Skip to main content

Mechanisms of Neuronal Death in Huntington’s Disease

  • Chapter
Pathogenesis of Neurodegenerative Disorders

Abstract

Huntington’s disease (HD) is an inherited, progressive, and always fatal, neurodegenerative disorder characterized by degeneration of neurons in the striatum and cerebral cortex, which results in involuntary motor movements. HD is one of several neurodegenerative diseases found to be caused by an expansion of CAG repeats encoding glutamine in specific proteins. The gene affected in HD is located on chromosome 4p and encodes a 3144 amino acid protein called huntingtin (Huntington’s Disease Collaborative Research Group, 1993). Other diseases known to be caused by CAG repeat expansions of greater than 35 repeats include spinal cerebellar ataxia (CAG repeat expansion in genes SCA1, SCA2, SCA3, SCA6, and SCA7), spinobulbar muscular atrophy (CAG repeat expansion in AR), and dentato-rubro-pallido-luyisian atrophy (DRPLA gene). These conditions are a subset of a larger class of diseases (Fragile X syndrome, Friederich’s ataxia, and myotonic dystrophy) associated with expansion of trinucleotide repeats either in coding or in noncoding regions of the DNA. Glutamine repeat (polyglutamine) diseases are the only trinucleotide expansion diseases in which triplet repeat expansion occurs within the coding DNA region, thus leading to protein changes. It is expected that the list of these diseases, all of which target excitable tissues in the human body (nerve and muscle cells), will grow in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albin, R. L. and Greenamyre, J. T. (1992) Alternative excitotoxic hypotheses. Neurology 42, 733–738.

    Article  PubMed  CAS  Google Scholar 

  • Albin, R. L., Reiner, A., Anderson, K. D., Dure, L. S., IV, Handelin, B., Balfour, R., et al. (1992) Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s disease. Ann. Neurol. 31, 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Bates, G. (1996) Expanded glutamines and neurodegeneration: a gain of insight. Bioessays 18, 175–178.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M. F., Brouillet, E., Jenkins, B., Henshaw, R., Rosen, B., and Hyman, B. T. (1993a) Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J. Neurochem. 61, 1147–1150.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M. F., Brouillet, E., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Miller, J. M., et al. (1993b) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13, 4181–4192.

    PubMed  CAS  Google Scholar 

  • Beal, M. F., Henshaw, D. R., Jenkins, B. G., Rosen, B. R., and Schulz, J. B. (1994) Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate. Ann. Neurol. 36, 882–888.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M. F., Hyman, B. T., and Koroshetz, W. (1993c) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci. 16, 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Swartz, K. J., and Martin, J. B. (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321, 168–171.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D. S. and Snyder, S. H. (1992) Nitric oxide, a novel neuronal messenger. Neuron 8, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Brouillet, E., Jenkins, B. G., Hyman, B. T., Ferrante, R. J., Kowall, N. W., Srivastava, R., et al. (1993) Age-dependent vulnerability of the striatum to the mitochondrial toxin 3nitropropionic acid. J. Neurochem. 60, 356–369.

    Article  PubMed  CAS  Google Scholar 

  • Bruce-Keller, A. J., Umberger, G., McFall, R., and Mattson, M. P. (1999) Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann. Neurol. 45, 8–15.

    Article  PubMed  CAS  Google Scholar 

  • Byers, R. K. and Dodge, J. A. (1967) Huntington’s chorea in children. Neurology 17, 587–596.

    Article  PubMed  CAS  Google Scholar 

  • Byers, R. K., Gilles, F. H., and Gung, C. (1973) Huntington’s disease in children: neuropathologic study of four cases. Neurology 23, 561–561.

    Article  PubMed  CAS  Google Scholar 

  • Cotman, C. W., Monaghan, D. T., Ottersen, O. P., and Storm-Mathisen, J. (1987) Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci. 10, 273–280.

    Article  CAS  Google Scholar 

  • Coyle, J. T. and Puttfarcken, P. (1993) Oxidative stress, glutamate and neurodegenerative disorders. Science 262, 689–695.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J. T. and Schwarcz, R. (1976) Lesion of striatal neurons with kainic acid provides a model for Huntington’s chorea. Nature 263, 244–246.

    Article  PubMed  CAS  Google Scholar 

  • Davies, S. W., Turmaine, M., Cozens, B. A., DiFiglia, M., Sharp, A. H., Ross, C. A., et al. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R., and Snyder, S. H. (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13, 2651–2661.

    PubMed  CAS  Google Scholar 

  • Dawson, V. L., Kizushi, V. M., Huang, P. L., Snyder, S. H., and Dawson, T. M. (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J. Neurosci. 16, 2479–2487.

    PubMed  CAS  Google Scholar 

  • DiFiglia, M., Sapp, E., Chase, K. O., Davies, S. W., Bates, G. P., Vonsattel, J. P., and Aronin, N. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993.

    Article  PubMed  CAS  Google Scholar 

  • Duan, W. and Mattson, M. P. (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J. Neurosci. Res. 57, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Duan, W., Gash, D. M., Zhang, Z., and Mattson, M. P. (1999) Participation of Par-4 in degenera- tion of dopaminergic neurons in models of Parkinson’s disease. Ann. Neurol. 6, 587–597.

    Article  Google Scholar 

  • Duan, W., Guo, Z., and Mattson, M. P. (2000) Participation of Par-4 in the degeneration of striatal neurons induced by metabolic compromise with 3-nitropropionic acid. Exp. Neurol. 165, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Dugan, L. L., Sensi, S. L., Canzoniero, L. M. T., Handran, S. D., Rothman, S. M., Lin, T. S., et al. (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J. Neurosci. 15, 6377–6388.

    PubMed  CAS  Google Scholar 

  • Dunlap, C. B. (1927) Pathologic changes in Huntington’s chorea. With special reference to the corpus striatum. Arch. Neurol. Psychiatry 18, 867–943.

    Article  Google Scholar 

  • Duyao, M., Ambrose, C., Myers, R., Novelletto, A., Persichetti, F., Frontali, M., et al. (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat. Genet. 4, 387–392.

    Article  PubMed  CAS  Google Scholar 

  • Fusco, F. R., Chen, Q., Lamoreaux, W. J., Figueredo-Cardenas, G., Jiao, Y., Coffman, J. A., et al. (1999) Cellular localization of huntingtin in striatal and cortical neruons in rats: lack of correlation with neuronal vulnerability in Huntington’s disease. J. Neurosci. 19, 1189–1202.

    PubMed  CAS  Google Scholar 

  • Gavrieli, Y., Sherman, Y., and Ben-Sasson, S. A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501.

    Article  PubMed  CAS  Google Scholar 

  • Gourfinkel-An, I., Cancel, G., Duyckaerts, C., Faucheux, B., Hauw, J. J., Trottier, Y., et al. (1998) Neuronal distribution of intranuclear inclusions in Huntington’s disease with adult onset. Neuroreport 9, 1823–1826.

    Article  PubMed  CAS  Google Scholar 

  • Greene, J. C. and Greenamyre, J. T. (1995) Manipulation of membrane potential modulates malonate-induced striatal excitotoxicity in vivo. Soc. Neurosci. Abstr. 21, 1039–1039 (Abstract).

    Google Scholar 

  • Gu, M., Gash, M. T., Mann, V. M., Javoy-Agid, F., Cooper, J. M., and Schapira, A. H. V. (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann. Neurol. 39, 385–389.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Q., Fu, W., Xie, J., Luo, H., Sells, S. F., Geddes, J. W., et al. (1998) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nature Med. 4, 957–962.

    Article  PubMed  CAS  Google Scholar 

  • Gutekunst, C. A., Li, S. H., Yi, H., Mulroy, J. S., Kuemmerle, S., Jones, R., et al. (1999) Nuclear and neuropil aggregates in Huntington’ s disease: relationship to neuropathology. J. Neuro-sci. 19, 2522–2534.

    CAS  Google Scholar 

  • Gutekunst, C.-A., Levey, A. I., Heilman, C. J., Whaley, W. L., Yi, H., Nash, N. R., et al. (1995) Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc. Natl. Acad. Sci. USA 92, 8710–8714.

    Article  PubMed  CAS  Google Scholar 

  • Hedreen, J. C., Peyser, C. E., Folstein, S. E., and Ross, C. A. (1991) Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci. Lett. 133, 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson, J. G., Agopyan, N., Gutekunst, C. A., Leavitt, B. R., LePiane, F., Singaraja, R., et al. (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Housman, D. (1995) Gain of glutamines, gain of function? Nat. Genet. 10, 3–4.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Q., Zhou, D., Sapp, E., Aizawa, H., Ge, P., Bird, E. D., et al. (1995) Quinolinic acid-induced increases in calbindin D28k immunoreactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington’s disease. Neuroscience 65, 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Huntington’s Disease Collaborative Research Group. (1993) A novel gene containing a tri-nucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Article  Google Scholar 

  • Ignatowicz, E., Vezzani, A.-M., Rizzi, M., and D’Incalci, M. (1991) Nerve cell death induced in vivo by kainic acid and quinolinic acid does not involve apoptosis. Neuroreport 2, 651–654.

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi, T., Koide, R., Tanaka, H., Onodera, O., Igarashi, S., Takahashi, H., et al. (1995) Dentatorubral-pallidoluysian atrophy: clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann. Neurol. 37, 769–775.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M., Gentleman, S., Lennox, G., Ward, L., Gray, T., Randall, K., et al. (1995) The cortical neuritic pathology of Huntington’s disease. Neuropathol. Appl. Neurobiol. 21, 18–26.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, B. E., Brouillet, E., Chen, Y.-C., Storey, E., Schulz, J. B., Kirschner, P., et al. (1996) Non-invasive neurochemical analysis of focal excitotoxic lesions in models of neuro-degenerative illness using spectroscopic imaging. J. Cereb. Blood Flow Metab. 16, 450 /161.

    Google Scholar 

  • Jenkins, B. G., Koroshetz, W. J., Beal, M. F., and Rosen, B. R. (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43, 2689–2695.

    Article  PubMed  CAS  Google Scholar 

  • Jervis, G. A. (1963) Huntington’s chorea in childhood. Arch. Neurol. 9, 244–257.

    Article  PubMed  CAS  Google Scholar 

  • Klement, I. A., Skinner, P. J., Kaytor, M. D., Yi, H., Hersch, S. M., Brent Clark, H., et al. (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Koliatsos, V. E., Portera-Cailliau, C., Schilling, G., Borchelt, D. B., Becher, M. W., and Ross, C. A. (2000) Apoptosis in Huntington disease and animal models, in Programmed Cell Death, Vol. 2: Roles in Disease Pathogenesis and Prevention (Mattson, M. P., Estus, S., and Rangnekar, V., eds.), JAI Press, Adv. Cell Aging Gerontol.

    Google Scholar 

  • Komure, O., Sano, A., Nishino, N., Yamauchi, N., Ueno, S., Kondoh, K., et al. (1995) DNA analysis in hereditary dentatorubral-pallidoluysian atrophy: correlation between CAG repeat length and phenotypic variation and the molecular basis of anticipation. Neurology 45, 143–149.

    Article  PubMed  CAS  Google Scholar 

  • Kure, S., Tominaga, T., Yoshimoto, T., Tada, K., and Narisawa, K. (1991) Glutamate triggers internucleosomal DNA cleavage in neuronal cells. Biochem. Biophys. Res. Commun. 179, 39–45.

    Article  PubMed  CAS  Google Scholar 

  • LaSpada, A. R., Paulson, H. L., and Fischbeck, K. H. (1994) Trinucleotide repeat expansion in neurological disease. Ann. Neurol. 36, 814–822.

    Article  CAS  Google Scholar 

  • Li, X.-J., Li, S.-H., Sharp, A. H., Nucifora, F. C., Jr., Schilling, G., Lanahan, A., et al. (1995) A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378, 398–402.

    Article  PubMed  CAS  Google Scholar 

  • Logroscino, G., Marder, K., Cote, L., Tang, M. X., Shea, S., and Mayeux, R. (1996) Dietary lipids and antioxidants in Parkinson’s disease: a population-based, case-control study. Ann. Neurol. 39, 89–94.

    Article  PubMed  CAS  Google Scholar 

  • Ludolph, A. C., He, F., Spencer, P. S., Hammerstad, J., and Sabri, M. (1991) 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can. J. Neurol. Sci. 18, 492–498.

    Google Scholar 

  • MacDonald, M. E. and Gusella, J. F. (1997) Huntington’s disease: Translating a CAG repeat into a pathogenic mechanism. Curr. Op. Neurobiol. 6, 638–643.

    Article  Google Scholar 

  • Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. (1998) Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci. 21, 53–57.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Culmsee, C., Yu, Z., and Camandola, S. (2000) Roles of NF-KB in neuronal survival and plasticity. J. Neurochem. 74, 443–456.

    Article  PubMed  CAS  Google Scholar 

  • Mayeux, R., Costa, R., Bell, K., Merchant, C., Tung, M. X., and Jacobs, D. (1999) Reduced risk of Alzheimer’s disease among individuals with low calorie intake. Neurology 59, 5296–5297.

    Google Scholar 

  • McCaughey, W. T. E. (1961) The pathologic spectrum of Huntington’s chorea. J. Nerv. Ment. Dis. 133, 91–103.

    Article  Google Scholar 

  • McGeer, E. G. and McGeer, P. L. (1976) Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids. Nature 263, 517–519.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, E. G., McGeer, P. L., and Singh, K. (1978) Kainate-induced degeneration of neostriatal neurons: dependency upon corticostriatal tract. Brain Res. 139, 381–383.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, D. T. and Cotman, C. W. (1985) Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain. J. Neurosci. 5, 2909–2919.

    PubMed  CAS  Google Scholar 

  • Monaghan, D. T., Bridges, R. J., and Cotman, C. (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 29, 365–402.

    Article  PubMed  CAS  Google Scholar 

  • Nakai, M., Qin, Z. H., Chen, J. F., Wang, Y., and Chase, T. N. (2000) Kainic acid-induced apoptosis in rat striatum is associated with nuclear factor-kappaB activation. J. Neurochem. 74, 647–658.

    Article  PubMed  CAS  Google Scholar 

  • Nasir, J., Goldberg, Y. P., and Hayden, M. R. (1996) Huntington disease: new insights into the relationship between CAG expansion and disease. Hum. Mol. Genet. 5, 1431–1435.

    PubMed  CAS  Google Scholar 

  • Nelson, J. S. (1995) Diseases of the basal ganglia, in Pediatric Neuropathology ( Ducket, S., ed.), Williams and Wilkins, Baltimore, pp. 212–214.

    Google Scholar 

  • Obeid, L. M., Linardic, C. M., Karolak, L. A., and Hannun, Y. A. (1993) Programmed cell death induced by ceramide. Science 259, 1769–1771.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J. W. and Ishimaru, M. J. (1998) Excitotoxic cell death, in Cell Death and Diseases of the Nervous System ( Koliatsos, V. E. and Ratan, R. R., eds.), Humana Press, Totowa, NJ, pp. 197–220.

    Google Scholar 

  • Ona, V. O., Li, M., Vonsattel, J. P., Andrews, L. J., Khan, S. Q., Chung, W. M., et al. (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399, 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer, D. R. and Esiri, M. M. (1992) Diseases of the basal ganglia, cerebellum and motor neurons, in Greenfield’s Neuropathology ( Adams, J. H. and Duchen, L. W., eds.), Oxford University Press, New York, pp. 988–1045.

    Google Scholar 

  • Peitsch, M. C., Polzar, B., Stephan, H., Crompton, T., MacDonald, H. R., Mannherz, H. G., and Tschopp, J. (1993) Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J. 12, 371–377.

    PubMed  CAS  Google Scholar 

  • Persichetti, F., Ambrose, C. M., Ge, P., McNeil, S. M., Srinidhi, J., Anderson, M. A., et al. (1995) Normal and expanded Huntington’s disease gene alleles produce distinguishable proteins due to translation across the CAG repeat. Mol. Med. 1, 374–383.

    PubMed  CAS  Google Scholar 

  • Perutz, M. (1994) Polar zippers: their role in human disease. Protein Sci. 3, 1629–1637.

    Article  PubMed  CAS  Google Scholar 

  • Portera-Cailliau, C., Hedreen, J. C., Price, D. L., and Koliatsos, V. E. (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci. 15, 3775–3787.

    PubMed  CAS  Google Scholar 

  • Portera-Cailliau, C., Sung, C.-H., Nathans, J., and Adler, R. (1994) Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 91, 974–978.

    Article  PubMed  CAS  Google Scholar 

  • Rabacchi, S. A., Bonfanti, L., Liu, X.-H., and Maffei, L. (1994) Apoptotic cell death induced by optic nerve lesion in the neonatal rat. J. Neurosci. 14, 5292–5301.

    PubMed  CAS  Google Scholar 

  • Reddy, P. H., Williams, M., Charles, V., Garrett, L., Pike-Buchanan, L., Whetsell, W. O., Jr., et al. (1998) Behavioral abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat. Genet. 20, 198–202.

    Article  PubMed  CAS  Google Scholar 

  • Reiner, A., Albin, R. L., Anderson, K. D., D’Amato, C. J., Penney, J. B., and Young, A. B. (1988) Differential loss of striatal projection neurons in Huntington disease. Proc. Natl. Acad. Sci. USA 85, 5733–5737.

    Article  PubMed  CAS  Google Scholar 

  • Rodda, R. A. (1981) Cerebellar atrophy in Huntington’s disease. J. Neurol. Sci. 50, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Rosenow, F., Herholz, K., Lanfermann, H., Weuthen, G., Ebner, R., Kessler, J., et al. (1995) Neurological sequelae of cyanide intoxication-the patterns of clinical, magnetic resonance imaging, and positron emission tomography findings. Ann. Neurol. 38, 825–828.

    Article  PubMed  CAS  Google Scholar 

  • Ross, C. A., Margolis, R. L., Becher, M. W., Wood, J. D., Engelender, S., and Sharp, A. H. (1997) Pathogenesis of polyglutamine neurodegenerative diseases: towards a unifying mechanism, in Genetic Instabilities and Hereditary Neurological Diseases ( Wells, R. D. and Warren, S. T., eds.), Academic, New York.

    Google Scholar 

  • Ross, C. A. (1995) When more is less: pathogenesis of glutamine repeat neurodegenerative diseases. Neuron 15, 493–496.

    Article  PubMed  CAS  Google Scholar 

  • Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., et al. (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558.

    Article  PubMed  CAS  Google Scholar 

  • Schilling, G., Becher, M. W., Sharp, A. H., Jinnah, H. A., Duan, K., Kotzuk, J. A., et al. (1999) Intranuclear inclusions and neuritic pathology in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet. 8, 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, J. B., Henshaw, D. R., Siwek, D., Jenkins, B. G., Ferrante, R. J., Cipolloni, P. B., et al. (1995a) Involvement of free radicals in excitotoxicity in vivo. J. Neurochem. 64, 2239–2247.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, J. B., Huang, P. L., Matthews, R. T., Passov, D., Fishman, M. C., and Beal, M. F. (1996) Striatal malonate lesions are attenuated in neuronal nitric oxide synthase knockout mice. J. Neurochem. 67, 430–433.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, J. B., Matthews, R. T., Jenkins, B. G., Ferrante, R. J., Siwek, D., Henshaw, D. R., et al. (1995b) Blockade of neuronal nitric oxide synthase protects against excitotoxicity in vivo. J. Neurosci. 15, 8419–8429.

    CAS  Google Scholar 

  • Schulz, J. B., Matthews, R. T., Henshaw, D. R., and Beal, M. F. (1996) Neuroprotective strategies for treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases. Neuroscience 71, 1043–1048.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, A. H. and Ross, C. A. (1996) Neurobiology of Huntington’s disease. Neurobiol. Dis. 3, 3–15.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, A. H., Loev, S. J., Schilling, G., Li, S.-H., Li, X.-J., Bao, J., et al. (1995) Widespread expression of the Huntington’s disease gene (IT-15) protein product. Neuron 14, 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  • Snell, R. G., MacMillan, J. C., Cheadle, J. P., Fenton, I., Lazarou, L. P., Davies, P., et al. (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat. Genet. 4, 393–397.

    Article  PubMed  CAS  Google Scholar 

  • Stine, O. C., Pleasant, N., Franz, M. L., Abbott, M. H., Folstein, S. E., and Ross, C. A. (1993) Correlation between the onset age of Huntington’s disease and length of the trinucleotide repeat in IT-15. Hum. Mol. Genet. 2, 1547–1549.

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Robinson, S. D., Weeks, R. A., Bryant, D. J., Sargentoni, J., Marcus, C. D., Harding, A. E., and Brooks, D. J. (1996) Proton magnetic resonance spectroscopy in Huntington’s disease: evidence in favor of the glutamate excitotoxic theory? Mov. Disord. 11, 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Uitti, R. J., Rajput, A. H., Ashengurst, E. M., and Rozdilsky, B. (1985) Cyanide-induced parkinsonism: a clinicopathologic report. Neurology 35, 921–925.

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel, J.-P., Myers, R. H., Stevens, T. J., Ferrante, R. J., Bird, E. D., and Richardson, E. P., Jr. (1985) Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 44, 559–577.

    Article  PubMed  CAS  Google Scholar 

  • Wanker, E. E., Rovira, C., Scherzinger, E., Hasenbank, R., Walter, S., Tait, D., et al. (1997) HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum. Mol. Genet. 6, 487–495.

    Article  PubMed  CAS  Google Scholar 

  • Warren, S. and Nelson, D. L. (1993) Trinucleotide repeat expansions in neurological disease. Curr. Opin. Neurobiol. 3, 752–759.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox, B. J., Applegate, M. D., Portera-Cailliau, C., and Koliatsos, V. E. (1995) Nerve growth factor prevents apoptotic cell death in injured central cholinergic neurons. J. Comp. Neurol. 359, 573–585.

    Article  PubMed  CAS  Google Scholar 

  • Young, A. B. and Fagg, G. E. (1990) Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol. Sci. 11, 126–133.

    Article  PubMed  CAS  Google Scholar 

  • Young, A. B., Greenamyre, J. T., Hollingsworth, Z., Albin, R., D’ Amato, C., Shoulson, I., and Penney, J. B. (1988) NMDA receptor losses in putamen from patients with Huntington’s disease. Science 241, 981–983.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Z., Zhou, D., and Mattson, M. P. (2000) Increased vulnerability of striatal neurons to 3nitropropionic acid in mice lacking the p50 subunit of NF-KB. J. Mol. Neurosci., in press.

    Google Scholar 

  • Zhu, H., Guo, Q., and Mattson, M. P. (1999) Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Res. 842, 224–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koliatsos, V.E., Portera-Cailliau, C., Schilling, G., Borchelt, D.B., Becher, M.W., Ross, C.A. (2001). Mechanisms of Neuronal Death in Huntington’s Disease. In: Mattson, M.P. (eds) Pathogenesis of Neurodegenerative Disorders. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-106-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-106-0_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-215-5

  • Online ISBN: 978-1-59259-106-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics