Skip to main content

Astrocytic Changes Associated with Epileptic Seizures

  • Chapter
Neuroglia in the Aging Brain

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 284 Accesses

Abstract

Throughout the central nervous system (CNS), most neurons are closely surrounded by astrocytes. In electron microscopic sections, astrocytes appear to encapsulate neuronal cell bodies and astrocytic processes reach close into the vicinity of synapses. This anatomical proximity gives astrocytes privileged access to the neuronal microenvironment and it is believed that astrocytes actively regulate the extracellular space surrounding neurons. Such regulation appears essential to ensure normal neuronal excitability, since even small changes in extracellular potassium (K+), pH, or the accumulation of neurotransmitters can alter or compromise neuronal function. For example, recordings from hippocampal brain slices showed that modest elevations of extracellular K+ results in hyperexcitability of hippocampal neurons (1), demonstrating properties that are reminiscent of epileptic seizures. Similarly, compromised astrocytic glutamate uptake, as observed for example in mice lacking astrocytic glutamate transporters, induces epileptic seizures in vivo (2). Thus, fine control of the microenvironment is essential for the maintenance of normal neuronal signaling. To accomplish this role, astrocytes express a number of transport systems, ion channels, and neurotransmitter receptors that are believed to jointly participate in the fine tuning of the neuronal microenvironment (for review, 3–11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Traynelis, S.F. and Dingledine, R. (1988) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59, 259–276.

    PubMed  CAS  Google Scholar 

  2. Tanaka, K., Watase, K., Manabe, T., et al. (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702.

    Article  PubMed  CAS  Google Scholar 

  3. Hertz, L. (1992) Autonomic control of neuronal-astrocytic interactions, regulating metabolic activities, and ion fluxes in the CNS. Brain Res. Bull. 29, 303–313.

    Article  PubMed  CAS  Google Scholar 

  4. Clausen, T. (1992) Potassium and sodium transport and pH regulation. Can. J. Physiol. Pharmacol. 70, S219 - S222.

    Article  PubMed  CAS  Google Scholar 

  5. Sontheimer, H. (1995) Ion channels in inexcitable cells. The Neuroscientist 1, 64–67.

    Article  CAS  Google Scholar 

  6. Sontheimer, H. (1994) Voltage-dependent ion channels in glial cells. Glia 11, 156–172.

    Article  PubMed  CAS  Google Scholar 

  7. Porter, J.T. and McCarthy, K.D. (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Progr. Neurobiol. 51, 439–455.

    Article  CAS  Google Scholar 

  8. Hansson, E. (1989) Co-existence between receptors, carriers, and second messengers on astrocytes grown in primary cultures. Neurochem. Res. 14, 811–819.

    Article  PubMed  CAS  Google Scholar 

  9. Wilkin, G.P., Marriott, D.R., Cholewinski, A.J., et al. (1991) Receptor activation and its biochemical consequences in astrocytes. Ann N.Y. Acad. Sci. 633, 475–488.

    Article  PubMed  CAS  Google Scholar 

  10. Kimelberg, H.K. (1995) Receptors on astrocytes-what possible functions? Neurochem. Int. 26, 27–40.

    Article  PubMed  CAS  Google Scholar 

  11. Deschepper, C.F. (1998) Peptide receptors on astrocytes. Front. Neuroendocrinol. 19, 20–46.

    Article  PubMed  CAS  Google Scholar 

  12. Meldrum, B.S. and Bruton, C.J. (1992) Epilepsy. In: Greenfield’s Neuropathology ( Adams, J.H. and Duchen, L.W., ed.), Oxford University Press, New York, pp. 1246–1283.

    Google Scholar 

  13. Penfield, W. (1927) The mechanism of cicatricial contraction. Brain 50, 499–517.

    Article  Google Scholar 

  14. Hablitz, J.J. (1987) Spontaneous ictal-like discharges and sustained potential shifts in the developing rat neocortex. J. Neurophysiol. 58, 1052–1065.

    PubMed  CAS  Google Scholar 

  15. Swann, J.W. and Brady, R.J. (1984) Penicillin-induced epileptogenesis in immature rat CA3 hippocampal pyramidal cells. Dev. Brain Res. 12, 243–254.

    Article  Google Scholar 

  16. Heinemann, U. and Lux, H.D. (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res. 120, 231–249.

    Article  PubMed  CAS  Google Scholar 

  17. Orkand, R.K., Nicholls, J.G. and Kuffler, S.W. (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 788–806.

    PubMed  CAS  Google Scholar 

  18. Hertz, L. (1965) Possible role of neuroglia: a potassium-mediated neuronal-neuroglial-neuronal impulse transmission system. Nature 206, 1091–1094.

    Article  PubMed  CAS  Google Scholar 

  19. Walz, W. and Hertz, L. (1983) Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Prog. Neurobiol. 20, 133–183.

    Article  PubMed  CAS  Google Scholar 

  20. Walz, W. and Hertz, L. (1983) Intracellular ion changes of astrocytes in response to extracellular potassium. J. Neurosci. Res. 10, 411–423.

    Article  PubMed  CAS  Google Scholar 

  21. Sykova, E. and Chvatal, A. (1993) Extracellular ionic and volume changes: the role of glia-neuron interaction. J. Chem. Neuroanat. 6, 247–260.

    Article  PubMed  CAS  Google Scholar 

  22. Sykova, E. (1991) Activity-related ionic and volume changes in neuronal microenvironment. In: Volume transmission in the brain: novel mechanisms for neural transmission ( Fuxe, K. and Agnati, L.F., ed.), Raven Press, New York, pp. 317–335.

    Google Scholar 

  23. Walz, W. (1989) Role of glial cells in the regulation of the brain ion microenvironment. Prog. Neurobiol. 33, 309–333.

    Article  PubMed  CAS  Google Scholar 

  24. Sontheimer, H. (1995) Glial neuronal interactions: a physiological perspective. The Neuroscientist 1, 328–337.

    Article  Google Scholar 

  25. Amedee, T., Robert, A., and Coles, J., A. (1997) Potassium homeostasis and glial energy metabolism. Glia 21, 46–55.

    Article  PubMed  CAS  Google Scholar 

  26. Gardner-Medwin, A.R. (1983) Analysis of potassium dynamics in mammalian brain tissue. J. Physiol. 335, 393–426.

    PubMed  CAS  Google Scholar 

  27. Gardner-Medwin, A.R., Coles, J.A., and Tsacopoulos, M. (1981) Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone. Brain Res. 209, 452–457.

    Article  PubMed  CAS  Google Scholar 

  28. Newman, E.A. (1993) Inward-rectifying potassium channels in retinal (Muller) cells. J. Neurosci. 13, 3333–3345.

    PubMed  CAS  Google Scholar 

  29. Newman, E.A. and Reichenbach, A. (1996) The Muller cell: a functional element of the retina. Trends Neurosci. 19, 307–312.

    Article  PubMed  CAS  Google Scholar 

  30. Walz, W. (1992) Role of Na/K/C1 cotransport in astrocytes. Can. J. Physiol. Pharmacol. 70, S260 - S262.

    Article  PubMed  CAS  Google Scholar 

  31. Walz, W. (1992) Mechanism of rapid K(+)-induced swelling of mouse astrocytes. Neurosci. Letters 135, 243–246.

    Article  CAS  Google Scholar 

  32. Walz, W. (1987) Swelling and potassium uptake in cultured astrocytes. Can. J. Physiol. Pharmacol. 65, 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  33. Walz, W. and Hinks, E.C. (1985) Carrier-mediated KC1 accumulation accompanied by water movements is involved in the control of physiological K+ levels by astrocytes. Brain Res. 343, 44–51.

    Article  PubMed  CAS  Google Scholar 

  34. Ransom, C.B., Ransom, B.R., and Sontheimer, H. (2000) Activity-dependent K+ accumulation in rat optic nerve the role of glial and axonal Na+ pumps. J. Physiol. 522.3, 427–442.

    Google Scholar 

  35. Giaume, C. and Venance, L. (1998) Intercellular calcium signalling and gap junctional communication in astrocytes. Glia 24, 50–64.

    Article  PubMed  CAS  Google Scholar 

  36. White, H.S., Skeen, G.A., and Edwards, J.A. (1994) Pharmacological regulation of astrocytic calcium channels: implications for the treatment of seizure disorders. Prog. Brain Res. 94, 77–87.

    Article  Google Scholar 

  37. MacVicar, B.A. (1984) Voltage-dependent calcium channels in glial cells. Science 226, 1345–1347.

    Article  PubMed  CAS  Google Scholar 

  38. Sontheimer, H., Fernandez-Marques, E., Ullrich, N., Pappas, C.A., and Waxman, S.G. (1994) Astrocyte Na+ channels are required for maintenance of Na+/K(+)- ATPase activity. J. Neurosci. 14, 2464–2475.

    Google Scholar 

  39. Leao, A.A.P. (1944) Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7, 359–390.

    Google Scholar 

  40. Moody, W.J., Futamachi, K.J., and Prince, D.A. (1974) Extracellular potassium activity during epileptogenesis. Exp. Neurol. 42, 248–263.

    Article  PubMed  CAS  Google Scholar 

  41. Yaari, Y., Konnerth, A., and Heinemann, U. (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. J. Neurophysiol. 56, 424–438.

    PubMed  CAS  Google Scholar 

  42. Krnjevic, K., Morris, M.E., and Reiffenstein, R.J. (1980) Changes in extracellular Cat+ and K+ activity accompanying hippocampal discharges. Can. J. Physiol. Pharmacol. 58, 579–583.

    Article  PubMed  CAS  Google Scholar 

  43. Dietzel, I., Heinemann, U., and Lux, H.D. (1989) Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain. Glia 2, 25–44.

    Article  PubMed  CAS  Google Scholar 

  44. Nicholson, C. and Kraig, R.P. (1981) The behavior of extracellular ions during spreading depression. In: The application of ion-selective microelectrodes (Zeuthen, T., Ed. ), Elsevier, amsterdam, pp. 217–238.

    Google Scholar 

  45. Somjen, G.G., Aitken, P.G., Giacchino, J.L., and McNamara, J.O. (1986) Interstitial ion concentrations and paroxysmal discharges in hippocampal formation and spinal cord. Adv. Neurol. 44, 663–680.

    PubMed  CAS  Google Scholar 

  46. Fisher, R.S., Pedley, T.A., Moody, W.J., and Prince, D.A. (1976) The role of extracellular potassium in hippocampal epilepsy. Arch. Neurol. 33, 76–83.

    Article  PubMed  CAS  Google Scholar 

  47. Lothman, E.W. and Somjen, G.G. (1976) Functions of primary afferents and responses of extracellular K+ during spinal epileptiform seizures. Electroencephalogr. Clin. Neurophysiol. 41, 253–267.

    Article  PubMed  CAS  Google Scholar 

  48. Somjen, G.G. (1979) Extracellular potassium in the mammalian central nervous system. Annu. Rev. Physiol. 41, 159–177.

    Article  PubMed  CAS  Google Scholar 

  49. Traynelis, S.F. and Dingledine, R. (1989) Role of extracellular space in hyperosmotic suppression of potassium-induced electrographic seizures. J. Neurophysiol. 61, 927–938.

    PubMed  CAS  Google Scholar 

  50. Traynelis, S.F. and Dingledine, R. (1989) Modification of potassium-induced interictal bursts and electrographic seizures by divalent cations. Neurosci. Lett. 98, 194–199.

    Article  PubMed  CAS  Google Scholar 

  51. Balestrino, M., Aitken, P.G., and Somjen, G.G. (1986) The effects of moderate changes of extracellular K+ and Cat+ on synaptic and neural function in the CA1 region of the hippocampal slice. Brain Res. 377, 229–239.

    Article  PubMed  CAS  Google Scholar 

  52. Kimelberg, H.K., Bourke, R.S., Stieg, P.E., et al. (1982) Swelling of astroglia after injury to the central nervous system: mechanisms and consequences. In: Head injury: basic and clinical aspects ( Grossman, R.G. and Gilbenberg, P.L., ed.), Raven, New York, pp. 31–44.

    Google Scholar 

  53. Kimelberg, H.K. and Frangakis, M.V. (1985) Furosemide-and bumetanide-sensitive ion transport and volume control in primary astrocyte cultures from rat brain. Brain Res. 361, 125–136.

    Article  PubMed  CAS  Google Scholar 

  54. Dietzel, I., Heinemann, U., Hofmeier, G., and Lux, H.D. (1980) Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp. Brain Res. 40, 432–439.

    Article  PubMed  CAS  Google Scholar 

  55. Dietzel, I. and Heinemann, U. (1986) Dynamic variations of the brain cell microenvironment in relation to neuronal hyperactivity. Ann. N. Y. Acad. Sci. 481, 72–85.

    Article  PubMed  CAS  Google Scholar 

  56. Dudek, F.E., Obenaus, A., and Tasker, J.G. (1990) Osmolality-induced changes in extracellular volume alter epileptiform burts independent of chemical synapses in the rat: importance of non-synaptic mechanisms in hippocampal epileptogenesis. Neurosci. Letters 120, 267–270.

    Article  CAS  Google Scholar 

  57. Lux, H.D. and Heinemann, U. (1978) Ionic changes during experimentally induced seizure activity. Electroencephalogr. Clin. Neurophysiol. 45, 289–297.

    Google Scholar 

  58. Dietzel, I.,Heinemann, U., Hofmeier, G., and Lux, H.D. (1982) Stimulus-induced changes in extracellular Na+ and Cl-concentration in relation to changes in the size of the extracellular space. Exp. Brain Res. 46, 73–84.

    Google Scholar 

  59. Jefferys, J.G.R. (1995) Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol. Rev. 75, 689–723.

    PubMed  CAS  Google Scholar 

  60. Walz, W. and Hertz, L. (1984) Intense furosemide-sensitive potassium accumulation in astrocytes in the presence of pathologically high extracellular potassium levels. J. Cereb. Blood Flow Metab. 4, 301–304.

    Article  PubMed  CAS  Google Scholar 

  61. Walz, W. and Hertz, L. (1982) Ouabain-sensitive and ouabain-resistant net uptake of potassium into astrocytes and neurons in primary cultures. J. Neurochem. 39, 70–77.

    Article  PubMed  CAS  Google Scholar 

  62. Heinemann, U., Lux, H.D., and Gutnick, M.J. (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp. Brain Res. 27, 237–248.

    Article  PubMed  CAS  Google Scholar 

  63. Heinemann, U., Konnerth, A., and Lux, H.D. (1981) Stimulation-induced changes in extracellular free calcium in normal cortex and chronic alumina cream foci of cats. Brain Res. 213, 246–250.

    Article  PubMed  CAS  Google Scholar 

  64. Jefferys, J.G. and Haas, H.L. (1982) Synchronized bursting of CAl hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300, 448–450.

    Article  PubMed  CAS  Google Scholar 

  65. Konnerth, A., Heinemann, U., and Yaari, Y. (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. I. Development of seizurelike activity in low extracellular calcium. J. Neurophysiol. 56, 409–423.

    PubMed  CAS  Google Scholar 

  66. Macdonald, R.L. (1991) Antiepileptic drug actions on neurotransmitter receptors and ion channels. In: Neurotransmitters and Epilepsy ( Fisher, R.S. and Coyle, J.T., ed.), Wiley-Liss, New York, pp. 231–245.

    Google Scholar 

  67. Edwards, J.A., Woodbury, D.M., and White, H.S. (1991) Anticonvulsants block voltagegated Cat+ channels in astrocytes. Trans. Am. Soc. Neurochem. 22, 138.

    Google Scholar 

  68. Bender, A.S., Schousboe, A., Reichelt, W., and Norenberg, M.D. (1998) Ionic mechanisms in glutamate-induced astrocyte swelling: role of K+ influx. J. Neurosci. Res. 52, 307–321.

    Article  PubMed  CAS  Google Scholar 

  69. Hansson, E., Blomstrand, F., Khatibi, S., Olsson, T., and Ronnback, L. (1997) Glutamate induced astroglial swelling-methods and mechanisms. Acta Neurochir 70, 148–151.

    CAS  Google Scholar 

  70. Yuan, F. and Wang, T. (1996) Glutamate-induced swelling of cultured astrocytes is mediated by metabotropic glutamate receptor. Series C. Life Sci. 39, 517–522.

    CAS  Google Scholar 

  71. Rutledge, E.M., Aschner, M., and Kimelberg, H.K. (1998) Pharmacological characterization of swelling-induced D-[3H]aspartate release from primary astrocyte cultures. Am. J. Physiol. 273, C1511 - C1520.

    Google Scholar 

  72. Rutledge, E.M. and Kimelberg, H.K. (1996) Release of [3H]-D-aspartate from primary astrocyte cultures in response to raised external potassium. J. Neurosci. 16, 7803–7811.

    PubMed  CAS  Google Scholar 

  73. Schwartzkroin, P.A., Baraban, S.C., and Hochman, D.W. (1998) Osmolarity, ionic flux, and changes in brain excitability. Epilepsy Res. 32, 275–285.

    Article  PubMed  CAS  Google Scholar 

  74. Hochman, D.W., D’Ambrosio, R., Janigro, D., and Schwartzkroin, P.A. (1999) Extracellular chloride and the maintenance of spontaneous epileptiform activity in rat hippocampal slices. J. Neurophysiol. 81, 49–59.

    PubMed  CAS  Google Scholar 

  75. Pollen, D.A. and Trachtenberg, M.C. (1970) Neuroglia: gliosis and focal epilepsy. Science 167, 1252–1253.

    Article  PubMed  CAS  Google Scholar 

  76. Janigro, D., Gasparini, S., D’Ambrosio, R., McKhann II, G., and DiFrancesco, D. (1997) Reduction of K+ uptake in glia prevents long-term depression maintenance and causes epileptiform activity. J. Neurosci. 17, 2813–2824.

    PubMed  CAS  Google Scholar 

  77. Bordey, A. and Sontheimer, H. (1998) Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res. 32, 286–303.

    Article  PubMed  CAS  Google Scholar 

  78. Picker, S., Pieper, C.F., and Goldring, S. (1981) Glial membrane potentials and their relationship to [K+]o in man and guinea pig. J. Neurosurg. 55, 347–363.

    Article  PubMed  CAS  Google Scholar 

  79. Burnard, D.M., Crichton, S.A., MacVicar, B.A. (1990) Electrophysiological properties of reactive glial cells in the kainate-lesioned hippocampal slice. Brain Res. 510, 43–52.

    Article  PubMed  CAS  Google Scholar 

  80. Glotzner, F.L. (1973) Membrane properties of neuroglia in epileptogenic gliosis. Brain Res. 55, 159–171.

    Article  PubMed  CAS  Google Scholar 

  81. Zorumski, C.F., Mennerick, S., and Que, J. (1996) Modulation of excitatory synaptic transmission by low concentrations of glutamate in cultured rat hippocampal neurons. J. Physiol. 494–2, 465–477.

    Google Scholar 

  82. Cheung, N.S., Pascoe, C.J., Giardina, S.F., John, C.A., and Beart, P.M. (1998) Micromolar L-glutamate induces extensive apoptosis in an apoptotic-necrotic continuum of insult-dependent, excitotoxic injury in cultured cortical neurones. Neuropharmacol. 37, 1419–1429.

    Article  CAS  Google Scholar 

  83. Sohn, S., Kim, E.Y., and Gwag, B.J. (1998) Glutamate neurotoxicity in mouse cortical neurons: atypical necrosis with DNA ladders and chromatin condensation. Neurosci. Lett. 240, 147–150.

    Article  PubMed  CAS  Google Scholar 

  84. Choi, D.W., Maulucci-Gedde, M., and Kriegstein, A.R. (1987) Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 7, 357–368.

    PubMed  CAS  Google Scholar 

  85. Engelson, B. (1986) Neurotransmitter glutamate: its clinical importance. Acta Neurol. Scand. 74, 337–355.

    Article  Google Scholar 

  86. Meldrum, B.S. (1995) Excitatory amino acid receptors and their role in epilepsy and cerebral ischemia. Ann. N. Y. Acad. Sci. 757, 492–505.

    Article  PubMed  CAS  Google Scholar 

  87. Meldrum, B.S. (1994) The role of glutamate in epilepsy and other CNS disorders. Neurol. 44, S 14–23.

    Google Scholar 

  88. Carlson, H., Ronne-Engstrom, E., Ungerstedt, U., and Hillered, L. (1992) Seizure related elevations of extracellular amino acids in human focal epilepsy. Neurosci. Letters 140, 30–32.

    Article  CAS  Google Scholar 

  89. Ronne-Engstrom, E., Hillered, L., Flink, R., Spannare, B., Ungerstedt, U., and Carlson, H. (1992) Intracerebral microdialysis of extracellular amino acids in the human epileptic focus. J. Cereb. Blood Flow Metab. 12, 873–876.

    Article  PubMed  CAS  Google Scholar 

  90. Perry, T.L. and Hansen, S. (1981) Amino acid abnormalities in epileptogenic foci. Neurol. 31, 872–876.

    Article  CAS  Google Scholar 

  91. Chapman, A.G., Elwes, R.D., Milian, M.H., Polkey, C.E., and Meldrum, B.S. (1996) Role of glutamate and aspartate in epileptogenesis; contribution of microdialysis studies in animal and man. Epilepsy Res. 12, 239–246.

    CAS  Google Scholar 

  92. Dodd, P.R. and Bradford, H.F. (1976) Release of amino acids from the maturing cobalt-induced epileptic focus. Brain Res. 111, 377–388.

    Article  PubMed  CAS  Google Scholar 

  93. Dodd, P.R., Bradford, H.F., Abdul-Ghani, A.S., Cox, D.W., and Continho-Netto, J. (1980) Release of amino acids from chronic epileptic and subepileptic foci in vivo. Brain Res. 193, 505–517.

    Article  CAS  Google Scholar 

  94. Wade, J.V., Samson, F.E., Nelson, S.R., and Pazdernik, T.L. (1987) Changes in extracellular amino acids during soman-and kainic acid-induced seizures. J. Neurochem. 49, 645–650.

    Article  PubMed  CAS  Google Scholar 

  95. Lehmann, A. (1989) Abnormalities in the levels of extracellular and tissue amino acids in the brain of the seizure-susceptible rat. Epilepsy Res. 3, 130–137.

    Article  PubMed  CAS  Google Scholar 

  96. Nilsson, P., Hillered, L., Ponten, U., and Ungerstedt, U. (1990) Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J. Cereb. Blood Flow Metab. 10, 631–637.

    Article  PubMed  CAS  Google Scholar 

  97. Nilsson, P., Ronne-Engstrom, E., Flink, R., Ungerstedt, U., Carlson, H., and Hillered, L. (1994) Epileptic seizure activity in the acute phase following cortical impact trauma in rat. Brain Res. 637, 227–232.

    Article  PubMed  CAS  Google Scholar 

  98. Nakase, H., Tada, T., Hashimoto, H., et al. (1994) Experimental study of the mechanism of seizure induction: changes in the concentrations of excitatory amino acids in the epileptic focus of the cat amygdaloid kindling model. Neurol. Med. Chir. (Tokyo) 34, 418–422.

    Article  CAS  Google Scholar 

  99. Rothstein, J.D., Martin, L., Levey, A.I., et al. (1994) Localization of neuronal and glial glutamate transporters. Neuron 13, 713–725.

    Article  PubMed  CAS  Google Scholar 

  100. Lehre, K.P., Levy, L.M., Ottersen, O.P., Storm-Mathisen, J., and Danbolt, N.C. (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J. Neurosci. 15, 1835–1853.

    PubMed  CAS  Google Scholar 

  101. Gegelashvili, G. and Schousboe, A. (1997) High affinity glutamate transporters: regulation of expression and activity. Mol. Pharmacol. 52, 6–15.

    PubMed  CAS  Google Scholar 

  102. Gegelashvili, G. and Schousboe, A. (1998) Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res. Bull. 45, 233–238.

    Article  PubMed  CAS  Google Scholar 

  103. Rothstein, J.D., Dykes-Hoberg, M., Pardo, C.A., et al. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686.

    Article  PubMed  CAS  Google Scholar 

  104. Akbar, M.T., Torp, R., Danbolt, N.C., Levy, L.M., Meldrum, B.S., and Ottersen, O.P. (1997) Expression of glial glutamate transporters GLT-1 and GLAST is unchanged in the hippocampus in fully kindled rats. Neurosci. 78, 351–359.

    Article  CAS  Google Scholar 

  105. Miller, H.P., Levey, A.I., Rothstein, J.D., Tzingounis, A.V., and Conn, P.J. (1997) Alterations in glutamate transporter protein levels in kindling-induced epilepsy. J. Neurochem. 68, 1564–1570.

    Article  PubMed  CAS  Google Scholar 

  106. Akbar, M.T., Rattray, M., Williams, R.J., Chong, N.W., and Meldrum, B.S. (1998) Reduction of GABA and glutamate transporter messenger RNAs in the severe-seizure genetically epilepsy-prone rat. Neurosci. 85, 1235–1251.

    Google Scholar 

  107. Attwell, D. and Mobbs, P. (1994) Neurotransmitter transporters. Curr. Opin. Neurobiol. 4, 353–359.

    Article  PubMed  CAS  Google Scholar 

  108. Zerangue, N. and Kavanaugh, M.P. (1996) Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637.

    Article  PubMed  CAS  Google Scholar 

  109. Bouvier, M., Szatkowski, M., Amato, A., and Attwell, D. (1992) The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature 360, 471–474.

    Article  PubMed  CAS  Google Scholar 

  110. Szatkowski, M., Barbour, B., and Attwell, D. (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348, 443–446.

    Article  PubMed  CAS  Google Scholar 

  111. Nichols, D. and Attwell, D. (1990) The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11, 462–468.

    Article  Google Scholar 

  112. Attwell, D., Barbour, B., and Szatkowski, M. (1993) Nonvesicular release of neurotransmitter. Neuron 11, 401–407.

    Article  PubMed  CAS  Google Scholar 

  113. Zerangue, N., Arriza, J.L., Amara, S.G., and Kavanaugh, M.P. (1995) Differential modulation of human glutamate transporter subtypes by arachidonic acid. J. Biol. Chem. 270, 6433–6435.

    Article  PubMed  CAS  Google Scholar 

  114. Bazan, N.G., Birkle, D.L., Tang, W., and Reddy, T.S. (1986) The accumulation of free arachidonic acid, diacylglycerols, prostaglandins, and lipoxygenase reaction products in the brain during experimental epilepsy. In: Advances in Neurology ( Degado-Escueta, A.V., Ward, A.A.J., Woodbury, D.M., and Porter, R.J., ed.), Raven, New York, pp. 879–902.

    Google Scholar 

  115. Volterra, A., Trotti, D., and Racagni, G. (1994) Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol. Pharmacol. 46, 986–992.

    PubMed  CAS  Google Scholar 

  116. Volterra, A., Trotti, D., Tromba, C., Floridi, S., and Racagni, G. (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J. Neurosci. 14, 2924–2932.

    PubMed  CAS  Google Scholar 

  117. Trotti, D., Rossi, D., Gjesdal, O., et al. (1996) Peroxynitrite inhibits glutamate transporter subtypes. J. Biol. Chem. 271, 5976–5979.

    Article  PubMed  CAS  Google Scholar 

  118. Volterra, A., Trotti, D., Floridi, S., and Racagni, G. (1994) Reactive oxygen species inhibit high-affinity glutamate uptake: molecular mechanism and neuropathological implications. Ann. N. Y. Acad. Sci. 738, 153–162.

    Article  PubMed  CAS  Google Scholar 

  119. Ye, Z.-C. and Sontheimer, H. (1996) Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide. Neuroreport 7, 2181–2185.

    Article  PubMed  CAS  Google Scholar 

  120. Fine, S.M., Angel, R.A., Perry, S.W., Epstein, L.G., Rothstein, J.D., Dewhurst, S., and Gelbard, H.A. (1996) Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia. J. Biol. Chem. 271, 15303–15306.

    Article  PubMed  CAS  Google Scholar 

  121. Eng, D.L., Lee, Y.L., and Lal, P.G. (1997) Expression of glutamate uptake transporters after dibutyryl cyclic AMP differentiation and traumatic injury in cultured astrocytes. Brain Res. 778, 215–221.

    Article  PubMed  CAS  Google Scholar 

  122. Schlag, B.D., Vondrasek, J.R., Munir, M., et al. (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol. Pharmacol. 53, 355–369.

    PubMed  CAS  Google Scholar 

  123. Casado, M., Bendahan, A., Zafra, F., et al. (1993) Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J. Biol. Chem. 268, 27313–27317.

    PubMed  CAS  Google Scholar 

  124. Casado, M., Zafra, F., Aragon, C., and Gimenez, C. (1991) Activation of high-affinity uptake of glutamate by phorbol esters in primary glial cell cultures. J. Neurochem. 57, 1185–1190.

    Article  PubMed  CAS  Google Scholar 

  125. Conradt, M. and Stoffel, W. (1997) Inhibition of the high-affinity brain glutamate transporter GLAST-1 via direct phosphorylation.. 1. Neurochem. 68, 1244–1251.

    Article  CAS  Google Scholar 

  126. Balazs, R., Patel, A.J., and Richter, D. (1972) Metabolic compartments in the brain: their properties and relation to morphological structures. In: Metabolic Compartmentation in the brain. ( Balazs, R. and Cremer, J.E., eds.), MacMillan, New York, pp. 167–184.

    Google Scholar 

  127. Benjamin, A.M. and Quastel, J.H. (1974) Fate of L-glutamate in the brain. J. Neurochem. 23, 457–464.

    Article  PubMed  CAS  Google Scholar 

  128. Shank, R.P. and Aprison, M.H. (1988) Glutamate as a neurotransmitter. In: Glutamine and Glutamate in Mammals ( Kvamme, E., ed.). CRC Press, Boca Raton, FL, pp. 3–19.

    Google Scholar 

  129. Yamamoto, H., Konno, H., Yamamoto, T., Ito, K., Mizugaki, M., and Iwasaki, Y. (1987) Glutamine synthetase of the human brain: purification and characterization. J. Neurochem. 49, 603–609.

    Article  PubMed  CAS  Google Scholar 

  130. Martinez-Hernandez, A., Bell, K.P., and Norenberg, M.D. (1977) Glutamine synthetase: glial localization in brain. Science 195, 1356–1358.

    Article  PubMed  CAS  Google Scholar 

  131. Gamberino, W.C., Berkich, D.A., Lynch, C.J., Xu, B., and LaNuue, K.P. (1997) Role of pyru-vate carboxylase in facilitation of synthesis of glutamate and glutamine in cultured astrocytes. J. Neurochem. 69, 2312–2325.

    Article  PubMed  CAS  Google Scholar 

  132. Yu, A.C., Drejer, J., Hertz, L., and Schousboe, A. (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41, 1484–1487.

    Article  PubMed  CAS  Google Scholar 

  133. Shank, R.P., Bennett, G.S., Freytag, S.O., and Campbell, G.L. (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. 329, 364–367.

    Article  PubMed  CAS  Google Scholar 

  134. Laming, P.R.,Cosby, S.L., and O’Neill, J.K. (1989) Seizures in the Mongolian gerbil are related to a deficiency in cerebral glutamine synthetase. Comp. Biochem. Physiol. 94,399–404.

    Google Scholar 

  135. Carl, G.F., Thompson, L.A., Williams, J.T., Wallace, V.C., and Gallagher, B.B. (1992) Comparison of glutamine synthetases from brains of genetically epilepsy prone and genetically epilepsy resistant rats. Neurochem. Res. 17, 1015–1019.

    Article  PubMed  CAS  Google Scholar 

  136. Tiffany-Castiglioni, E.C., Peterson, S.L., and Castiglioni, A.J. (1990) Alterations in glutamine synthetase activity by FeC12-induced focal and kindled amygdaloid seizures. J. Neurosci. Res. 25, 223–228.

    Google Scholar 

  137. Kish, S.J., Dixon, L.M., and Sherwin, A.L. (1988) Aspartic acid aminotransferase activityis increased in actively spiking compared with non-spiking human epileptic cortex. J. Neurol. Neurosurg. Psychiatry 51, 552–556.

    Article  PubMed  CAS  Google Scholar 

  138. Duffy, S. and MacVicar, B.A. (1995) Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J. Neurosci. 15, 5535–5550.

    PubMed  CAS  Google Scholar 

  139. Finkbeiner, S.M. (1993) Glial calcium. Glia 9, 83–104.

    Article  PubMed  CAS  Google Scholar 

  140. Barres, B.A., Chun, L.L., and Corey, D.P. (1989) Calcium current in cortical astrocytes: induction by cAMP and neurotransmitters and permissive effect of serum factors. J. Neurosci. 9, 3169–3175.

    PubMed  CAS  Google Scholar 

  141. MacVicar, B.A., Hochman, D., Delay, M.J., and Weiss, S. (1991) Modulation of intracellular Cat+ in cultured astrocytes by influx through voltage-activated Cat+ channels Glia 4, 448–455.

    Article  PubMed  CAS  Google Scholar 

  142. Duffy, S. and MacVicar, B.A. (1994) Potassium-dependent calcium influx in acutely isolated hippocampal astrocytes. Neurosci. 61, 51–61.

    Article  CAS  Google Scholar 

  143. Duffy, S. and MacVicar, B.A. (1996) In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J. Neurosci. 16, 71–81.

    CAS  Google Scholar 

  144. Akopian, G., Kressin, K., Derouiche, A., and Steinhauser, C. (1996) Identified glial cells in the early postnatal mouse hippocampus display different types of Cat+ currents. Glia 17, 181–194.

    Article  PubMed  CAS  Google Scholar 

  145. Westenbroek, R.E., Bausch, S.B., Lin, R.C., Franck, J.E., Noebels, J.L., and Catterall, W.A. (1998) Upregulation of L-type Cat+ channels in reactive astrocytes after brain injury, hypomyelination, and ischemia. J. Neurosci. 18, 2321–2334.

    PubMed  CAS  Google Scholar 

  146. Beldhuis, H.J., A., Everts, H.G., J., Van der Zee, E.A., Luiten, P.G., M., and Bohus, B. (1992) Amydala kindling-induced seizures selectively impair spatial memory. 2. Effects on hippocampal neuronal and glial muscarinic acetylcholine receptor. Hippocampus 2, 411–420.

    Article  PubMed  CAS  Google Scholar 

  147. Cooper, M.S. (1995) Intercellular signaling in neuronal-glial networks. Biosystems 34, 65–85.

    Article  PubMed  CAS  Google Scholar 

  148. Jensen, A.M. and Chiu, S.Y. (1990) Fluorescence measurements of changes in intracellular calcium induced by excitatory amino acids in cultured cortical astrocytes. J. Neurosci. 10, 1165–1175.

    PubMed  CAS  Google Scholar 

  149. Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S., and Smith, S.J. (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473.

    Article  PubMed  CAS  Google Scholar 

  150. Cornell-Bell, A.H. and Finkbeiner, S.M. (1991) Calcium waves in astrocytes. Cell Calcium 12, 185–204.

    Article  PubMed  CAS  Google Scholar 

  151. Froes, M.M. and de Carvalho, A.C. (1998) Gap junction-mediated loops of neuronal-glial interactions. Glia 24, 97–107.

    Article  PubMed  CAS  Google Scholar 

  152. Lee, S.H., Magge, S., Spencer, D.D., Sontheimer, H., and Cornell-Bell, A.H. (1995) Human epileptic astrocytes exhibit increased gap junction coupling. Glia 15, 195–202.

    Article  PubMed  CAS  Google Scholar 

  153. Manning, T.J.J. and Sontheimer, H. (1997) Spontaneous intracellular calcium oscillations in cortical astrocytes from a patient with intractable childhood epilepsy (Rasmussen’s encephalitis). Glia 21, 332–337.

    Article  PubMed  Google Scholar 

  154. Roche, E. and Prentki, M. (1994) Calcium regulation of immediate-early response genes. Cell Calcium 16, 331–338.

    Article  PubMed  CAS  Google Scholar 

  155. Hisanaga, K., Sagar, S.M., and Sharp, F.R. (1992) C-fos induction occurs in cultured cortical neurons and astrocytes via multiple signaling pathways. Prog. Brain Res. 94, 189–195.

    Article  PubMed  CAS  Google Scholar 

  156. McNamara, J.O. (1994) Cellular and molecular basis of epilepsy. J. Neurosci. 14, 3413–3425.

    PubMed  CAS  Google Scholar 

  157. Bouchet, C. and Cazauveilh, C. (1825) De l’epilepsie consideree dans ses rapports avec l’alienation mentale. Arch. G. M. 9, 510–542.

    Google Scholar 

  158. Castiglioni, A.J., Peterson, S.L., Sanabria, E.L., and Tiffany-Castiglioni, E. (1990) Structural changes in astrocytes induced by seizures in a model of temporal lobe epilepsy. J. Neurosci. Res. 26, 334–341.

    Article  PubMed  CAS  Google Scholar 

  159. Houser, C.R. (1992) Morphological changes in the dentate gyrus in human temporal lobe epilepsy. Epilepsy Res. 7, 223–234.

    CAS  Google Scholar 

  160. Cavazos, J.E., Golarai, G., and Sutula, T.P. (1991) Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence. J. Neurosci. 11, 2795–2803.

    PubMed  CAS  Google Scholar 

  161. Goddard, G.V., McIntyre, D.C., and Leech, C.K. (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25, 295–330.

    Article  PubMed  CAS  Google Scholar 

  162. Goddard, G.V. (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214, 1020–1021.

    Article  PubMed  CAS  Google Scholar 

  163. Represa, A., Niquet, J., Pollard, H., and Ben-Ari, Y. (1995) Cell death, gliosis, and synaptic remodelling in the hippocampus of epileptic rats. J. Neurobiol. 26, 413–425.

    Article  PubMed  CAS  Google Scholar 

  164. Nadler, J.V. (1981) Minireview. Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci. 29, 2031–2042.

    Article  PubMed  CAS  Google Scholar 

  165. Ben-Ari, Y. (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neurosci. 14, 375–403.

    Article  CAS  Google Scholar 

  166. Eng, L.F. (1985) Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J. Neuroimmunol. 8, 203–214.

    Article  PubMed  CAS  Google Scholar 

  167. Niquet,J.,Ben-Ari, Y., and Represa, A. (1994) Glial reaction after seizure induced hippocampal lesion: immunohistochemical characterization of proliferating glial cells. J. Neurocytol. 23,641–656.

    Google Scholar 

  168. Niquet, J., Jorquera, I., Ben-Ari, Y., and Represa, A. (1994) Proliferative astrocytes may express fibronectin-like protein in the hippocampus of epileptic rats. Neurosci. Letters 180, 13–16.

    Article  CAS  Google Scholar 

  169. Adams, B., Von Ling, E., Vaccarella, L., Ivy, G.O., Fahnestock, M., and Racine, R.J. (1998) Time course for kindling-induced changes in the hilar area of the dentate gyms: reactive gliosis as a potential mechanism. Brain Res. 804, 331–336.

    Article  PubMed  CAS  Google Scholar 

  170. Khurgel, M. and Ivy, G.O. (1996) Astrocytes in kindling: relevance to epileptogenesis. Epilepsy Res. 26, 163–175.

    Article  PubMed  CAS  Google Scholar 

  171. Kelley, M.S. and Steward, O. (1993) The role of neuronal activity in upregulating GFAP mRNA levels after electrolytic lesions of the entorhinal cortex. Int. J. Dev. Neurosci. 11, 105–115.

    Article  PubMed  CAS  Google Scholar 

  172. Torre, E.R., Lothman, E.W., and Steward, O. (1993) Glial response to neuronal activity: GFAPmRNA and protein levels are transiently increased in the hippocampus after seizures. Brain Res. 631, 256–26.

    Google Scholar 

  173. Hansen, A., Jorgensen, O.S., Bolwig, T.G., and Barry, D.I. (1991) Hippocampal kindling in the rat is associated with time-dependent increases in the concentration of glial fibrillary acidic protein. J. Neurochem. 57, 1716–1720.

    Article  PubMed  CAS  Google Scholar 

  174. Represa, A., Niquet, J., Charriaut-Marlangue, C., and Ben-Ari, Y. (1993) Reactive astrocytes in the kainic acid-damaged hippocampus have the phenotypic features of type-2 astrocytes. J. Neurocytol. 22, 299–310.

    Article  PubMed  CAS  Google Scholar 

  175. Represa, A., Jorquera, I., Le Gal La Salle, G., and Ben-Ari, Y. (1993) Epilepsy induced collateral sprouting of hippocampal mossy fibers: does it induce the development of ectopic synapses with granule cell dendrites? Hippocampus 3, 257–268.

    CAS  Google Scholar 

  176. Mathern, G.W., Babb, T.L., Micevych, P.E., Blanco, C.E., and Pretorius, J.K. (1997) Granule cell mRNA levels for BDNF, NGF, and NT-3 correlate with neuron losses or supragranular mossy fiber sprouting in the chronically damaged and epileptic human hippocampus. Mol.Chem. Neuropathol. 30,53–76.

    Google Scholar 

  177. Akoev, G.N., Chalisova, N.I., Ludino, M.I., Terent’ev, D.A., Yatsuk, S.L., and Romanjuk, A.V. (1996) Epileptiform activity increases the level of nerve growth factor in cerebrospinal fluid of epileptic patients and in hippocampal neurons in tissue culture. Neurosci. 75, 601–605.

    Article  CAS  Google Scholar 

  178. Van Der Wal, E.A., Gomez-Pinilla, F., and Cotman, C.W. (1994) Seizure-associated induction of basic fibroblast growth factor and its receptor in the rat brain. Neurosci. 60, 311–323.

    Article  Google Scholar 

  179. Bugra, K., Pollard, H., Charton, G., Moreau, J., Ben-Ari, Y., and Khrestchatisky, M. (1994) aFGF, bFGF and flg mRNAs show distinct patterns of induction in the hippocampus following kainate-induced seizures. Eur. J. Neurosci. 6, 58–66.

    Google Scholar 

  180. Takahashi, M., Hayashi, S., Kakita, A., et al. (1999) Patients with temporal lobe epilepsy show an increase in brain-derived neurotrophic factor protein and its correlation with neuropeptide Y. Brain Res. 818, 579–582.

    Article  PubMed  CAS  Google Scholar 

  181. Liang, F., Le, L.D., and Jones, E.G. (1998) Reciprocal up-and down-regulation of BDNF mRNA in tetanus toxin-induced epileptic focus and inhibitory surround in cerebral cortex. Cereb. Cortex. 8, 481–491.

    Article  PubMed  CAS  Google Scholar 

  182. Kar, S., Seto, D., Dore, S., Chabot, J.G., and Quirion, R. (1997) Systemic administration of kainic acid induces selective time dependent decrease in [251]insulin-like growth factor I, [’25I]insulin-like growth factor II and [125I]insulin receptor binding sites in adult rat hippocampal formation. Neurosci. 80, 1041–1055.

    Article  CAS  Google Scholar 

  183. Gall, C.M., Lauterbom, J.C., Guthrie, K.M., and Stinis, C.T. (1997) Seizures and the regulation of neurotrophic factor expression: associations with structural plasticity in epilepsy. Adv. Neuron. 72:9–24, 9–24.

    Google Scholar 

  184. Watanabe, Y., Johnson, R.S., Butler, L.S., et al. (1996) Null mutation of c-fos impairs structural and functional plasticities in the kindling model of epilepsy. J Neurosci. 16, 3827–3836.

    PubMed  CAS  Google Scholar 

  185. Adams, B., Sazgar, M., Osehobo, P., et al. (1997) Nerve growth factor accelerates seizure development, enhances mossy fiber sprouting, and attenuates seizure-induced decreases in neuronal density in the kindling model of epilepsy. J. Neurosci. 17, 5288–5296.

    PubMed  CAS  Google Scholar 

  186. Schmidt-Kastner, R., Tomac, A., Hoffer, B., Bektesh, S., Rosenzweig, B., and Olson, L. (1994) Glial cell-line derived neurotrophic factor (GDNF) mRNA upregulation in striatum and cortical areas after pilocarpine-induced status epilepticus in rats. Brain Res. Mol. Brain Res. 26, 325–330.

    Article  PubMed  CAS  Google Scholar 

  187. Reeben, M., Laurikainen, A., Hiltunen, J.O., Castren, E., and Saarma, M. (1998) The messenger RNAs for both glial cell line-derived neurotrophic factor receptors, c-ret and GDNFRalpha, are induced in the rat brain in response to kainate-induced excitation. Neuroscience 83, 151–159.

    Google Scholar 

  188. Ebendal, T., Tomac, A., Hoffer, B.J., and Olson, L. (1995) Glial cell line-derived neurotrophic factor stimulates fiber formation and survival in cultured neurons from peripheral autonomic ganglia. J. Neurosci. Res. 40, 276–284.

    Article  PubMed  CAS  Google Scholar 

  189. Widenfalk, J., Nosrat, C., Tomac, A., Westphal, H., Hoffer, B., and Olson, L. (1997) Neurturin and glial cell line-derived neurotrophic factor receptor-beta (GDNFR-beta), novel proteins related to GDNF and GDNFR-alpha with specific cellular patterns of expression suggesting roles in the developing and adult nervous system and in peripheral organs. J. Neurosci. 17, 8506–8519.

    PubMed  CAS  Google Scholar 

  190. Peltola, J., Hurme, M., Miettinen, A., and Keranen, T. (1998) Elevated levels of interleukin-6 may occur in cerebrospinal fluid from patients with recent epileptic seizures. Epilepsy Res. 31, 129–133.

    Article  PubMed  CAS  Google Scholar 

  191. Griffin, W.S., Yeralan, O., Sheng, J.G., et al. (1995) Overexpression of the neurotrophic cytokine S100 beta in human temporal lobe epilepsy. J. Neurochem. 65, 228–233.

    Article  PubMed  CAS  Google Scholar 

  192. Ebadi, M., Bashir, R.M., Heidrick, M.L., et al. (1997) Neurotrophins and their receptors in nerve injury and repair. Neurochem. Int. 30, 347–374.

    Article  PubMed  CAS  Google Scholar 

  193. Barker, P.A. and Murphy, R.A. (1992) The nerve growth factor receptor: a multicomponent system that mediates the actions of the neurotrophin family of proteins. Mol. Cell Biochem. 110, 1–15.

    Article  PubMed  CAS  Google Scholar 

  194. Casaccia-Bonnefil, R, Kong, H., and Chao, M.V. (1998) Neurotrophins: the biological paradox of survival factors eliciting apoptosis. Cell Death Differ. 5, 357–364.

    Article  PubMed  CAS  Google Scholar 

  195. Maness, L.M., Kastin, A.J., Weber, J.T., Banks, W.A., Beckman, B.S., and Zadina, J.E. (1994) The neurotrophins and their receptors: structure, function, and neuropathology. Neurosci. Biobehay. Rev. 18, 143–159.

    Article  CAS  Google Scholar 

  196. Otero, G.C. and Merrill, J.E. (1994) Cytokine receptors on glial cells. Glia 11, 117–129.

    Article  PubMed  CAS  Google Scholar 

  197. Tower, D.B. (1992) A century of neuronal and neuroglial interactions, and their pathological implications: an overview. Prog. Brain Res. 94, 3–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bordey, A., Sontheimer, H. (2002). Astrocytic Changes Associated with Epileptic Seizures. In: de Vellis, J.S. (eds) Neuroglia in the Aging Brain. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-105-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-105-3_24

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-088-5

  • Online ISBN: 978-1-59259-105-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics