Skip to main content

ATP Signaling in Schwann Cells

  • Chapter
Book cover Neuroglia in the Aging Brain

Abstract

Since the early 1970s, strong evidence has been provided that adenosine 5′-triphosphate (ATP) acts as a potent extracellular chemical messenger in cell of many types. It is now well-known that ATP acts as a neurotransmitter at synapses in both the central and peripheral nervous systems. In addition of being a neurotransmitter, ATP and its products of degradation (ADP, AMP, and adenosine) are also known to act as trophic factors by promoting cell proliferation and/or differentiation, stimulation of synthesis and/or release of neurotrophic factors both under physiological and pathological conditions. All these diverse biological effects are mediated via cell surface receptors termed purinoceptors. Purinoceptors of the P2 type, for which ATP is the physiological ligand, are subdivided into receptors that directly gate ion channels (P2x) and G protein-coupled receptors (P2Y).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holton, F.A. and Holton, P. (1953) The possibility that ATP is a transmitter at sensory nerve endings. J. Physiol. London 119, 50–51 P.

    Google Scholar 

  2. Holton, P. (1959) The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves J. Physiol. London 145, 494–504.

    PubMed  CAS  Google Scholar 

  3. Thorne, P.R. and Housley, G.D. (1996) Purinergic signalling in sensory systems. In: Seminars in The Neurosciences 8, 233–246.

    Google Scholar 

  4. Fieber, L.A. and Adams, D.J. (1991) Adenosine triphoshate-evoked currents in cultured neurons dissociated from rat parasympathetic cardiac ganglia. J. Physiol. London 434, 239–256.

    PubMed  CAS  Google Scholar 

  5. Boeckxstaens, G.E., Pelckmans, P.A., Rampart, M., Verbeuren, T.J., Herman, A.G., and Van Maercke, Y.M. (1990) Evidence against ATP being the inhibitory transmitter released by nonadrenergic noncholinergic nerves in the canine ileocolonic junction. Pharmacol Exp Ther. 254 (2), 659–63.

    CAS  Google Scholar 

  6. Von Kugelgen, I., Allgaier, C., Schobert, A., and Starke, K. (1994) Co-release of noradrenaline and ATP from cultured sympathetic neurons. Neuroscience 61 (2), 199–202.

    Article  Google Scholar 

  7. Wolinsky, E.J. and Patterson, P.H. (1985) Potassium-stimulated purine release by cultured sympathetic neurons. J. Neurosci. 5 (7), 1680–1687.

    PubMed  CAS  Google Scholar 

  8. Jahr, C.E. and Jessell, J.M. (1983) ATP excites a subpopulation of rat dorsal horn neurones. Nature 304, 730–733.

    Article  PubMed  CAS  Google Scholar 

  9. Burnstock, G. (1996) P2 purinoceptors: historical perspective and classification. In P2purinoceptors: localization, function and transduction mechanisms, Wiley, Chichester (Ciba Foundation Symposium 198), 1–34.

    Google Scholar 

  10. Burnstock, G. (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmac. 36, 1127–1139.

    Article  CAS  Google Scholar 

  11. Gualix, J., Abal, M., Pintor, J., Garcia-Carmona, F., and Miras-Portugal, M.T. (1996) Nucleotide vesicular transporter of bovine chromaffin granules. Evidence for a mnemonic regulation. J. Biol. Chem. 271 (4), 1957–65.

    Article  PubMed  CAS  Google Scholar 

  12. Reist, N.E. and Smith, S.J. (1992) Neurally evoked calcium transients in terminal Schwann cells at the neuromuscular junction. Proc. Natl. Acad. Sci. USA 89, 7625–7629.

    Article  PubMed  CAS  Google Scholar 

  13. Jahromi, B.S., Robitaille, R., and Charlton, M.P. (1992) Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ. Neuron 8, 1069–1077.

    Article  PubMed  CAS  Google Scholar 

  14. Robitaille, R. (1995) Purinergic receptors and their activation by endogenous purines at perisynaptic glial cells of the frog neuromuscular junction. J. Neurosci. 15, 7121–7131.

    PubMed  CAS  Google Scholar 

  15. Stjärne, L. Astrand, P., Bao, J.X., Gonon, F., Msghina, M., and Stjarne, E. (1994) Spatiotemporal pattern of quantal release of ATP and noradrenaline from sympathetic nerves: consequences for neuromuscular transmission. Adv. Second. Messenger Phosphoprotein Res. 29,461–496.

    Google Scholar 

  16. Zimmermann, H. (1996) Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Progress Neurobiol. 49, 589–618.

    Article  CAS  Google Scholar 

  17. Farinas, I., Solsona, C., and Marsal, J. (1992) Omega-conotoxin differentially blocks acetylcholine and adenosine triphosphate releases from Torpedo synaptosomes. Neuroscience 47 (3), 641–648.

    Article  PubMed  CAS  Google Scholar 

  18. Lyons, S.A., Morell, P., and McCarthy, K.D. (1995) Schwann cell ATP-mediated calcium increases in vitro and in situ are dependent on contact with neurons. Glia 13, 27–38.

    Article  PubMed  CAS  Google Scholar 

  19. Stevens, B. and Fields, R.D. (2000) Response of Schwann cells to action potentials in development. Science 287, 2267–2271.

    Article  PubMed  CAS  Google Scholar 

  20. Weinreich, D. and Hammerschlag, R. (1975) Nerve impulse-enhanced release of amino acids from non-synaptic regions of peripheral and central nerve trunks of bullfrog. Brain Res. 84 (1), 137–142.

    Article  PubMed  CAS  Google Scholar 

  21. Kriegler, S. and Chiu, S.Y. (1993) Calcium signaling of glial cells along mammalian axons. J. Neurosci. 13 (10), 4229–4245.

    PubMed  CAS  Google Scholar 

  22. Vizi, E.S., Gyires, K., Somogyi, G.T., and Ungvary, G. (1983) Evidence that transmitter can be released from regions of the nerve cell other than presynaptic axon terminal: axonal release of acetylcholine without modulation. Neuroscience 10 (3), 967–972.

    Article  PubMed  CAS  Google Scholar 

  23. Martin, D.L. (1992) Synthesis and release of neuroactive substances by glial cells. Glia 5 (2), 81–94.

    Article  PubMed  CAS  Google Scholar 

  24. Schwiebert, E.M. (1999) ABC transporter-facilitated ATP conductive transport. Am. J. Physiol. 276, Cl—C8.

    Google Scholar 

  25. Reisin, I.L., Prat, A.G., Abraham, E.H., Amara, J.F., Gregory, R.J., Ausiello, D.A., and Cantiello, H.F. (1994) The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J. Biol. Chem. 269 (32), 20584–20591.

    PubMed  CAS  Google Scholar 

  26. Li, C., Ramjeesingh, M., and Bear, C.E. (1996) Purified cystic fibrosis transmembrane conductance regulator (CFTR) does not function as an ATP channel. J. Biol. Chem. 271 (20), 11623–11626.

    Article  PubMed  CAS  Google Scholar 

  27. Reddy, M.M., Quinton, P.M., Haws, C., etal. (1996) Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP. Science 271, 1876–1879.

    Article  PubMed  CAS  Google Scholar 

  28. Prat, A.G., Reisin, I.L., Ausiello, D.A., and Cantiello, H.F. (1996) Cellular ATP release by the cystic fibrosis transmembrane conductance regulator. Am. J. Physiol. 270, C538–0545.

    CAS  Google Scholar 

  29. Cantiello, H.F., Jackson, G.R., Grosman, C.F., etal. (1998) Electrodiffusional ATP movement through the cystic fibrosis transmembrane conductance regulator. Am. J. Physiol. 274, C799 - C809.

    PubMed  CAS  Google Scholar 

  30. Gottesman, M.M., Pastan, I., and Ambudkar, S.V. (1996) P-glycoprotein and multidrug resistance. Curr. Opin. Genet. Dey. 6 (5), 610–617.

    Article  CAS  Google Scholar 

  31. Gill, D.R., Hyde, S.C., Higgins, C.F., Valverde, M.A., Mintening, G.M., and Sepulveda, F.V. (1992) Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell 71, 23–32.

    Article  PubMed  CAS  Google Scholar 

  32. Hardy, S.P., Goodfellow, H.R., Valverde, M.A., Gill, D.R., Sepulveda, V., and Higgins, C.F. (1995) Protein kinase C-mediated phosphorylation of the human multidrug resistance P-glycoprotein regulates cell volume-activated chloride channels. EMBO J. 14 (1), 68–75.

    PubMed  CAS  Google Scholar 

  33. Abraham, E.H., Prat, A.G., Gerweck, L., etal. (1993) The multidrug resistance (mdrl) gene product functions as an ATP channel. Proc. Natl. Acad. Sci. USA 90 (1), 312–316.

    Article  PubMed  CAS  Google Scholar 

  34. Mitchell, C.H., Carré, D.A., McGlinn, A.M., Stone, R.A., and Civan, M.M. (1998) A release mechanism for stored ATP in ocular ciliary epithelial cells. Proc. Natl. Acad. Sci. USA 95, 7174–7178.

    Article  PubMed  CAS  Google Scholar 

  35. Allikmets, R., Gerrard, B., Hutchinson, A., and Dean, M. (1996) Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. Hum. Mol. Genet. 5 (10), 1649–1655.

    Article  PubMed  CAS  Google Scholar 

  36. Bruzzone, R. and Ressot, C. (1997) Connexins, gap junctions and cell-cell signalling in the nervous system. Eur. J. Neurosci. 9, 1–6.

    Article  PubMed  CAS  Google Scholar 

  37. Cotrina, M.L., Lin, J.H., Alves-Rodrigues, A., etal. (1998) Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. USA 95 (26), 15735–15740.

    Article  PubMed  CAS  Google Scholar 

  38. Giaume, C. and Venance, L. (1998) Intercellular calcium signalling and gap junctional communication in astrocytes. Glia 24, 50–64.

    Article  PubMed  CAS  Google Scholar 

  39. Karschin, C., Ecke, C., Ashcrift, F.M., and Karschin, A. (1997) Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett. 401 (1), 59–64.

    Article  PubMed  CAS  Google Scholar 

  40. Rathbone, M.P., Middlemiss, P., Andrew, C., etal. (1998) The trophic effects of purines and purinergic signaling in pathologic reactions of astrocytes. Alzheimer Dis. Assoc. Disord. 12, S36 - S45.

    Article  PubMed  CAS  Google Scholar 

  41. Chandross, K.J. (1998) Nerve injury and inflammatory cytokines modulate gap junctions in the peipheral nervous system. Glia 24, 21–31.

    Article  PubMed  CAS  Google Scholar 

  42. Dezawa, M., Mutoh, T., Dezawa, A., and Adachi-Usami, E. (1998) Putative gap junctional communication between axon and regenerating Schwann cells during mammalian peipheral nerve regeneration. Neuroscience 85, 663–667.

    Article  PubMed  CAS  Google Scholar 

  43. Ziganshin, A.U., Hoyle, C.H.V., and Burnstock, G. (1994) Ecto-enzymes and metabolism of extracellular ATP. Drug Dey. Res. 32, 134–146.

    Article  CAS  Google Scholar 

  44. Mata, M., Staple, J., and Fink, D.J. (1988) Cytochemical localization of Cat+-ATPase activity in peripheral nerve. Brain Res. 445 (1), 47–54.

    Google Scholar 

  45. Nitahara, K., Kittel, A., Liang, S.D., and Vizi, E.S. (1995) Al-receptor-mediated effect of adenosine on the release of acetylcholine from the myenteric plexus. Role and localization of ecto-ATPase and 5’-nucleotidase. Neuroscience 67, 159–168.

    Article  PubMed  CAS  Google Scholar 

  46. Grondal, E.J.M., Janetzko, A., and Zimmermann, H. (1988) Monospecific antiserum against 5’nucleotidase from Torpedo electric organ. Immunocytochemical distribution of the enzyme and its association with Schwann cell membrane. Neuroscience 24, 351–363.

    Article  PubMed  CAS  Google Scholar 

  47. Hourani, S.M.O., Bailey, S.J., Nicholls, J., and Kitchen, I. (1991) Direct effects of adenylyl 5’(13,y-methyle)diphosphonate a stable ATP analogue, on relaxant P1-purinoceptors in smooth muscle. Br. J. Pharmac. 104, 685–690.

    Article  CAS  Google Scholar 

  48. Crack, B.E., Beukers, M.W., McKechnie, K.C.W., Ijzerman, A.P., and Leff, P. (1984) Pharmacological analysis of ecto-ATPase inhibition: evidence for combined enzyme inhibition and receptor antagonism in P2x-purinoceptor ligands. Br. J. Pharmac. 113, 1432–1438.

    Article  Google Scholar 

  49. Bao, J.X. (1993) Sympathetic neuromuscular transmission in rat tail artery: a study based on electrochemical, electrophysiological and mechanical recording. Acta Physiol. Scand. Suppl. 610, 1–58.

    PubMed  CAS  Google Scholar 

  50. Ziganshin, A.U., Ziganshin, L.E., King, B.F., and Burnstock, G. (1995) Characteristics of ectoATPase of Xenopus oocytes and the inhibitory actions of suramin on ATP breakdown. Pfliieg Archiv. 429, 412–418.

    Google Scholar 

  51. Brown, E.R. and Abbott, N.J. (1993) Ultrastructure and permeability of the Schwann cell layer surrounding the giant axon of the squid. J. Neurocytol. 22, 283–298.

    Article  PubMed  CAS  Google Scholar 

  52. Dalziel, H.H. and Westfall, D.P. (1994) Receptors for adenine nucleotides and nucleosides: subclassification, distribution and molecular characterization. Pharmacol. Rev. 446, 449–466.

    Google Scholar 

  53. Bhagwatt and Williams, M. (1997) P2 purine and pyrimidine receptors: emerging superfamilies of G-protein-coupled and ligand-gated ion channel receptors. Eur. J. Med. Chem. 32, 183–193.

    Article  Google Scholar 

  54. Ralevic, V. and Burnstock, G. (1998) Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413–492.

    PubMed  CAS  Google Scholar 

  55. Surprenant, A., Rassendren, F., Kawashima, E., North, R.A., and Buell, G. (1996) The cytolytic P2z receptor for extracellular ATP identified as a P2x receptor (P2x7). Science 272, 735–738.

    Article  PubMed  CAS  Google Scholar 

  56. DiVirgilio, F., Chiozzi, P., Falzoni, S., etal. (1998) Cytolytic P2x purinoceptors. Cell death and differentiation 5, 191–199.

    Article  CAS  Google Scholar 

  57. Amédée, T. and Despeyroux, S. (1995) ATP activates cationic and anionic conductances in Schwann cells cultured from dorsal root ganglia of the mouse. Proc. R. Soc. Lond. B. Biol. Sci 259, 277–284.

    Article  Google Scholar 

  58. Colomar, A., and Amédée, T. (2001) ATP stimulation of P2X7 receptors activates three different ionic conductances on cultured mouse Schwann cells. Eur. J. Neurosci. (in press).

    Google Scholar 

  59. Grafe, P., Mayer, C., Takigawa T., Kamleiter M., and Sanchez-Brandelik R. (1999) Confocal calcium imaging reveals an ionotropic P2 nucleotide receptor in the paranodal membrane of rat Schwann cells. J. Physiol. London 515.2., 377–383.

    Google Scholar 

  60. Lyons, S.A., Morel], P., and McCarthy, K.D. (1994) Schwann cells exhibit P2y purinergic receptors that regulate intracellular calcium and are up-regulated by cyclic AMP analogues. J. Neurochem. 63, 552–560.

    Article  PubMed  CAS  Google Scholar 

  61. Ansselin, A.D., Davey, D.F., and Allen, D.G. (1997) Extracellular ATP increases intracellular calcium in cultured adult Schwann cells. Neuroscience 76, 947–955.

    Article  PubMed  CAS  Google Scholar 

  62. Amédée T. Cantereau A., Beaudu-Lange.C., Georgescauld D. and Coles J.A.(1998) High affinity and low affinity purinergic receptors on mouse Schwann cells. In Dialogue between glia and neurons (Third European Meeting on glial cell function in health and disease), Abstract 49.

    Google Scholar 

  63. Jeftinija S.D. and Jeftinija K.V. (1998) ATP stimulates release of excitatory amino acids from cultured Schwann cells. Neuroscience 82, 927–934.

    Article  PubMed  CAS  Google Scholar 

  64. Green, A.C., Dowdall, M.J., and Richardson, C.M. (1997) ATP acting on P2Y receptors triggers calcium mobilization in Schwann cells at the neuroelectrocyte junction in skate. Neuroscience 80, 635–651.

    Article  PubMed  CAS  Google Scholar 

  65. Mayer C., Quasthoff S. and Grafe P. (1998) Differences in the sensitivity to purinergic stimulation of myelinating and non-myelinating Schwann cells in peripheral human and rat nerve. Glia, 23, 374–382.

    Article  PubMed  CAS  Google Scholar 

  66. Mayer, C., Wächtler, J., Kamleiter, M. and Grafe, P. (1997) Intracellular calcium transients mediated by P2 receptors in the paranodal Schwann cell region of myelinated rat spinal root axons. Neurosci. Lett. 224, 49–52.

    Article  PubMed  CAS  Google Scholar 

  67. Zimmermann, H. (1994) Signalling via ATP in the nervous system. Trends Neurosci. 17, 420–426.

    Article  PubMed  CAS  Google Scholar 

  68. Illes P. and Nörenberg W. (1993) Neuronal ATP receptors and their mechanism of action. Trends Pharmacol. Sci. 14, 50–54.

    Article  PubMed  CAS  Google Scholar 

  69. Amédée, T., Ellie, E., Dupouy, B., and Vincent, J.D. (1991) Voltage-dependent calcium and potassium channels in Schwann cells cultured from dorsal root ganglia of the mouse. J. Physiol. London. 441, 35–56.

    PubMed  Google Scholar 

  70. Clapham, D.E. (1995) Calcium signalling. Cell 80, 259–268.

    Article  PubMed  CAS  Google Scholar 

  71. Lovisolo, D.E., Distasi, C., Antoniotti, S., and Munaron, L. (1997) Mitogens and calcium channels. News Physiol. Sci. 12, 279–285.

    CAS  Google Scholar 

  72. Berridge, M.J. (1998) Neuronal calcium signaling. Neuron 21, 13–26.

    Article  PubMed  CAS  Google Scholar 

  73. Parpura, V., Liu, F., Jeftinija, K.V., Haydon, P.G., and Jeftinija, S.D. (1995) Neuroligand-evoked calcium-dependent release of excitatory amino acids from Schwann cells. J. Neurosci. 15, 5831–5839.

    PubMed  CAS  Google Scholar 

  74. Berti-Mattera, L.N., Wilkins, P.L., Madhun, Z., and Suchovsky, D. (1996) P2-purinergic receptors regulate phospholipase C and adenylate cyclase activities in immortalized Schwann cells. Biochem. J. 314, 555–561.

    PubMed  CAS  Google Scholar 

  75. Verkhratsky, A., Orkand, R.K., and Kettenmann, H. (1998) Glial calcium: Homeostasis and signalling function. Physiol. Rev. 78, 99–141.

    PubMed  CAS  Google Scholar 

  76. Putney, J.W. (1986) A model for receptor-regulated calcium entry. Cell Calcium 7, 1–12.

    Article  PubMed  CAS  Google Scholar 

  77. Jeftinija, S.D., Jeftinija, K.V., Stefanovic, G., and Liu, F. (1996) Neuroligand-evoked calcium-dependent release of excitatory aminoacids from cultured astrocytes. J. Neurochem. 58, 1277–1284.

    Google Scholar 

  78. Katz, B. and Miledi, R. (1959) Spontaneous subthreshold activity at denervated amphibian endplates. J. Physiol. London 146, 44–45 P.

    Google Scholar 

  79. Dennis, M.J. and Miledi, R. (1974) Electrically induced release of acetylcholine from denervated Schwann cells. J. Physiol. London 237, 431–452.

    PubMed  CAS  Google Scholar 

  80. Lieberman, E.M., Abbott, N.J. and Hassan, S. (1989) Evidence that glutamate mediates axonto-Schwann cell signaling in the squid. Glia 2, 94–102.

    Article  PubMed  CAS  Google Scholar 

  81. Evans, P.D., Reale, V., Merzon, R.M., and Villegas, J. (1992) N-methyl-D-aspartate (NMDA) and non-NMDA (metabotropic) type glutamate receptors modulate the membrane potential of the Schwann celll of the squid giant nerve fibre. J. Exp. Biol. 173, 229–249.

    PubMed  CAS  Google Scholar 

  82. Dray, A. and Perkins, M. (1993) Bradykinin and inflammatory pain. Trends Neurosci. 16, 99–104.

    Article  PubMed  CAS  Google Scholar 

  83. Ferrari, D., Chiozzi, R, Falzoni, S., etal. (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacol. 36, 1295–1301.

    Article  CAS  Google Scholar 

  84. Chow, S.C., Kass, G.E.N. and Orrenius, S. (1997) Purines and their roles in apoptosis. Neuropharmac. 36, 1149–1156.

    Article  CAS  Google Scholar 

  85. Ferrari, D., Villaba, M., Chiozzi, P., Falzoni, S., Ricciardi-Castagnoli, P., and Di Virgilio, F. (1996) Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J. Immunol. 156, 1531–1539.

    PubMed  CAS  Google Scholar 

  86. Ferrari, D., Los, M., Bauer, M., Vandenabeele, R, Wesselborg, S., and Schulze-Osthoff, K. (1999) P2Z purinoceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death. FEBS Letters 447, 71–75.

    Article  PubMed  CAS  Google Scholar 

  87. Miura, M., Zhu, H., Rotello, R., Hartweig, E.A., and Yuan, J. (1993) Induction of apoptosis in fibroblasts by IL-1(3–Converting Enzyme, a mammalian homolog of the C.elegans cell death gene ced-3. Cell, 75, 653–660.

    Article  PubMed  CAS  Google Scholar 

  88. Cohn, M. (1990) Structural and chemical properties of ATP and its metal complexes in solution. Ann. N. Y. Acad. Sci. 603, 151–164.

    Article  PubMed  CAS  Google Scholar 

  89. Neary, J.T., Rathbone, M.P., Cattabeni, E, Abbracchio, M.P., and Burnstock, G. (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci. 19, 13–18.

    Article  PubMed  CAS  Google Scholar 

  90. Neary, J.T. (1996) Trophic actions of extracellular ATP on astrocytes, synergistic interactions with fibroblast growth factors and underlying signal transduction mechanisms. In P2purinoceptors: localization, function and transduction mechanisms, Wiley, Chichester (Ciba Foundation Symposium 198), 130–139.

    Google Scholar 

  91. Neary, J.T. and Zhu, Q. (1994) Signaling by ATP receptors in astrocytes. Neuroreport, 5 (13), 1617–1620.

    Article  PubMed  CAS  Google Scholar 

  92. Seger, R. and Krebs, E.G. (1995) The MAPK signaling cascade. FASEB J. 9, 726–735.

    PubMed  CAS  Google Scholar 

  93. Mutoh, T., Li, M., Yamamoto, M., Mitsuma, T., and Sobue, G. (1998) Differential signaling cascade of MAP kinase and S6 kinase depends on 3’,5’-monophosphate concentration in Schwann cells: correlation to cellular differentiation and proliferation. Brain Res. 810 (1–2), 274–278.

    Article  PubMed  CAS  Google Scholar 

  94. Thornberry, N.A. and Lazebnik, Y. (1998) Caspases: enemies within. Science 281, 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  95. Oppenheim, R.W. (1991) Cell death during development of the nervous system. Ann. Rev. Neurosci. 14, 453–501.

    Article  PubMed  CAS  Google Scholar 

  96. Barres, B.A. and Raff, M.C. (1994) Control of oligodendrocyte number in the developing rat optic nerve. Neuron. 12 (5), 935–942.

    Article  PubMed  CAS  Google Scholar 

  97. Krueger, B.K., Burne, J.F. and Raff, M.C. (1995) Evidence for large-scale astrocyte death in the developing cerebellum. Neuroscience 15, 3366–3374.

    PubMed  CAS  Google Scholar 

  98. Ciutat, D., Caldero, J., Oppenheim, R.W., and Esquerda, J.E. (1996) Schwann cell apoptosis during normal development and after axonal degeneration induced by neurotoxins in the chick embryo. J. Neurosci. 16, 3979–3990.

    PubMed  CAS  Google Scholar 

  99. Grinspan, J.B., Marchionni, M.A., Reeves, M., Coulaglou, M., and Scherer, S.S. (1996) Axonal interactions regulate Schwann cell apoptosis in developing peripheral nerve: Neuregulin receptors and the role of neuregulins. J. Neurosci. 16, 6107–6118.

    PubMed  CAS  Google Scholar 

  100. Jessen, K.R. and Mirsky, R. (1997) Embryonnic Schwann cell development: the biology of Schwann cell precursors and early Schwann cells. J. Anat. 191, 501–505.

    Article  PubMed  Google Scholar 

  101. Tatsumi, H., Tsuji, S., Anglade, P., Motelica-Heino, I., Soeda, H., and Katayama, Y. (1995) Synthesis, storage and release of acetylcholine at and from growth cones of rat central cholinergic neurons in culture. Neurosci. Lett. 202, 25–28.

    Article  PubMed  CAS  Google Scholar 

  102. Soeda, H., Tatsumi, H., and Katayama, Y. (1997) Neurotransmitter release from growth cones of rat dorsal root ganglion neurons in culture. Neuroscience 77, 1187–1199.

    Article  PubMed  CAS  Google Scholar 

  103. Griffin, J.W. and Hoffman, P.N. (1993) Degeneration and regeneration in the peripheral nervous system. In Peripheral neuropathy ( Griffin, J.W., Low, P.A., and Poduslo, J.F., eds) Saunders, Philadelphia, pp 361–376.

    Google Scholar 

  104. Whiteside, G., Doyle, C.A., Hunt S.P., and Munglani, R. (1998) Differential time course of neuronal and glial apoptosis in neonatal rat dorsal root ganglia after sciatic nerve axotomy. Eur. J. Neurosci. 10, 3400–3408.

    Article  PubMed  CAS  Google Scholar 

  105. Trachtenberg, J.T. and Thompson W.J. (1996) Schwann cell apoptosis at developing neuromuscular junctions is regulated by glial growth factor. Nature 379, 174–177.

    Article  PubMed  CAS  Google Scholar 

  106. Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K.V., Jeftinija, S.D., and Haydon P.G. (1994) Glutamate-mediated astrocyte-neuron signaling. Nature 369, 744–747.

    Article  PubMed  CAS  Google Scholar 

  107. Vernadakis, A. (1996) Glia-neuron intercommunications and synaptic plasticity. Progress Neurobiol. 49, 185–214.

    Article  CAS  Google Scholar 

  108. Finkbeiner, S.M. (1993) Glial calcium. Glia 9, 83–104.

    Article  PubMed  CAS  Google Scholar 

  109. Hugon, J., Vallat, J.M., and Leboutet M.J. (1987) Cytotoxic properties of glutamate and aspartate in rat peripheral nerves: histological findings. Neurosci. Lett. 81, 1–6.

    Article  PubMed  CAS  Google Scholar 

  110. Gallo, V., Patrizio, M., and Levi, G. (1991) GABA release triggered by the activation of neuron-like non-NMDA receptors in cultured type 2 astrocytes is carrier-mediated. Glia 4 (3), 245–255.

    Article  PubMed  CAS  Google Scholar 

  111. Bennveniste, E. (1992) Inflammatory cytokines within the central nervous system: sources, function and mechanism of action. Am. J. Physiol. 269, Cl—C6.

    Google Scholar 

  112. Gold, R., Archelos, J.J., and Hartung, H-P. (1999) Mechanisms of immune regulation in the peripheral nervous system. Brain Pathol. 9, 343–360.

    Article  PubMed  CAS  Google Scholar 

  113. Lisak, R.P., Skundric, D., Bealmear, B., and Ragheb, S. (1997) The role of cytokines in Schwann cell damage, protection and repair. J. Infect. Dis. 176, S173 — S179.

    Article  PubMed  CAS  Google Scholar 

  114. Ferrari, D., Chiozzi, P., Falzoni S., etal. (1997) ExtracellularATP triggers IL-1(3 release by activating the purinergic P2Z receptor of human macrophages. J. Immunol. 159, 1451–1458.

    Google Scholar 

  115. Lindholm, D., Heumann, R., Meyer, M., and Thoenen H. (1987) Interleukin regulates synthesis of nerve growth factor in no-neuronal cells of rat sciatic nerve. Nature 330, 658–659.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Amédée, T., Colomar, A., Coles, J.A. (2002). ATP Signaling in Schwann Cells. In: de Vellis, J.S. (eds) Neuroglia in the Aging Brain. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-105-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-105-3_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-088-5

  • Online ISBN: 978-1-59259-105-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics