

Neuronal Restricted Precursors

  • Chapter
Stem Cells and CNS Development

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 110 Accesses

Abstract

The extrinsic and intrinsic factors involved in regulating the developmental progression from totipotent embryonic stem cells to phenotypically restricted neural stem and progenitor cells have been subjects of intense research over the last decade. Two major reasons for this concentrated effort are the gradual acceptance that at least some regions of the brain generate neurons throughout life, and the growing appreciation that these cells could be used to therapeutically treat disorders and injuries of the central nervous system (CNS). Despite early studies by Altman and Das (1) demonstrating ongoing neurogenesis in the adult rodent hippocampus and olfactory bulb, it was widely believed until recently that in mammals the generation of neurons ceases in the late embryonic or early postnatal period. In addition to the persistent neurogenesis in the olfactory bulb and hippocampus, olfactory receptor neurons (ORNs), the first-order neurons in the peripheral olfactory system, were also found to regenerate throughout life in all vertebrates examined (2–4). Postnatal neurogenesis also occurs in the neonatal cerebellum (see ref. 1), although it is more limited in duration than that of the olfactory bulb, the hippocampus, and the ORNs. Populations of neural progenitor cells, which generate the neurons and/or glia in these regions with extended proliferation, have now been identified in the postnatal brain (5–11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, J. and Das, G. D. (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol. 126, 337–389.

    PubMed  CAS  Google Scholar 

  2. Graziadei, P. P., Levine, R. R., and Monti Graziadei, G. A. (1979) Plasticity of connections of the olfactory sensory neuron: regeneration into the forebrain following bulbectomy in the neonatal mouse. Neuroscience 4, 713–727.

    PubMed  CAS  Google Scholar 

  3. Graziadei, P. P. and Monti Graziadei, A. G. (1983) Regeneration in the olfactory system of vertebrates. Am. J. Otolaryngol. 4, 228–233.

    PubMed  CAS  Google Scholar 

  4. Graziadei, P. P. and Monti Graziadei, G. A. (1980) Neurogenesis and neuron regeneration in the olfactory system of mammals. III. Deafferentation and reinnervation of the olfactory bulb following section of the fila olfactoria in rat. J. Neurocytol. 9, 145–162.

    PubMed  CAS  Google Scholar 

  5. Gage, F. H., Kempermann, G., Palmer, T. D., Peterson, D. A., and Ray, J. (1998) Multipotent progenitor cells in the adult dentate gyrus. J. Neurobiol. 36, 249–266.

    PubMed  CAS  Google Scholar 

  6. Gage, F. H., Coates, P. W., Palmer, T. D., Kuhn, H. G., Fisher, L. J., Suhonen, J. O., et al. (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. USA 92, 11879–11883.

    PubMed  CAS  Google Scholar 

  7. Hatten, M. E. and Heintz, N. (1995) Mechanisms of neural patterning and specification in the developing cerebellum. Ann. Rev. Neurosci. 18, 385–408.

    PubMed  CAS  Google Scholar 

  8. Graziadei, P. P. and Monti Graziadei, G. A. (1985) Neurogenesis and plasticity of the olfactory sensory neurons. Ann. NY Acad. Sci. 457, 127–142.

    PubMed  CAS  Google Scholar 

  9. Reynolds, B. A., Tetzlaff, W., and Weiss, S. (1992) A multipotent EGFresponsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574.

    PubMed  CAS  Google Scholar 

  10. Luskin, M. B. (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189.

    PubMed  CAS  Google Scholar 

  11. Lois, C. and Alvarez-Buylla, A. (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl. Acad. Sci. USA 90, 2074–2077.

    PubMed  CAS  Google Scholar 

  12. Kuhn, H. G., Winkler, J., Kempermann, G., Thal, L. J., and Gage, F. H. (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829.

    PubMed  CAS  Google Scholar 

  13. Tao, Y., Black, I. B., and DiCicco-Bloom, E. (1997) In vivo neurogenesis is inhibited by neutralizing antibodies to basic fibroblast growth factor. J. Neurobiol. 33, 289–296.

    PubMed  CAS  Google Scholar 

  14. Zigova, T., Pencea, V., Wiegand, S. J., and Luskin, M. B. (1998) Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol. Cell Neurosci. 11, 234–245.

    PubMed  CAS  Google Scholar 

  15. Parent, J. M., Yu, T. W., Leibowitz, R. T., Geschwind, D. H., Sloviter, R. S., and Lowenstein, D. H. (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727–3738.

    PubMed  CAS  Google Scholar 

  16. Rao, M. S. (1999) Multipotent and restricted precursors in the central nervous system. Anat. Rec. 257, 137–148.

    PubMed  CAS  Google Scholar 

  17. Luskin, M. B. (1994) Neuronal cell lineage in the vertebrate central nervous system. FASEB J. 8, 722–730.

    PubMed  CAS  Google Scholar 

  18. Price, J., Williams, B. P., and Gotz, M. (1995) The generation of cellular diversity in the cerebral cortex. Ciba Found. Symp. 193, 71–84; discussion 117–126.

    Google Scholar 

  19. Luskin, M. B., Pearlman, A. L., and Sanes, J. R. (1988) Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1, 635–647.

    PubMed  CAS  Google Scholar 

  20. Luskin, M. B., Parnavelas, J. G., and Barfield, J. A. (1993) Neurons, astrocytes, and oligodendrocytes of the rat cerebral cortex originate from separate progenitor cells: an ultrastructural analysis of clonally related cells. J. Neurosci. 13, 1730–1750.

    PubMed  CAS  Google Scholar 

  21. Cepko, C. L., Austin, C. P., Yang, X., Alexiades, M., and Ezzeddine, D. (1996) Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci.USA 93, 589–595.

    PubMed  CAS  Google Scholar 

  22. Boulder Committee. (1970) Embryonic vertebrate central nervous system: revised terminology. Anat. Rec. 166, 257–261.

    Google Scholar 

  23. Davis, A. A. and Temple, S. (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372, 263–266.

    PubMed  CAS  Google Scholar 

  24. Parnavelas, J. G., Barfield, J. A., Franke, E., and Luskin, M. B. (1991) Separate progenitor cells give rise to pyramidal and nonpyramidal neurons in the rat telencephalon. Cereb. Cortex 1, 463–468.

    PubMed  CAS  Google Scholar 

  25. Grove, E. A., Williams, B. P., Li, D. Q., Hajihosseini, M., Friedrich, A., and Price, J. (1993) Multiple restricted lineages in the embryonic rat cerebral cortex. Development 117, 553–561.

    PubMed  CAS  Google Scholar 

  26. Carnow, T. B., Barbarese, E., and Carson, J. H. (1991) Diversification of glial lineages: a novel method to clone brain cells in vitro on nitrocellulose substratum. Glia 4, 256–268.

    PubMed  CAS  Google Scholar 

  27. Kilpatrick, T. J. and Bartlett, P. F. (1995) Cloned multipotential precursors from the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF. J. Neurosci. 15, 3653–3661.

    PubMed  CAS  Google Scholar 

  28. Birling, M. C. and Price, J. (1998) A study of the potential of the embryonic rat telencephalon to generate oligodendrocytes. Dev. Biol. 193, 100–113.

    PubMed  CAS  Google Scholar 

  29. Menezes, J. R. and Luskin, M. B. (1994) Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J. Neurosci. 14, 5399–5416.

    PubMed  CAS  Google Scholar 

  30. Valverde, F., De Carlos, J. A., and Lopez-Mascaraque, L. (1995) Time of origin and early fate of preplate cells in the cerebral cortex of the rat. Cereb. Cortex 5, 483–493.

    PubMed  CAS  Google Scholar 

  31. Rakic, P. (1971) Guidance of neurons migrating to the fetal monkey neocortex. Brain Res. 33, 471–476.

    PubMed  CAS  Google Scholar 

  32. Rakic, P. (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J. Comp. Neurol. 141, 283–312.

    PubMed  CAS  Google Scholar 

  33. Walsh, C. and Cepko, C. L. (1990) Cell lineage and cell migration in the developing cerebral cortex. Experientia 46, 940–947.

    PubMed  CAS  Google Scholar 

  34. Privat, A. (1975) Postnatal gliogenesis in the mammalian brain. Int. Rev. Cytol. 40, 281–323.

    PubMed  CAS  Google Scholar 

  35. Luskin, M. B. and McDermott, K. (1994) Divergent lineages for oligodendrocytes and astrocytes originating in the neonatal forebrain subventricular zone. Glia 11, 211–226.

    PubMed  CAS  Google Scholar 

  36. Levison, S. W. and Goldman, J. E. (1993) Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10, 201–212.

    PubMed  CAS  Google Scholar 

  37. Levison, S. W. and Goldman, J. E. (1997) Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J. Neurosci. Res. 48, 83–94.

    PubMed  CAS  Google Scholar 

  38. Farbman, A. I. (1991) Developmental neurobiology of the olfactory system, in Smell and Taste in Health and Disease ( Getchel, T. V., ed.), Raven, New York, pp. 19–33.

    Google Scholar 

  39. Reynolds, B. A. and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system [see comments]. Science 255, 1707–1710.

    PubMed  CAS  Google Scholar 

  40. Kalyani, A. J. and Rao, M. S. (1998) Cell lineage in the developing neural tube. Biochem. Cell. Biol. 76, 1051–1068.

    PubMed  CAS  Google Scholar 

  41. Mayer-Proschel, M., Kalyani, A. J., Mujtaba, T., and Rao, M. S. (1997) Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 19, 773–785.

    PubMed  CAS  Google Scholar 

  42. Mayer-Proschel, M. (1999) Cell differentiation in the embryonic mammalian spinal cord. J. Neural. Transm. Suppl. 55, 1–8.

    PubMed  CAS  Google Scholar 

  43. Kalyani, A. J., Piper, D., Mujtaba, T., Lucero, M. T., and Rao, M. S. (1998) Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture. J. Neurosci. 18, 7856–7868.

    PubMed  CAS  Google Scholar 

  44. Luskin, M. B., Zigova, T., Soteres, B. J., and Stewart, R. R. (1997) Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express a neuronal phenotype. Mol. Cell. Neurosci. 8, 351–366.

    PubMed  CAS  Google Scholar 

  45. Altman, J. and Das, G. D. (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335.

    PubMed  CAS  Google Scholar 

  46. Reznikov, K. Y. (1991) Cell proliferation and cytogenesis in the mouse hippocampus. Adv. Anat. Embryol. Cell Biol. 122, 1–74.

    PubMed  CAS  Google Scholar 

  47. Kuhn, H. G., Dickinson-Anson, H., and Gage, F. H. (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033.

    PubMed  CAS  Google Scholar 

  48. Slomianka, L. and Geneser, F. A. (1997) Postnatal development of zinc-containing cells and neuropil in the hippocampal region of the mouse. Hippocampus 7, 321–340.

    PubMed  CAS  Google Scholar 

  49. Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., and Gage, F. H. (1998) Neurogenesis in the adult human hippocampus [see comments]. Nature Med. 4, 1313–1317.

    PubMed  CAS  Google Scholar 

  50. Shetty, A. K. and Turner, D. A. (1998) In vitro survival and differentiation of neurons derived from epidermal growth factor-responsive postnatal hippocampal stem cells: inducing effects of brain-derived neurotrophic factor. J. Neurobiol. 35, 395–425.

    PubMed  CAS  Google Scholar 

  51. Suhonen, J. O., Peterson, D. A., Ray, J., and Gage, F. H. (1996) Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383, 624–627.

    PubMed  CAS  Google Scholar 

  52. Roy, N. S., Wang, S., Li, J., Benraiss, A., Harrison-Restelli, C., Fraser, R. A., et al. (2000) In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nature Med. 6, 271–277.

    PubMed  CAS  Google Scholar 

  53. Hatten, M. E., Alder, J., Zimmerman, K., and Heintz, N. (1997) Genes involved in cerebellar cell specification and differentiation. Curr. Opin. Neurobiol. 7, 40–47.

    PubMed  CAS  Google Scholar 

  54. Gao, W. Q. and Hatten, M. E. (1994) Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum. Development 120, 1059–1070.

    PubMed  CAS  Google Scholar 

  55. Jankovski, A., Rossi, F., and Sotelo, C. (1996) Neuronal precursors in the postnatal mouse cerebellum are fully committed cells: evidence from heterochronic transplantations. Eur. J. Neurosci. 8, 2308–2319.

    PubMed  CAS  Google Scholar 

  56. Jankovski, A. and Sotelo, C. (1996) Subventricular zone-olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J. Comp. Neurol. 371, 376–396.

    PubMed  CAS  Google Scholar 

  57. Vicario-Abejon, C., Cunningham, M. G., and McKay, R. D. (1995) Cerebellar precursors transplanted to the neonatal dentate gyrus express features characteristic of hippocampal neurons. J. Neurosci. 15, 6351–6363.

    PubMed  CAS  Google Scholar 

  58. Sommer, C., Bele, S., and Kiessling, M. (1997) Expression of cerebellar specific glutamate and GABAA receptor subunits in heterotopic cerebellar grafts. Dev. Brain Res. 102, 225–230.

    CAS  Google Scholar 

  59. Feng, L., Hatten, M. E., and Heintz, N. (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12, 895–908.

    PubMed  CAS  Google Scholar 

  60. Kuhar, S. G., Feng, L., Vidan, S., Ross, M. E., Hatten, M. E., and Heintz, N. (1993) Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Development 117, 97–104.

    PubMed  CAS  Google Scholar 

  61. Urbanek, P., Fetka, I., Meisler, M. H., and Busslinger, M. (1997) Cooperation of Pax2 and PaxS in midbrain and cerebellum development. Proc. Natl. Acad. Sci. USA 94, 5703–5708.

    PubMed  CAS  Google Scholar 

  62. Rowitch, D. H., Kispert, A., and McMahon, A. P. (1999) Pax-2 regulatory sequences that direct transgene expression in the developing neural plate and external granule cell layer of the cerebellum. Dev. Brain Res. 117, 99–108.

    CAS  Google Scholar 

  63. Ben-Arie, N., Bellen, H. J., Armstrong, D. L., McCall, A. E., Gordadze, P. R., Guo, Q., Matzuk, M. M., and Zoghbi, H. Y. (1997) Mathl is essential for genesis of cerebellar granule neurons. Nature 390, 169–172.

    PubMed  CAS  Google Scholar 

  64. Caggiano, M., Kauer, J. S., and Hunter, D. D. (1994) Globose basal cells are neuronal progenitors in the olfactory epithelium: a lineage analysis using a replication-incompetent retrovirus. Neuron 13, 339–352.

    PubMed  CAS  Google Scholar 

  65. Walters, E., Grillo, M., Oestreicher, A. B., and Margolis, F. L. (1996) LacZ and OMP are co-expressed during ontogeny and regeneration in olfactory receptor neurons of OMP promoter-lacZ transgenic mice. Int. J. Dey. Neurosci. 14, 813–822.

    CAS  Google Scholar 

  66. Guillemot, F., Lo, L. C., Johnson, J. E., Auerbach, A., Anderson, D. J., and Joyner, A. L. (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476.

    PubMed  CAS  Google Scholar 

  67. Davis, J. A. and Reed, R. R. (1996) Role of Olf-1 and Pax-6 transcription factors in neurodevelopment. J. Neurosci. 16, 5082–5094.

    PubMed  CAS  Google Scholar 

  68. Whitesides, J. G., 3rd and LaMantia, A. S. (1996) Differential adhesion and the initial assembly of the mammalian olfactory nerve. J. Comp. Neurol. 373, 240–254.

    PubMed  Google Scholar 

  69. Huard, J. M., Youngentob, S. L., Goldstein, B. J., Luskin, M. B., and Schwob, J. E. (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J. Corn. Neurol. 400, 469–486.

    CAS  Google Scholar 

  70. McConnell, S. K. (1995) Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 15, 761–768.

    PubMed  CAS  Google Scholar 

  71. Stemple, D. L. and Mahanthappa, N. K. (1997) Neural stem cells are blasting off. Neuron 18, 1–4.

    PubMed  CAS  Google Scholar 

  72. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., and AlvarezBuylla, A. (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716.

    PubMed  CAS  Google Scholar 

  73. Morrison, S. J., White, P. M., Zock, C., and Anderson, D. J. (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–749.

    PubMed  CAS  Google Scholar 

  74. Shah, N. M., Groves, A. K., and Anderson, D. J. (1996) Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 85, 331–343.

    PubMed  CAS  Google Scholar 

  75. Rao, M. S. and Anderson, D. J. (1997) Immortalization and controlled in vitro differentiation of murine multipotent neural crest stem cells. J. Neurobiol. 32, 722–746.

    PubMed  CAS  Google Scholar 

  76. Law, A. K., Pencea, V., Buck, C. R., and Luskin, M. B. (1999) Neurogenesis and neuronal migration in the neonatal rat forebrain anterior subventricular zone do not require GFAP-positive astrocytes. Dey. Biol. 216, 622–634.

    CAS  Google Scholar 

  77. Santacana, M., Heredia, M., Valverde, F. (1992) Transient pattern of exuberant projections of olfactory axons during development in the rat. Dey. Brain Res. 70, 213–222.

    CAS  Google Scholar 

  78. Hinds, J. W. and Ruffett, T. L. (1973) Mitral cell development in the mouse olfactory bulb: reorientation of the perikaryon and maturation of the axon initial segment. J. Comp. Neurol. 151, 281–306.

    PubMed  CAS  Google Scholar 

  79. Skeen, L. C., Due, B. R., and Douglas, F. E. (1985) Effects of early anosmia on two classes of granule cells in developing mouse olfactory bulbs. Neurosci Lett. 54, 301–306.

    PubMed  CAS  Google Scholar 

  80. Cummings, D. M. and Brunjes, P. C. (1997) The effects of variable periods of functional deprivation on olfactory bulb development in rats. Exp. Neurol. 148, 360–366.

    PubMed  CAS  Google Scholar 

  81. Lois, C. and Alvarez-Buylla, A. (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148.

    PubMed  CAS  Google Scholar 

  82. Wagner, J. P., Black, I. B., and DiCicco-Bloom, E. (1999) Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J. Neurosci. 19, 6006–6016.

    PubMed  CAS  Google Scholar 

  83. Tropepe, V., Sibilia, M., Ciruna, B. G., Rossant, J., Wagner, E. F., and van der Kooy, D. (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Del,. Biol. 208, 166–188.

    CAS  Google Scholar 

  84. Craig, C. G., Tropepe, V., Morshead, C. M., Reynolds, B. A., Weiss, S., and van der Kooy, D. (1996) In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658.

    PubMed  CAS  Google Scholar 

  85. Miragall, F., Kadmon, G., Faissner, A., Antonicek, H., and Schachner, M. (1990) Retention of J1/tenascin and the polysialylated form of the neural cell adhesion molecule (N-CAM) in the adult olfactory bulb. J. Neurocytol. 19, 899–914.

    PubMed  CAS  Google Scholar 

  86. Kishi, K. (1987) Golgi studies on the development of granule cells of the rat olfactory bulb with reference to migration in the subependymal layer. J. C. Neurol. 258, 112–124.

    CAS  Google Scholar 

  87. Rousselot, P., Lois, C., and Alvarez-Buylla, A. (1995) Embryonic (PSA) N-CAM reveals chains of migrating neuroblasts between the lateral ventricle and the olfactory bulb of adult mice. J. Comp. Neurol. 351, 51–61.

    PubMed  CAS  Google Scholar 

  88. Smith, C. M. and Luskin, M. B. (1998) Cell cycle length of olfactory bulb neuronal progenitors in the rostral migratory stream. Del,. Dyn. 213, 220–227.

    CAS  Google Scholar 

  89. Thomas, L. B., Gates, M. A., and Steindler, D. A. (1996) Young neurons from the adult subependymal zone proliferate and migrate along an astrocyte, extracellular matrix-rich pathway. Glia 17, 1–14.

    PubMed  CAS  Google Scholar 

  90. Silver, J. (1994) Inhibitory molecules in development and regeneration. J. Neurol. 242, S22 - S24.

    PubMed  CAS  Google Scholar 

  91. Cremer, H., Lange, R., Christoph, A., Plomann, M., Vopper, G., Roes, J., Brown, R., Baldwin, S., Kraemer, P., and Scheff, S. (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367, 455–459.

    PubMed  CAS  Google Scholar 

  92. Hu, H., Tomasiewicz, H., Magnuson, T., and Rutishauser, U. (1996) The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Neuron 16, 735–743.

    PubMed  CAS  Google Scholar 

  93. Kirschenbaum, B., Doetsch, F., Lois, C., and Alvarez-Buylla, A. (1999) Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. J. Neurosci. 19, 2171–2180.

    PubMed  CAS  Google Scholar 

  94. Jankovski, A., Garcia, C., Soriano, E., and Sotelo, C. (1998) Proliferation, migration and differentiation of neuronal progenitor cells in the adult mouse subventricular zone surgically separated from its olfactory bulb. Eur. J. Neurosci. 10, 3853–3868.

    PubMed  CAS  Google Scholar 

  95. Wu, W., Wong, K., Chen, J., Jiang, Z., Dupuis, S., Wu, J. Y., and Rao, Y. (1999) Directional guidance of neuronal migration in the olfactory system by the protein Slit [see comments]. Nature 400, 331–336.

    PubMed  CAS  Google Scholar 

  96. Okano, H. J., Pfaff, D. W., and Gibbs, R. B. (1996) Expression of EGFR-, p75NGFR-, and PSTAIR (cdc-2)-like immunoreactivity by proliferating cells in the adult rat hippocampal formation and forebrain. Dey. Neurosci. 18, 199–209.

    CAS  Google Scholar 

  97. Schubert, W., Coskun, V., Tahmina, M., Rao, M. S., Luskin, M. B., and Kaprielian, Z. (2000) Characterization and distribution of a new cell surface marker of neuronal precursors. Dey. Neurosci. 22, 154–166.

    CAS  Google Scholar 

  98. Zigova, T., Pencea, V., Betarbet, R., Wiegand, S. J., Alexander, C., Bakay, R. A., and Luskin, M. B. (1998) Neuronal progenitor cells of the neonatal subventricular zone differentiate and disperse following transplantation into the adult rat striatum. Cell Transplant. 7, 137–156.

    PubMed  CAS  Google Scholar 

  99. Zigova, T., Betarbet, R., Soteres, B. J., Brock, S., Bakay, R. A., and Luskin, M. B. (1996) A comparison of the patterns of migration and the destinations of homotopically transplanted neonatal subventricular zone cells and heterotopically transplanted telencephalic ventricular zone cells. Dey. Biol. 173, 459–474.

    CAS  Google Scholar 

  100. Sommer, L., Shah, N., Rao, M., and Anderson, D. J. (1995) The cellular function of MASH1 in autonomic neurogenesis. Neuron 15, 1245–1258.

    PubMed  CAS  Google Scholar 

  101. Groves, A. K. and Anderson, D. J. (1996) Role of environmental signals and transcriptional regulators in neural crest development. Dey. Genet. 18, 64–72.

    CAS  Google Scholar 

  102. Anderson, D. J., Groves, A., Lo, L., Ma, Q., Rao, M., Shah, N. M., and Sommer, L. (1997) Cell lineage determination and the control of neuronal identity in the neural crest. Cold Spring Harbor Symp. Quant. Biol. 62, 493–504.

    PubMed  CAS  Google Scholar 

  103. Anderson, D. J. (1997) Cellular and molecular biology of neural crest cell lineage determination. Trends Genet. 13, 276–280.

    CAS  Google Scholar 

  104. Quinn, S. D. and De Boni, U. ( 1991. Enhanced neuronal regeneration by retinoic acid of murine dorsal root ganglia and of fetal murine and human spinal cord in vitro. In Vitro Cell. Dey. Biol. 27, 55–62.

    CAS  Google Scholar 

  105. Jones-Villeneuve, E. M., Rudnicki, M. A., Harris, J. F., and McBurney, M. W. (1983) Retinoic acid-induced neural differentiation of embryonal carcinoma cells. Mol. Cell. Biol. 3, 2271–2279.

    PubMed  CAS  Google Scholar 

  106. Fanarraga, M. L., Avila, J., and Zabala, J. C. (1999) Expression of unphosphorylated class III beta-tubulin isotype in neuroepithelial cells demonstrates neuroblast commitment and differentiation. Eur. J. Neurosci. 11, 517–527.

    PubMed  CAS  Google Scholar 

  107. Rao, M. S. and Mayer-Proschel, M. (1997) Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dey. Biol. 188, 48–63.

    CAS  Google Scholar 

  108. Kirschenbaum, B. and Goldman, S. A. (1995) Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc. Natl. Acad. Sci. USA 92, 210–214.

    PubMed  CAS  Google Scholar 

  109. Gritti, A., Parati, E. A., Cova, L., Frolichsthal, P., Galli, R., Wanke, E., et al. (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091–1100.

    PubMed  CAS  Google Scholar 

  110. Palmer, T. D., Ray, J., and Gage, F. H. (1995) FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell. Neurosci. 6, 474–486.

    PubMed  CAS  Google Scholar 

  111. Holmes, G. L., Gairsa, J. L., Chevassus-Au-Louis, N., and Ben-Ari, Y. (1998) Consequences of neonatal seizures in the rat: morphological and behavioral effects. Ann. Neurol. 44, 845–857.

    PubMed  CAS  Google Scholar 

  112. Holmes, G. L., Sarkisian, M., Ben-Ari, Y., and Chevassus-Au-Louis, N. (1999) Mossy fiber sprouting after recurrent seizures during early development in rats. J. Comp. Neurol. 404, 537–553.

    PubMed  CAS  Google Scholar 

  113. Parent, J. M. and Lowenstein, D. H. (1997) Mossy fiber reorganization in the epileptic hippocampus. Curr. Opin. Neurol 10, 103–109.

    PubMed  CAS  Google Scholar 

  114. Parent, J. M., Janumpalli, S., McNamara, J. O., and Lowenstein, D. H. (1998) Increased dentate granule cell neurogenesis following amygdala kindling in the adult rat. Neurosci. Lett. 247, 9–12.

    PubMed  CAS  Google Scholar 

  115. Gould, E. and Tanapat, P. (1999) Stress and hippocampal neurogenesis. Biol. Psychiatry 46, 1472–1479.

    PubMed  CAS  Google Scholar 

  116. Gould, E., Reeves, A. J., Fallah, M., Tanapat, P., Gross, C. G., and Fuchs, E. (1999) Hippocampal neurogenesis in adult Old World primates. Proc. Natl. Acad. Sci. USA 96, 5263–5267.

    PubMed  CAS  Google Scholar 

  117. Gould, E., Beylin, A., Tanapat, P., Reeves, A., and Shors, T. J. (1999) Learning enhances adult neurogenesis in the hippocampal formation [see comments]. Nat. Neurosci. 2, 260–265.

    PubMed  CAS  Google Scholar 

  118. Wichterle, H., Garcia-Verdugo, J. M., Herrera, D. G., and Alvarez-Buylla, A. (1999) Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat. Neurosci. 2, 461–466.

    PubMed  CAS  Google Scholar 

  119. Shimamura, K. and Rubenstein, J. L. (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124, 2709–2718.

    PubMed  CAS  Google Scholar 

  120. Mujtaba, T., Piper, D. R., Kalyani, A., Groves, A. K., Lucero, M. T., and Rao, M. S. (1999) Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev. Biol. 214, 113–127.

    PubMed  CAS  Google Scholar 

  121. Kukekov, V. G., Laywell, E. D., Thomas, L. B., and Steindler, D. A. (1997) A nestin-negative precursor cell from the adult mouse brain gives rise to neurons and glia. Glia 21, 399–407.

    PubMed  CAS  Google Scholar 

  122. Brustle, O. and McKay, R. D. (1996) Neuronal progenitors as tools for cell replacement in the nervous system. Curr. Opin. Neurobiol. 6, 688–695.

    PubMed  CAS  Google Scholar 

  123. Lundberg, C. and Bjorklund, A. (1996) Host regulation of glial markers in intrastriatal grafts of conditionally immortalized neural stem cell lines. Neuroreport 7, 847–852.

    PubMed  CAS  Google Scholar 

  124. Flax, J. D., Aurora, S., Yang, C., Simonin, C., Wills, A. M., Billinghurst, L. L., et al. (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol. 16, 1033–1039.

    PubMed  CAS  Google Scholar 

  125. Lundberg, C., Martinez-Serrano, A., Cattaneo, E., McKay, R. D., and Bjorklund, A. (1997) Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum. Exp. Neurol. 145, 342–360.

    PubMed  CAS  Google Scholar 

  126. Yang, H., Mujtaba, T., Venkatraman, G., Wu, Y., Rao, M. S., and Luskin, M. B. (2000) Region-specific differentiation of neuronal restricted progenitor cells from the embryonic spinal cord after heterotopic transplatation into the neonatal rat forebrain. Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  127. Tuszynski, M. H. and Gage, F. H. (1996) Somatic gene therapy for nervous system disease. Ciba Found. Symp. 196, 85–94.

    PubMed  CAS  Google Scholar 

  128. Martinez-Serrano, A. and Bjorklund, A. (1995–96) Gene transfer to the mammalian brain using neural stem cells: a focus on trophic factors, neuroregeneration, and cholingergic neuron systems. Clin. Neurosci. 3, 301–309.

    Google Scholar 

  129. Quinn, S. M., Walters, W. M., Vescovi, A. L., and Whittemore, S. R. (1999) Lineage restriction of neuroepithelial precursor cells from fetal human spinal cord. J. Neurosci. Res. 57, 590–602.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Venkatraman, G., Luskin, M.B. (2001). Neuronal Restricted Precursors. In: Rao, M.S. (eds) Stem Cells and CNS Development. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-107-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-107-7_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-237-7

  • Online ISBN: 978-1-59259-107-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics