Skip to main content

Astrocytes In Situ Exhibit Functional Neurotransmitter Receptors

  • Chapter
Neuroglia in the Aging Brain

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 287 Accesses

Abstract

Astrocytes constitute a major portion of brain cells and envelop most neuronal elements. The intimate association of astrocytes and neurons led early anatomists to speculate that astrocytes interact with neurons (1–4). Work beginning in the 1970s determined that astroglia (astrocytes in culture) exhibit a wide variety of neurotransmitter receptors that regulate both second messenger systems and ion channels. These findings suggested that astrocytes in vivo might have neurotransmitter receptors enabling them to respond to neuronal activity. The importance, however, of studying astrocytes without culturing them was underscored by reports indicating that the neuroligand responsiveness of astroglia changes in culture (5–7). That placing astroglia in culture altered their phenotype was not surprising given that these cells are generally isolated from their normal cellular and chemical milieu at an early developmental stage and placed into an artificial environment that almost certainly lacks critical developmental cues. Unfortunately, the complex morphology of astrocytes together with their inability to propagate action potentials makes it difficult to study these cells in vivo with methods that were so powerful in elucidating the neuronal signaling systems in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golgi, G. (1885) Sulla fina anatomia della sistema nervosa Riv. Sper. Freniatr.

    Google Scholar 

  2. His, W. (1889) Die Neuroblasten und deren Entstehungen im embryonalen Mark. Arch. Anat. u. Phys. 5, 249–300.

    Google Scholar 

  3. Lugaro, E. (1907) Sulle funzioni della nevroglia. Riv. Pat. Nerv. Ment. 12, 225–233.

    Google Scholar 

  4. Somjen, G.G. (1988) Nervenkitt: Notes on the history of the concept of neuroglia. Glia 1, 2–9.

    Article  PubMed  CAS  Google Scholar 

  5. Shao, Y. and McCarthy, K.D. (1993) Regulation of astroglial responsiveness to neuroligands in primary culture. Neuroscience 55, 991–1001.

    Article  PubMed  CAS  Google Scholar 

  6. Cai, Z. and Kimelberg, H.K. (1997) Glutamate receptor-mediated calcium responses in acutely isolated hippocampal astrocytes. Glia 21, 380–389.

    Article  PubMed  CAS  Google Scholar 

  7. Kimelberg, H.K., Cai, Z., Rastogi, P., et al. (1997) Transmitter-induced calcium responses differ in astrocytes acutely isolated from rat brain and in culture. J. Neurochem. 68, 1088–1098.

    Article  PubMed  CAS  Google Scholar 

  8. Aoki, C., Joh, T.H., and Pickel, V.M. (1987) Ultrastructural localization of beta-adrenergic receptor-like immunoreactivity in the cortex and neostriatum of rat brain. Brain Research 437, 264–282.

    Article  PubMed  CAS  Google Scholar 

  9. Seifert, G., Rehn, L., Weber, M., and Steinhauser, C. (1997b) AMPA receptor subunits expressed by single astrocytes in the juvenile mouse hippocampus. Brain Res. Mol. Brain Res. 47, 286–294.

    Article  PubMed  CAS  Google Scholar 

  10. Rothstein, J.D., Dykes-Hoberg, M., Pardo, C.A., et al, (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686.

    Article  PubMed  CAS  Google Scholar 

  11. Seifert, G. and Steinhauser, C. (1995) Glial cells in the mouse hippocampus express AMPA receptors with an intermediate Cat+ permeability. Eur. J. Neurosci. 7, 1872–1881.

    Article  PubMed  CAS  Google Scholar 

  12. Porter, J.T. and McCarthy, K.D. (1995a) Adenosine receptors modulate [Ca2+] in hippocampal astrocytes in situ. Journal of Neurochemistry 65, 1515–1523.

    Article  CAS  Google Scholar 

  13. Porter, J.T. and McCarthy, K.D. (1995b) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+];. Glia 13, 101–112.

    Article  PubMed  CAS  Google Scholar 

  14. Thorlin, T., Eriksson, P.S., Ronnback, L., and Hansson, E. (1998) Receptor-activated Ca2+ increases in vibrodissociated cortical astrocytes: a nonenzymatic method for acute isolation of astrocytes. J. Neurosci. Res. 54, 390–401.

    Article  PubMed  CAS  Google Scholar 

  15. Pasti, L., Volterra, A., Pozzan, T., and Carmignoto, G. (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830.

    PubMed  CAS  Google Scholar 

  16. Duffy, S. and Mac Vicar, B.A. (1995) Adrenergic Calcium Signaling in Astrocyte Networks within the Hippocampal Slice. J. Neurosci. 15, 5535–5550.

    PubMed  CAS  Google Scholar 

  17. Shelton, M.K. and McCarthy, K.D. (1999) Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ. Glia 26, 1–11.

    Article  PubMed  CAS  Google Scholar 

  18. van den Pol, A.N., Romano, C., and Ghosh, R (1995) Metabotropic glutamate receptor mGluR5 subcellular distribution and developmental expression in hypothalamus. Journal of Comparative Neurology 362, 134–150.

    Article  PubMed  Google Scholar 

  19. Liu, X.B., Munoz, A., and Jones, E.G. (1998) Changes in subcellular localization of metabotropic glutamate receptor subtypes during postnatal development of mouse thalamus. J. Comp. Neurol. 395, 450–465.

    Article  PubMed  CAS  Google Scholar 

  20. Romano, C., Seema, M.A., McDonald, C.T., O’Malley, K., van den Pol, A.N., and Olney, J.W. (1995) Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. Journal of Comparative Neurology 355, 455–469.

    Article  PubMed  CAS  Google Scholar 

  21. van den Pol, A.N. (1995) Presynaptic metabotropic glutamate receptors in adult and developing neurons: autoexcitation in the olfactory bulb. J. Comp. Neurol. 359, 253–271.

    Article  PubMed  Google Scholar 

  22. Porter, J.T. and McCarthy, K.D. (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. Journal of Neuroscience 16, 5073–5081.

    PubMed  CAS  Google Scholar 

  23. Muller, T., Moller, T., Berger, T., Schnitzer, J., and Kettenmann, H. (1992) Calcium entry through kainate-receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256, 1563–1566.

    Article  PubMed  CAS  Google Scholar 

  24. Clark, B. and Mobbs, P. (1992) Transmitter-operated channels in rabbit retinal astrocytes studies in situ by whole cell patch clamp. Journal of Neuroscience 12, 664–673.

    PubMed  CAS  Google Scholar 

  25. Jabs, R., Kirchhoff, F., Aronica, E.M., and Steinhauser, C. (1994) Kainate activates Cat+-permeable glutamate receptors and blocks voltage-gated K+ currents in glial cells of mouse hippocampal slices. Pfluggers Archives European Journal of Physiology 426, 310–319.

    Article  CAS  Google Scholar 

  26. Steinhauser, C., Jabs, R., and Kettenmann, H. (1994) Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus 4, 19–35.

    Article  PubMed  CAS  Google Scholar 

  27. Backus, K.H. and Berger, T. (1995) Developmental variation of the permeability to Cat+ of AMPA receptors in presumed hilar glial precursor cells. Pflugers Arch. 431, 244–252.

    Article  PubMed  CAS  Google Scholar 

  28. Akopian, G., Kuprijanova, E., Kressin, K., and Steinhuser, C. (1997) Analysis of ion channel expression by astrocytes in red nucleus brain stem slices of the rat. Glia 19, 234–246.

    Article  PubMed  CAS  Google Scholar 

  29. Seifert, G., Zhou, M., and Steinhauser, C. (1997a) Analysis of AMPA Receptor Properties During Postnatal Development of Mouse Hippocampal Astrocytes. J. Neurophysiol. 78, 2916–2923.

    PubMed  CAS  Google Scholar 

  30. Blackstone, C.D., Moss, S.J., Martin, L.J., Levey, A.I., Price, D.L., and Huganir, R.L. (1992) Biochemical characterization and localization of a non-N-methyl-D-aspartate glutamate receptor in rat brain../. Neurochem. 58, 1118–1126.

    Article  CAS  Google Scholar 

  31. Petralia, R.S. and Wenthold, R.J. (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J. of Comparative Neurology 318, 329–354.

    Article  CAS  Google Scholar 

  32. Matute, C. and Miledi, R. (1993) Neurotransmitter receptors and voltage-dependent Cat+ channels encoded by mRNA from the adult corpus callosum. Proceedings of the National Academy of Sciences 90, 3270–3274.

    Article  CAS  Google Scholar 

  33. Martin, L.J., Blackstone, C.D., Levey, A.I., Huganir, R.L., and Price, D.L. (1993) AMPA glutamate receptor subunits are differentially distributed in rat brain. Neuroscience 53, 327–358.

    Article  PubMed  CAS  Google Scholar 

  34. Sato, K., Kiyama, H., and Tohyama, M. (1993) The differential expression patterns of messenger RNAs encoding non-N-methyl-D-aspartate glutamate receptor subunits (GluRl-4) in the rat brain. Neuroscience 52, 515–539.

    Article  PubMed  CAS  Google Scholar 

  35. Molnar, E., Baude, A., Richmond, S.A., Patel, P.B., Somogyi, P., and McIlhinney, R.A. (1993) Biochemical and immunocytochemical characterization of antipeptide antibodies to a cloned G1uR1 glutamate receptor subunit: cellular and subcellular distribution in the rat forebrain. Neuroscience 53, 307–326.

    Article  PubMed  CAS  Google Scholar 

  36. Conti, F., Minelli, A., and Brecha, N.C. (1994) Cellular localization and laminar distribution of AMPA glutamate receptor subunits, mRNAs and proteins in the rat cerebral cortex. Journal of Comparative Neurology 241–259.

    Google Scholar 

  37. Matute, C., Gutierrez-Igarza, K., Rio, C., and Miledi, R. (1994) Glutamate receptors in astrocytic end-feet. Neuroreport 5, 1205–1208.

    Article  PubMed  CAS  Google Scholar 

  38. Spreafico, R., Frassoni, C., Arcelli, P., Battaglia, G., Wenthold, R.J., and De Biasi, S. (1994) Distribution of AMPA selective glutamate receptors in the thalamus of adult rats and during postnatal development. A light and ultrastructural immunocytochemical study. Brain Res. Dev. Brain Res. 82, 231–244.

    Article  PubMed  CAS  Google Scholar 

  39. Baude, A., Molnar, E., Latawiec, D., McIlhinney, R.A., and Somogyi, P. (1994) Synaptic and nonsynaptic localization of the GIuR1 subunit of the AMPA-type excitatory amino acid receptor in the rat cerebellum. J. Neurosci. 14, 2830–2843.

    PubMed  CAS  Google Scholar 

  40. Day, N.C., Williams, T.L., Ince, P.G., Kamboj, R.K., Lodge, D., and Shaw, P.J. (1995) Distribution of AMPA-selective glutamate receptor subunits in the human hippocampus and cerebellum. Molecular Brain Research 31, 17–32.

    Article  PubMed  CAS  Google Scholar 

  41. Mick, G. (1995) Non-N-methyl-D-aspartate glutamate receptors in glial cells and neurons of the pineal gland in a higher primate. Neuroendocrinology 61, 256–264.

    Article  PubMed  CAS  Google Scholar 

  42. Peng, Y.W., Blackstone, C.D., Huganir, R.L., and Yau, K.W. (1995) Distribution of glutamate receptor subtypes in the vertebrate retina. Neuroscience 66, 483–497.

    Article  PubMed  CAS  Google Scholar 

  43. Garcia-Barcina, J.M. and Matute, C. (1996) Expression of kainate-selective glutamate receptor subunits in glial cells of the adult bovine white matter. European Journal of Neuroscience 8, 2379–2387.

    Article  PubMed  CAS  Google Scholar 

  44. Petralia, R.S., Wang, Y.X., Zhao, H.M., and Wenthold, R.J. (1996) Ionotropic and metabotropic glutamate receptors show unique postsynaptic, presynaptic, and glial localizations in the dorsal cochlear nucleus. J. Comp. Neurol. 372, 356–383.

    Article  PubMed  CAS  Google Scholar 

  45. Burnashev, N., Khodorova, P., Jonas, P., et al. (1992) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256, 1566–1570.

    Article  PubMed  CAS  Google Scholar 

  46. Geiger, J.R., Melcher, T., Koh, D.S., et al. (1995) Relative abundance of subunit mRNAs determines gating and Cat+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204.

    Article  PubMed  CAS  Google Scholar 

  47. Petralia, R., Wang, Y.-X., and Wenthold, R.J. (1994) Histological and ultrastructural localization of the kainate receptor subunits, KA2 and G1uR6/7, in the rat nervous system using selective antipeptide antibodies. J. Compar. Neurol. 349, 85–110.

    Article  CAS  Google Scholar 

  48. Muller, T., Grosche, J., Ohlemeyer, C., and Aronica, E.M. (1993) NMDA-activated currents in Bergmann glial cells. Neuroreport 4, 671–674.

    Article  PubMed  CAS  Google Scholar 

  49. Wakakura, M. and Yamamoto, N. (1994) Cytosolic calcium transient increase through the AMPA/kainate receptor in cultured Muller cells. Vision Res. 34, 1105–1109.

    Article  PubMed  CAS  Google Scholar 

  50. Holzwarth, J.A., Gibbons, S.J., Brorson, J.R., Phillipson, L.H., and Miller, R.J. (1994) Glutamate receptor agonists stimulate diverse calcium responses in different types of cultured rat cortical glial cells. J. Neurosci. 14, 1879–1891.

    PubMed  CAS  Google Scholar 

  51. Shao, Y. and McCarthy, K.D. (1997) Responses of Bergmann glia and granule neurons in situ to N-methyl-D-aspartate, norepinephrine, and high potassium. J. Neurochem. 68, 2405–2411.

    Article  PubMed  CAS  Google Scholar 

  52. Puro, D.G., Yuan, J.P., and Sucher, N.J. (1996) Activation of NMDA receptor-channels in human retinal Muller glial cells inhibits inward-rectifying potassium currents. Vis. Neurosci. 13, 319–326.

    Article  PubMed  CAS  Google Scholar 

  53. Aoki, C., Venkatesan, C., Go, C.-G., Mong, J.A., and Dawson, T.M. (1994) Celllular and sub-cellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats. J. Neurosci. 14, 5202–5222.

    PubMed  CAS  Google Scholar 

  54. Luque, J.M. and Richards, J.G. (1995) Expression of NMDA 2B receptor subunit mRNA in Bergmann glia. Glia 13, 228–232.

    Article  PubMed  CAS  Google Scholar 

  55. Conti, F., DeBiasi, S., Minelli, A., and Melone, M. (1996) Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes. Glia 17, 254–258.

    Article  PubMed  CAS  Google Scholar 

  56. Jones, E.G., Tighilet, B., Tran, B.V., and Huntsman, M.M. (1998) Nucleus-and cell-specific expression of NMDA and non-NMDA receptor subunits in monkey thalamus. J. Comp. Neurol. 397, 371–393.

    Article  PubMed  CAS  Google Scholar 

  57. Goebel, D.J., Aurelia, J.L., Tai, Q., Jojich, L., and Poosch, M.S. (1998) Immunocytochemical localization of the NMDA-R2A receptor subunit in the cat retina. Brain Res. 808, 141–154.

    Article  PubMed  CAS  Google Scholar 

  58. Bettler, B., Kaupmann, K., and Bowery, N. (1998) GABAB receptors: drugs meet clones. Current Opinion in Neurobiology 8, 345–350.

    Article  PubMed  CAS  Google Scholar 

  59. Kettenmann, H., Backus, K.H., and Schachner, M. (1984) Aspartate, glutamate and gammaaminobutyric acid depolarize cultured astrocytes. Neurosci. Lett. 52, 25–29.

    Article  PubMed  CAS  Google Scholar 

  60. Mudrick-Donnon, L.A., Williams, P.J., Pittman, Q.J., and Mac Vicar, B.A. (1993) Postsynaptic potentials mediated by GABA and dopamine evoked in stellate glial cells of the pituitary pars intermedia. Journal Neuroscience 13, 4660–4668.

    CAS  Google Scholar 

  61. Muller, T., Fritschy, J.M., Grosche, J., Pratt, G.D., Mohler, H., and Kettenmann, H. (1994) Developmental regulation of voltage-gated K+ channel and GABAA receptor expression in Bergmann glial cells. J. Neurosci. 14, 2503–2514.

    PubMed  CAS  Google Scholar 

  62. Fraser, D.D., Duffy, S., Angelides, K.J., Perez-Velazquez, J.L., Kettenmann, H., and Mac Vicar, B.A. (1995) GABAA/benzodiazepine receptors in acutely isolated hippocampal astrocytes. J. Neurosci. 15, 2720–2732.

    PubMed  CAS  Google Scholar 

  63. Butt, A.M. and Jennings, J. (1994) The astrocyte response to gamma-aminobutyric acid attenuates with age in the rat optic nerve. Proc. R. Soc. Lond. B. Biol. Sci. 258, 9–15.

    Article  CAS  Google Scholar 

  64. Kang, J., Jiang, L., Goldman, S.A., and Nedergaard, M. (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neuroscience 1, 683–692.

    Article  PubMed  CAS  Google Scholar 

  65. Blake, J.F., Cao, C.Q., Headley, P.M., Collingridge, G.L., Brugger, F., and Evans, R.H. (1993) Antagonism of baclofen-induced depression of whole-cell synaptic currents in spinal dorsal horn neurons by the potent GABAB antagonist CGP55845A. Neuropharmacology 32, 1437–1440.

    Article  PubMed  CAS  Google Scholar 

  66. Nilsson, M., Eriksson, P.S., Ronnback, L., and Hansson, E. (1993) GABA induces Cat+ transients in astrocytes. Neuroscience 54, 605–614.

    Article  PubMed  CAS  Google Scholar 

  67. Lerea, L.S. and McCarthy, K.D. (1990) Neuron-associated astroglial cells express beta-and alpha 1-adrenergic receptors in vitro. Brain Res. 521, 7–14.

    Article  PubMed  CAS  Google Scholar 

  68. Lerea, L.S. and McCarthy, K.D. (1989) Astroglial cells in vitro are heterogenous with respect to expression of the alpha 1-adrenergic receptor. Glia 2, 135–147.

    Article  PubMed  CAS  Google Scholar 

  69. McCarthy, K.D., Enkvist, K., and Shao, Y. (1995) Astroglial adrenergic receptors: expression and function. In: Neuroglia, edited by Kettenmann, H. & Ransom, B.R. Oxford, New York, pp. 354–366.

    Google Scholar 

  70. Kirischuk, S., Tuschick, S., Verkhratsky, A., and Kettenmann, H. (1996) Calcium signalling in mouse Bergmann glial cells mediated by alphal-adrenoreceptors and H1 histamine receptors. Eur. J. Neurosci. 8, 1198–1208.

    Article  PubMed  CAS  Google Scholar 

  71. Sutin, J. and Shao, Y. (1992) Resting and reactive astrocytes express adrenergic receptors in the adult rat brain. Brain Res. Bull. 29, 277–284.

    Article  PubMed  CAS  Google Scholar 

  72. Shao, Y. and Sutin, J. (1992) Expression of adrenergic receptors in individual astrocytes and motor neurons isolated from the adult rat brain. Glia 6, 108–117.

    Article  PubMed  CAS  Google Scholar 

  73. Milner, T.A., Lee, A., Aicher, S.A., and Rosin, D.L. (1998) Hippocampal alpha2a-adrenergic receptors are located predominantly presynaptically but are also found postsynaptically and in selective astrocytes. J. Comp. Neurol. 395, 310–327.

    Article  PubMed  CAS  Google Scholar 

  74. Lee, A., Rosin, D.L., and Van Bockstaele, E.J. (1998) alpha2A-adrenergic receptors in the rat nucleus locus coeruleus: subcellular localization in catecholaminergic dendrites, astrocytes, and presynaptic axon terminals. Brain Res. 795, 157–169.

    Google Scholar 

  75. Salm, A.K. and McCarthy, K.D. (1989) Expression of beta-adrenergic receptors by astrocytes isolated from adult rat cortex. Glia 2, 346–352.

    Article  PubMed  CAS  Google Scholar 

  76. Aoki, C. (1992) Beta-adrenergic receptors: astrocytic localization in the adult visual cortex and their relation to catecholamine axon terminals as revealed by electron microscopic immunocytochemistry. J. Neurosci. 12, 781–792.

    PubMed  CAS  Google Scholar 

  77. Aoki, C. and Pickel, V.M. (1992) C-terminal tail of beta-adrenergic receptors: immunocytochemical localization within astrocytes and their relation to catecholaminergic neurons in N. tractus solitarii and area postrema. Brain Res. 571, 35–49.

    Article  CAS  Google Scholar 

  78. Mantyh, P.W., Rogers, S.D., Allen, C.J., et al. (1995) Beta 2-adrenergic receptors are expressed by glia in vivo in the normal and injured central nervous system in the rat, rabbit, and human. J. Neurosci. 15, 152–164.

    PubMed  CAS  Google Scholar 

  79. Aoki, C. (1997) Differential timing for the appearance of neuronal and astrocytic beta-adrenergic receptors in the developing rat visual cortex as revealed by light and electron-microscopic immunocytochemistry. Vis. Neurosci. 14, 1129–1142.

    Article  PubMed  CAS  Google Scholar 

  80. Van der Zee, E.A., Matsuyama, T., Strosberg, A.D., Traber, J., and Luiten, P.G. (1989) Demonstration of muscarinic acetylcholine receptor-like immunoreactivity in the rat forebrain and upper brainstem. Histochemistry 92, 475–485.

    Article  PubMed  Google Scholar 

  81. Shelton, M.K. and McCarthy, K.D. (2000) Hippocampal astrocytes in situ exhibit functional Ml muscarinic acetylcholine and H1 histamine receptors in situ. J. Neurochem. 79, 555–563.

    Google Scholar 

  82. Beldhuis, H.J., Everts, H.G., Van der Zee, E.A., Luiten, P.G., and Bohus, B. (1992) Amygdala kindling-induced seizures selectively impair spatial memory. 2. Effects on hippocampal neuronal and glial muscarinic acetylcholine receptor. Hippocampus 2, 411–419.

    Article  PubMed  CAS  Google Scholar 

  83. Van der Zee, E.A., Streefland, C., Strosberg, A.D., Schroder, H., and Luiten, P.G. (1992) Visualization of cholinoceptive neurons in the rat neocortex: colocalization of muscarinic and nicotinic acetylcholine receptors. Brain Res. Mol. Brain Res. 14, 326–336.

    Article  PubMed  Google Scholar 

  84. Van der Zee, E.A., De Jong, G.I., Strosberg, A.D., and Luiten, P.G. (1993) Muscarinic acetylcholine receptor-expression in astrocytes in the cortex of young and aged rats. Glia 8, 42–50.

    Article  Google Scholar 

  85. Van der Zee, E.A., Streefland, C., Strosberg, A.D., Schroder, H., and Luiten, P.G. (1991) Colocalization of muscarinic and nicotinic receptors in cholinoceptive neurons of the suprachiasmatic region in young and aged rats. Brain Res. 542, 348–352.

    Article  PubMed  Google Scholar 

  86. Messamore, E., Bogdanovich, N., Schroder, H., and Winblad, B. (1994) Astrocytes associated with senile plaques possess muscarinic acetylcholine receptors. Neuroreport 5, 1473–1476.

    Article  PubMed  CAS  Google Scholar 

  87. Schwartz, J.C., Arrang, J.M., Garbarg, M., Pollard, H., and Ruat, M. (1991) Histaminergic transmission in the mammalian brain. Physiol. Rev. 71, 1–51.

    PubMed  CAS  Google Scholar 

  88. Inagaki, N. and Wada, H. (1994) Histamine and prostanoid receptors on glial cells. Glia 11, 102–109.

    Article  PubMed  CAS  Google Scholar 

  89. Verkhratsky, A., Orkand, R.K., and Kettenmann, H. (1998) Glial calcium: homeostasis and signaling function. Physiol. Rev. 78, 99–141.

    PubMed  CAS  Google Scholar 

  90. Bernstein, M., Lyons, S.A., Moller, T., and Kettenmann, H. (1996) Receptor-mediated calcium signalling in glial cells from mouse corpus callosum slices. J. Neurosci. Res. 46, 152–163.

    Article  PubMed  CAS  Google Scholar 

  91. Maire, J.C., Medilanski, J., and Straub, R.W. (1984) Release of adenosine, inosine and hypoxanthine from rabbit non-myelinated nerve fibres at rest and during activity. J. Physiol. (Lond) 357, 67–77.

    CAS  Google Scholar 

  92. Edwards, F.A., Gibb, A.J., and Colquhoun, D. (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144–147.

    Article  PubMed  CAS  Google Scholar 

  93. Pilitsis, J.G. and Kimelberg, H.K. (1998) Adenosine receptor mediated stimulation of intracellular calcium in acutely isolated astrocytes. Brain Research 798, 294–303.

    Article  PubMed  CAS  Google Scholar 

  94. Kirischuk, S., Moller, T., Voitenko, N., Kettenmann, H., and Verkhratsky, A. (1995) ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J. Neurosci. 15, 7861–7871.

    PubMed  CAS  Google Scholar 

  95. Jabs, R., Paterson, I.A., and Walz, W. (1997) Qualitative analysis of membrane currents in glial cells from normal and gliotic tissue in situ: down-regulation of Na+ current and lack of P2 purinergic responses. Neuroscience 81, 847–860.

    Article  PubMed  CAS  Google Scholar 

  96. Neal, M.J., Cunningham, J.R., and Dent, Z. (1998) Modulation of extracellular GABA levels in the retina by activation of glial P2X-purinoceptors. Br. J. Pharmacol. 124, 317–322.

    Article  PubMed  CAS  Google Scholar 

  97. Nilsson, M., Hansson, E., and Ronnback, L. (1991) Heterogeneity among astroglial cells with respect to 5HT-evoked cytosolic Cat+ responses. A microspectrofluorimetric study on single cells in primary culture. Life Sciences 49, 1339–1350.

    Article  PubMed  CAS  Google Scholar 

  98. Deecher, D.C., Wilcox, B.D., Dave, V., Rossman, P.A., and Kimelberg, H.K. (1993) Detection of 5-hydroxytryptamine2 receptors by radioligand binding, northern blot analysis, and Cat+responses in rat primary astrocyte cultures. J. Neurosci. Res. 35, 246–256.

    Article  PubMed  CAS  Google Scholar 

  99. Jalonen, T.O., Margraf, R.R., Wielt, D.B., Charniga, C.J., Linne, M.L., and Kimelberg, H.K. (1997) Serotonin induces inward potassium and calcium currents in rat cortical astrocytes. Brain Res. 758, 69–82.

    Article  PubMed  CAS  Google Scholar 

  100. Azmitia, E.C., Gannon, P.J., Kheck, N.M., and Whitaker-Azmitia, P.M. (1996) Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacology 14, 35–46.

    Article  PubMed  CAS  Google Scholar 

  101. Whitaker-Azmitia, P.M., Clarke, C., and Azmitia, E.C. (1993) Localization of 5-HT1A receptors to astroglial cells in adult rats: implications for neuronal-glial interactions and psychoactive drug mechanism of action. Synapse 14, 201–205.

    Article  PubMed  CAS  Google Scholar 

  102. Dhawan, B.N., Raghubir, C.R., Reisine, T., Bradley, P.B., Portoghese, P.S.A., and Hamon, M. (1996) International union of pharmacology. XII, Classification of opioid receptors. Pharmacolog. Reviews 48, 567–592.

    CAS  Google Scholar 

  103. Lightman, S.L., Ninkovic, M., Hunt, S.P., and Iversen, L.L. (1983) Evidence for opiate receptors on pituicytes. Nature 305, 235–237.

    Article  PubMed  CAS  Google Scholar 

  104. Bunn, S.J., Hanley, M.R., and Wilkin, G.P. (1985) Evidence for a kappa-opioid receptor on pituitary astrocytes: an autoradiographic study. Neurosci. Lett. 55, 317–323.

    Article  PubMed  CAS  Google Scholar 

  105. Enkvist, M.O., Holopainen, I., and Akerman, K.E. (1989) Alpha-receptor and cholinergic receptor-linked changes in cytosolic Cat+ and membrane potential in primary rat astrocytes. Brain Res. 500, 46–54.

    Article  PubMed  CAS  Google Scholar 

  106. Enkvist, M.O. and McCarthy, K.D. (1992) Activation of protein kinase C blocks astroglial gap junction communication and inhibits the spread of calcium waves. J. Neurochemistry 59, 519–526.

    Article  CAS  Google Scholar 

  107. Rothstein, J.D., Martin, L., Levey, A.I., et al. (1994) Localization of neuronal and glial glutamate transporters. Neuron 13, 713–725.

    Article  PubMed  CAS  Google Scholar 

  108. Lehre, K.P., Levy, L.M., Otterson, O.P., Storm-Mathisen, J., and Danbolt, N.C. (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J. Neurosci. 15, 1835–1853.

    PubMed  CAS  Google Scholar 

  109. Tanaka, K., Watase, K., Manage, T., et al. (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702.

    Article  PubMed  CAS  Google Scholar 

  110. Yu, A.C., Chan, P.H., and Fishman, R.A. (1986) Effects of arachidonic acid on glutamate and gamma-aminobutyric acid uptake in primary cultures of rat cerebral cortical astrocytes and neurons. J. Neurochem. 47, 1181–1189.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shelton, M.K., McCarthy, K.D. (2002). Astrocytes In Situ Exhibit Functional Neurotransmitter Receptors. In: de Vellis, J.S. (eds) Neuroglia in the Aging Brain. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-105-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-105-3_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-088-5

  • Online ISBN: 978-1-59259-105-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics