Skip to main content

Activated Neuroglia in Alzheimer’s Disease

  • Chapter
Neuroglia in the Aging Brain

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 285 Accesses

Abstract

The distinguishing pathological hallmark of Alzheimer’s disease (AD) is the presence of proteinaceous deposits, referred to as senile plaques, within the higher learning centers of the brain (1). These plaques are comprised predominantly of multimeric fibrils of the amyloid β (Aβ) peptide (2), a 40–43 amino acid long proteolytic fragment that is cleaved from the larger amyloid precursor protein (APP) (3). Genetic data suggest that senile plaques are key causative agents in AD, as all known mutations that cause early-onset familial AD (4–8) result in an increased production of the amyloidogenic Aβ1–42 isoform (9–13). Although the deposition of multimeric Aβ fibrils into plaques is likely to be a requisite step in AD onset, there is still uncertainty as to how Aβ and neuritic plaques might cause the neuropathology that leads to the characteristic dementia of this disease. One compelling hypothesis that is supported by substantial experimental data postulates that senile plaques cause glial cell activation, resulting in the release of a host of glial-derived molecules that contribute to disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Terry, R. and Katzman, R. (1983) Senile dementia of the Alzheimer type: defining a disease. In Neurology of Aging. ( Katzman, R. and Terry, R. eds.) Davis, F.A. 51–84.

    Google Scholar 

  2. Glenner, G.G. and Wong, C.W. (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Comm. 122, 1131–1135.

    Article  PubMed  CAS  Google Scholar 

  3. Kang, J., Lemaire, H.G., Unterbeck, A., et al. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736.

    Article  PubMed  CAS  Google Scholar 

  4. Chartier-Harlin, M.-C., Crawford, F., Houlden, H., et al. (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the (3-amyloid precursor protein gene. Nature 353, 844–845.

    Article  PubMed  CAS  Google Scholar 

  5. Goate, A., Chartier-Harlin, M., Mullan, M., et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706.

    Article  PubMed  CAS  Google Scholar 

  6. Mullan, M., Crawford, F., Axelman, K., et al. (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of 13-amyloid. Nat. Genet. 1, 345–347.

    Article  PubMed  CAS  Google Scholar 

  7. Levy-Lahad, E., Wasco, W., Poorkaj, P., et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269, 973–977.

    Article  PubMed  CAS  Google Scholar 

  8. Sherrington, R., Rogaev, E.I., Liang, Y., et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375 754–760.

    Article  PubMed  CAS  Google Scholar 

  9. Cai, X.-D., Golde, T.E., and Younkin, S.G. (1993) Release of excess amyloid ß protein from a mutant amyloid ß protein precursor. Science 259, 514–516.

    Article  PubMed  CAS  Google Scholar 

  10. Citron, M., ltersdorf, T., Haass, C., et al. (1992) Mutation of the 13-amyloid precursor protein in familial Alzheimer’s disease increases I3-protein production. Nature 360, 672–674.

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki, N., Cheung, T.T., Cai, X.-D., Odaka, A., Otvos, L., Eckman, C., Golde, T.E., and Younkin, S.G. (1994) An increased percentage of long amyloid ß protein secreted by familial amyloid ß protein precursor (13APP717) mutants. Science 264, 1336–1340.

    Article  PubMed  CAS  Google Scholar 

  12. Duff, K., Eckman, C., Zehr, C., et al. (1996) Increased amyloid-42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713.

    Article  PubMed  CAS  Google Scholar 

  13. Scheuner, D., Eckman, C., Jensen, M., et al. (1996) Secreted amyloid 13-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations in familial Alzheimer’s disease. Nature Med. 2, 864–870.

    Article  PubMed  CAS  Google Scholar 

  14. Haga, S., Adai, K., and Ishii, T. (1989) Demonstration of microglial cells in and around senile (neuritic) plaques in the Alzheimer brain: an immunohistochemical study using a novel monoclonal antibody. Acta Neuropathol. 77, 569–575.

    Article  PubMed  CAS  Google Scholar 

  15. McGeer, EL., Itagaki, S., Tago, H., and McGeer, E.G. (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLADR. Neurosci. Lett. 9, 195–200.

    Article  Google Scholar 

  16. Rogers, J., Luber-Narod, J., Styren, S.D., and Civin, W.H. (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol. Aging 9, 339–349.

    Article  PubMed  CAS  Google Scholar 

  17. Itagaki, S., McGeer, P.L., Akiyama, H., Zhu, S., and Selkoe, D.J. (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer’s disease. J. Neuroimmunol. 24, 173–182.

    Article  PubMed  CAS  Google Scholar 

  18. Dickson, D.W. (1997) The pathogenesis of senile plaques. J. Neuropath. Exp. Neurol. 56, 321–339.

    Article  PubMed  CAS  Google Scholar 

  19. Sheng, J.G., Mrak, R.E., Rovnaghi, C.R., Kozlowska, E., van Eldik, L.J., and Griffin, W.S.T. (1996) Human brain S100 and S100 mRNA expression increases with age: pathogenic implications for Alzheimer’s disease. Neurobiol. Aging 17, 359–363.

    Article  PubMed  CAS  Google Scholar 

  20. McGeer, P.L. and Rogers, J. (1992) Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology 42, 447–449.

    Article  PubMed  CAS  Google Scholar 

  21. Frederickson, R.C.A. (1992) Astroglia in Alzheimer’s disease. Neurobiol. Aging 13, 239–253.

    Article  PubMed  CAS  Google Scholar 

  22. McGeer, P.L., Rogers, J., and McGeer, E.G. (1994) Neuroimmune mechanisms in Alzheimer disease pathogenesis. Alzheimer Dis. Assoc. Disorders 8, 149–158.

    Article  CAS  Google Scholar 

  23. Frederickson, R.C.A. and Brunden, K.R. (1994) New opportunities in AD research-roles of immunoinflammatory responses and glia. Alzheimer Diseases and Associated Disorders 8, 159–165.

    Article  CAS  Google Scholar 

  24. Breitner, J.C. (1996) Inflammatory processes and anti-inflammatory drugs in Alzheimer’s disease: a current appraisal. Neurobiol. Aging 17, 789–794.

    Article  PubMed  CAS  Google Scholar 

  25. Harris, M.E., Carney, J.M., Cole, P.S., et al. (1995) 13-Amyloid peptide-derived, oxygen-dependent free radicals inhibit glutamate uptake in cultured astrocytes: implications for Alzheimer’s disease. Neuroreport 6, 1875–1879.

    Article  PubMed  CAS  Google Scholar 

  26. Harris, M.E., Wang, Y., Pedigo, N.W., Hensley, K., Butterfield, D.A., and Carney, J.M. (1996) Amyloid beta peptide (25–35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures. J. Neurochem. 67, 277–286.

    Article  PubMed  CAS  Google Scholar 

  27. Parpura-Gill, A., Beitz, D., and Uemura, E. (1996) The inhibitory effects of 13-Amyloid on glutamate and glucose uptake by cultured rat astrocytes. Brain Res. 754, 65–71.

    Article  Google Scholar 

  28. Storm-Mathisen, J. (1977) Glutamic acid and excitatory nerve endings: reductions of glutamic acid uptake after axotomy.Brain Res. 120, 379–386.

    CAS  Google Scholar 

  29. White, W.F., Nadler, J.V., Hamberger, A., Cotman, C.W., and Cummins, J.T. (1977) Glutamate as a transmitter of the hippocampal perforant path. Nature 270, 356–367.

    Article  PubMed  CAS  Google Scholar 

  30. Kanai, Y., Smith, C.P., and Hediger, A. (1993) The elusive transporters with a high affinity for glutamate uptake. Trends Neurosci. 16, 365–370.

    Article  PubMed  CAS  Google Scholar 

  31. Klegaris, A., Walker, D.G., and McGeer, P.L. (1997) Regulation of glutamate in cultures of human monocytic THP-1 and astrocytoma U-373 MG cells. J. Neuroimmunol. 78, 152–161.

    Article  Google Scholar 

  32. Rogers, J., Kirby, L.C., Hempelman, S.R., et al. (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43, 1609–1611.

    Article  PubMed  CAS  Google Scholar 

  33. Ling, E.A. and Wong, W.C. (1993) The origin and nature of ramified and amoeboid microglia. Glia 7, 9–18.

    Article  PubMed  CAS  Google Scholar 

  34. Griffin, W.S.T. Stanley, L.C., Ling, C., et al. (1989) Brain interleukin-1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. USA 86, 7611–7615.

    Article  PubMed  CAS  Google Scholar 

  35. Blum-Degen, D., Muller, T. Kuhn, W., Gerlach, M., Przuntek, H., and Riederer, P. (1995) Interleukin-1(3 and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci. Lett. 202, 17–20.

    Article  PubMed  CAS  Google Scholar 

  36. Cacabelos, R., Alvarez, X.A., Fernandez-Novoa, L., et al. (1993) Brain interleukin-113 in Alzheimer’s disease and vascular dementia. Meth. Find. Exp. Clin. Pharmacol. 16, 141–151.

    Google Scholar 

  37. Fillit, H., Ding, W., Buee, L., et al. (1991) Elevated circulating tumor necrosis factor in Alzheimer’s disease. Neurosci. Lett. 129, 318–320.

    Article  PubMed  CAS  Google Scholar 

  38. Araujo, D.M. and Cotman, C.W. (1992) 13-Amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res. 569, 141–145.

    Google Scholar 

  39. Yan, S.D., Chen, X., Fu, J., et al. (1996) RAGE and amyloid-peptide neurotoxicity in Alzheimer’s disease. Nature 382, 685–691.

    Article  PubMed  CAS  Google Scholar 

  40. Meda, L., Cassatella, M.A., Szendrel, G.I. (1995) Activation of microglial cells by 13-amyloid protein and interferon-y. Nature 374, 647–650.

    Article  PubMed  CAS  Google Scholar 

  41. Lorton, D., Kocsis, J., King, L., Madden, K., and Brunden, K.R. (1996) (3-Amyloid induces increased release of interleukin-1 from lipopolysaccharide-activated human monocytes. J. Neuroimmunol. 67, 21.

    Google Scholar 

  42. Yates, S.L., Burgess, L.H., Kocsis-Angle, J., J.M., et al. (2000) Amyloid 13 and amylin induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J. Neurochem. 74, 1017–1025.

    Article  PubMed  CAS  Google Scholar 

  43. Cadman, E.D., Witter, D.G., and Lee, C.-M. (1994) Regulation of the release of interleukin-6 from human astrocytoma cells. J. Neurochem. 63, 980–987.

    Article  PubMed  CAS  Google Scholar 

  44. Gitter, B.C., Cox, L.M., Rydel, R.E., and May, P.C. (1995) Amyloid beta peptide potentiates cytokine secretion by interleukin-1 (3-activated human astrocytoma cells. Proc. Natl. Acad. Sci. USA 92, 10738–10741.

    Article  PubMed  CAS  Google Scholar 

  45. Sheng, J.G., Mrak, R.E., and Griffin, W.S.T. (1994) S 100(3 protein expression in Alzheimer’s disease: potential role in the pathogenesis of neuritic plaques. J. Neurosci. Res. 39, 398–404.

    Article  PubMed  CAS  Google Scholar 

  46. Whitaker-Azmitia, P.M., Wingate, M., Borella, A., Gerlai, R., Roder, J., and Azmitia, E.C. (1997) Transgenic mice overexpressing the neurotrophic factor S100[3 show neuronal cytoskeletal and behavioral signs of altered aging processes: implications for Alzheimer’s disease and Down’s syndrome. Brain Res. 776, 51–60.

    Article  PubMed  CAS  Google Scholar 

  47. Hu, J., Ferrira, A., and van Eldik, L.J. (1997) S10013 induces neuronal cell death through nitric oxide release from astrocytes. J. Neurochem. 69, 2294–2301.

    Article  PubMed  CAS  Google Scholar 

  48. Das, S. and Potter, H. (1995) Expression of the Alzheimer amyloid-promoting factor antichymotrypsin is induced in human astrocytes by IL-1. Neuron 14, 447–456.

    Article  PubMed  CAS  Google Scholar 

  49. Ma, J., Yee, A., Brewer, H.B., Das, S., and Potter, H. (1994) Amyloid-associated proteins alantichymotrypsin and apolipoprotein E promote assembly of Alzheimer [3-protein into filaments. Nature 372, 92–94.

    CAS  Google Scholar 

  50. Goldgaber, D., Harris, H.W., Hla, T., et al. (1989) Interleukin-1 regulates synthesis of amyoid (3-protein precursor mRNA in human endothelial cells. Proc. Natl. Acad. Sci. USA 86, 7606–7610.

    Article  PubMed  CAS  Google Scholar 

  51. Forloni, G., Demicheli, F., Giorgi, S., Bendotti, C., and Angeretti, N. (1992) Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin1. Mol. Brain Res. 16, 128–134.

    Article  PubMed  CAS  Google Scholar 

  52. Chao, C.C., Hu, S., Ehrlich, L., and Peterson, P.K. (1995) Interleukin-1 and tumor necrosis factor-a synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-Daspartate receptors. Brain, Behavior and Immunity 9, 355–365.

    Article  CAS  Google Scholar 

  53. Heyser, C.J., Masliah, E., Samimi, A., Campbell, I.L., and Gold, L.H. (1997) Progressive decline in avoidance learning paralled by inflammatory neurodegeneration in transgenic mice expressing interleukin-6 in the brain. Proc. Natl. Acad. Sci. USA 94, 1500–1505.

    Article  PubMed  CAS  Google Scholar 

  54. Papassotiropoulos, A., Bagli, M., Jessen, F., Bayer, T.A., Maier, W., Rao, M.L., and Heun, R. (1999) A genetic variation of the inflammatory cytokine interleukin-6 delays the initial onset and reduces the risk for sporadic Alzheimer’s disease. Ann. Neurology 45, 666–668.

    Article  CAS  Google Scholar 

  55. Katsuura, G., Gottschall, P.E., Dahl, R.R., and Arimura, A. (1989) Interleukin- 1 ß increases prostaglandin E2 in rat astrocyte cultures: modulatory effect of neuropeptides. Endocrinology 124, 3125–3127.

    Article  PubMed  CAS  Google Scholar 

  56. Fiebich, B.L., Hull, M., Lieb, K., Gyufko, K., Berger, M., and Bauer, J. (1997) Prostaglandin E2 induces interleukin-6 synthesis in human astrocytoma cells. J. Neurochem. 68, 704–709.

    Article  PubMed  CAS  Google Scholar 

  57. Oka, S., and Arita, H. (1991) Inflammatory factors stimulate expression of group II phospholipase A2 in rat cultured astrocytes. Two distinct pathways of gene expression. J. Biol. Chem. 266, 9956–9960.

    PubMed  CAS  Google Scholar 

  58. Ozaki, M., Morii, H., Qvist, R., and Watanbe, Y. (1994) Interleukin-1 beta induces cytosolic phospholipase A2 gene in rat glioma line. Biochem. Biophys. Res. Comm. 205, 12–17.

    Article  PubMed  CAS  Google Scholar 

  59. Stella, N., Estelles, A., Siciliano, J., et al. (1997) Interleukin-1 enhances the ATP-evoked release of arachidonic acid from mouse astrocytes. J. Neurosci. 17, 2939–2946.

    PubMed  CAS  Google Scholar 

  60. Okuda, S., Saito, H., and Katsuki, H. (1994) Arachidonic acid: toxic and trophic effects on cultured hippocampal neurons. Neuroscience 63, 691–699.

    Article  PubMed  CAS  Google Scholar 

  61. Barbour, B., Szatkowski, M., Ingledew, N., and Attwell, D. (1989) Arachidonic acid induces a prolonged inhibition of glutamate uptake in glial cells. Nature 342, 918–920.

    Article  PubMed  CAS  Google Scholar 

  62. Yu, A.C.H., Chan, P.H., and Fishman, R.A. (1986) Effects of arachidonic acid on glutamate and y-aminobutyric acid uptake in primary cultures of rat cerebral cortical astrocytes and neurons. J. Neurochem. 47, 1181–1189.

    Article  PubMed  CAS  Google Scholar 

  63. Stephenson, D.T., Lemere, C.A., Selkoe, D.J., and Clemens, J.A. (1996) Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer’s disease brain. Neurobiol. Disease 3, 51–63.

    Article  CAS  Google Scholar 

  64. Oka, A. and Takashima, S. (1997) Induction of cyclooxygenase 2 in brains of patients with Down’s syndrome and dementia of Alzheimer type: specific localization in affected neurons and axons. Neuroreport 8, 1161–1164.

    Article  PubMed  CAS  Google Scholar 

  65. Furuta, A., Price, D.L., Pardo, C.A., et al. (1995) Localization of superoxide dismutases in Alzheimer’s disease and Down’s syndrome neocortex and hippocampus. Am. J. Pathol. 146, 357–367.

    PubMed  CAS  Google Scholar 

  66. Papolla, M.A., Omar, R.A., Kim, K.S., and Robakis, N.K. (1992) Immunohistochemical evidence of antioxidant stress in Alzheimer’s disease. Am. J. Pathol. 140, 621–628.

    Google Scholar 

  67. El Khoury, J., Hickman, S.E., Thomas, C.A., Cao, L., Silverstein, S.C., and Loike, J.D. (1996) Scavenger receptor-mediated adhesion of microglia to ß-amyloid fibrils. Nature 382, 716–719.

    Article  PubMed  Google Scholar 

  68. Dawson, V.L. (1995) Nitric oxide: role in neurotoxicity. Clin. Exp. Pharmacol. Physiol. 22, 305–308.

    Article  PubMed  CAS  Google Scholar 

  69. Wallace, M.N., Geddes, J.G., Farquhar, D.A., and Masson, M.R. (1997) Nitric oxide synthase in reactive astrocytes adjacent to beta-amyloid plaques. Exp. Neurol. 144, 266–272.

    Article  PubMed  CAS  Google Scholar 

  70. Liu, J., Zhao, M.L., Brosnan, C.F., and Lee, S.C. (1996) Expression of type II nitric oxide synthase in primary human astrocytes and microglia: role of IL-113 and IL-1 receptor antagonist. J. Immunol. 157, 3569–3576.

    PubMed  CAS  Google Scholar 

  71. Lue, L.-F. and Rogers, J. (1992) Full complement activation fails in diffuse plaques of the Alzheimer’s disease cerebellum. Dementia 3, 308–313.

    Google Scholar 

  72. Veerhuis, R., Janssen, I., Hack, E., and Eikelenboom, P. (1996) Early complement components in Alzheimer’s disease brains. Acta Neuropathol. 91, 53–60.

    Article  PubMed  CAS  Google Scholar 

  73. Itagaki, S., Akiyama, H., Saito, H., and McGeer, P.L. (1994) Ultrastructural localization of complement membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer’s disease. Brain Res. 645, 78–84.

    Article  PubMed  CAS  Google Scholar 

  74. McGeer, P.L., Akiyama, H., Itagaki, S., and McGeer, E.G. (1989) Immune system response in Alzheimer’s disease. Can. J. Neurol. Sci. 16, 516–527.

    PubMed  CAS  Google Scholar 

  75. Rogers, J., Cooper, N.R., Webster, S., et al. (1992) Complement activation by (3-amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 89, 10016–10020.

    Article  PubMed  CAS  Google Scholar 

  76. Johnson, S.A., Lampert-Etchells, M., Pasinetti, G.M., Rozovsky, I., and Finch, C.E. (1992) Complement mRNA in the mammalian brain: responses to Alzheimer’s disease and experimental brain lesioning. Neurobiol. Aging 13, 641–648.

    Article  PubMed  CAS  Google Scholar 

  77. Walker, D.G., Kim, S.U., and McGeer, P.L. (1995) Complement and cytokine gene expression in cultured microglia derived from postmortem human brains. J. Neurosci. Res. 40, 478–493.

    Article  PubMed  CAS  Google Scholar 

  78. Gasque, P., Fontaine, M., and Morgan, B.P. (1995) Complement expression in human brain: biosynthesis of terminal pathway components and regulators in human glial cells and cell lines. J. Immunol. 154, 4726–4733.

    PubMed  CAS  Google Scholar 

  79. Combs, C.K., Johnson, D.E., Cannady, S.B., Lehman, T.M., and Landreth, G.E. (1999) Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of (3-amyloid and prion proteins. J. Neurosci. 19, 928–939.

    PubMed  CAS  Google Scholar 

  80. McDonald, D.R., Brunden, K.R., and Landreth, G.E. (1997) Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J. Neurosci. 17, 2284–2294.

    PubMed  CAS  Google Scholar 

  81. Breitner, J.C. (1996) The role of anti-inflammatory drugs in the prevention and treatment of Alzheimer’s disease. Annu. Rev. Med. 47, 401–411.

    Article  PubMed  CAS  Google Scholar 

  82. McGeer, P.L., Schulzer, M., and McGeer, E.G. (1996) Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 47, 425–432.

    Article  PubMed  CAS  Google Scholar 

  83. Jiang, C., Ting, A.T., and Seed, B. (1998) PPAR-y agonists inhibit production of monocyte inflammatory cytokines. Nature 391, 82–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brunden, K.R., Frederickson, R.C.A. (2002). Activated Neuroglia in Alzheimer’s Disease. In: de Vellis, J.S. (eds) Neuroglia in the Aging Brain. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-105-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-105-3_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-088-5

  • Online ISBN: 978-1-59259-105-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics