Skip to main content

The Blood-Brain Barrier in the Aging Brain

  • Chapter
Book cover Neuroglia in the Aging Brain

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 287 Accesses

Abstract

Homeostasis of the extracellular microenvironment in the neural tissue of the brain as well as its protection against neurotoxic compounds and variations in the composition of the blood are important for normal function of the neurons. It is warranted by a structure formed between blood and brain which is therefore called the blood-brain barrier (BBB). This barrier has been postulated in earlier decades by experiments using dyes which directly visualized both the protection of the brain if injected into the vasculature, and free access of the brain if injected into the cerebrospinal fluid. Since in the first experiment some areas of the brain around the ventricle were stained and in the second experiment the identical areas were not, the barrier necessarily had to be separated into a BBB and a blood-cerebrospinal fluid barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brightman, M.W., and Reese, T.S. (1969) Junctions between intimately apposed cell membranes in the vertebrate brain../. Cell Biol. 40, 648–677.

    Article  CAS  Google Scholar 

  2. Risau, W. and Wolburg, H. (1990) Development of the blood-brain barrier. Trends Neurosci. 13, 174–178.

    Article  PubMed  CAS  Google Scholar 

  3. Leonhardt, H. (1980) Ependym and Cirkumventrikuläre Organe. Handb. mikr. Anat. Mensch. 4, 177–666.

    Article  Google Scholar 

  4. Peters, A., Palay, S.L., and Webster, H., deF. (1991b) The fine structure of the nervous system: neurons and their supporting cells. Oxford University Press, New York.

    Google Scholar 

  5. Breier, G.U., Albrecht, U., Sterrer, S., and Risau, W. (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114, 521–532.

    PubMed  CAS  Google Scholar 

  6. Nabeshima, S., Reese, T.S., Landis, D.M., and Brightman, M.W. (1975) Junctions in the meninges and marginal glia. J. Comp. Neurol. 164, 127–170.

    Article  PubMed  CAS  Google Scholar 

  7. Rascher, G. and Wolburg, H. (1997) The tight junctions of the leptomeningeal blood-cerebrospinal fluid barrier during development. J. Brain Res. 38, 525–540.

    CAS  Google Scholar 

  8. Reese, T.S. and Karnovsky, M.J. (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34, 207–217.

    Article  PubMed  CAS  Google Scholar 

  9. Coomber, B.L., and Stewart, P.A. (1985) Morphometric analysis of CNS microvascular endothelium. Microvasc. Res. 30, 99–115.

    Article  PubMed  CAS  Google Scholar 

  10. Angelov, D.N., Walther, M., Streppel, M. Guntinas-Lichius, O., and Neiss, W.F. (1998) The cerebral perivascular cells. Adv. Anat. Embroyl. Cell Biol. 147, 1–90.

    Article  CAS  Google Scholar 

  11. Balabanov, R. and Dore-Duffy, R (1998) Role of the CNS microvascular pericyte in the blood-brain barrier. J. Neurosci. Res. 53, 637–644.

    Article  PubMed  CAS  Google Scholar 

  12. Wolburg, H. and Risau, W. (1995) Formation of the blood-brain barrier. In: Neuroglia, (H., Kettenmann, B.R., Ransom, eds.) Oxford University Press, New York, Oxford, pp. 763–776.

    Google Scholar 

  13. Engelhardt, B., Risau W. (1995) Development of the blood-brain barrier. In New concepts of a blood-brain barrier ( Greenwood JEA, ed), Plenum, New York, pp. 11–31.

    Google Scholar 

  14. Gerhardt, H., Liebner, S., Redies, C., and Wolburg, H. (1999) N-cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood-retina and blood-brain barrier development. Europ J Neurosci 11, 1191–1201.

    Article  CAS  Google Scholar 

  15. Kniesel, U. and Wolburg, H. (2000) The tight junctions of the blood-brain barrier. Cell Mol. Neurobiol. 20, 57–76.

    Article  PubMed  CAS  Google Scholar 

  16. Rubin, L.L., Hall, D.E., Porter, S., et al. (1991) A cell culture model of the blood-brain barrier. J. Cell Biol. 115, 1725–1736.

    Article  PubMed  CAS  Google Scholar 

  17. Wolburg, H., Neuhaus, J., Kniesel, U., et al. (1994) Modulation of tight junction structure in blood-brain barrier ECs. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 107, 1347–1357.

    PubMed  CAS  Google Scholar 

  18. Tsukita, S. and Furuse, M. (1999) Occludin and claudins in tight-junction strands, leading or supporting players? Trends Cell Biol. 9, 268–273.

    Article  PubMed  CAS  Google Scholar 

  19. Kachar, B. and Reese, T.S. (1982) Evidence for the lipidic nature of tight junction strands. Nature 296, 464–466.

    Article  PubMed  CAS  Google Scholar 

  20. Grebenkämper, K., and Galla, H-J. (1994) Translational diffusion measurements of a fluorescent phospholipid between MDCK-1 cells support the lipid model of the tight junctions. Chem. Phys. Lipids 71, 133–143.

    Article  PubMed  Google Scholar 

  21. Caldéron, V., Lâzaro, A., Contreras, R.G., et al. (1998) Tight junctions and the experimental modifications of lipid content. J. Membrane Biol. 164, 59–69.

    Article  Google Scholar 

  22. Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., Tsukita, S. (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123, 1777–1788.

    Article  PubMed  CAS  Google Scholar 

  23. Furuse, M., Sasaki, H., Fujimoto, K., Tsukita, S. (1998) A single gene product, claudin-1 or-2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J. Cell Biol. 143, 391–401.

    Article  PubMed  CAS  Google Scholar 

  24. Hirase, T., Staddon, J.M., Ando-Akatsuka, Y., et al. (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell Sci. 110, 1603–1613.

    PubMed  CAS  Google Scholar 

  25. Morita, K., Furuse, M., Fujimoto, K., and Tsukita, S. (1999a) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc. Natl. Acad. Sci. USA 96, 511–516.

    Article  PubMed  CAS  Google Scholar 

  26. Lippoldt, A., Liebner, S., Andbjer, B., et al. (2000) Organization of choroid plexus epithelial and endothelial cell tight junctions and regulation of claudin-1, -2 and -5 expressions by protein kinase C. NeuroReport 11, 1427–1431.

    Article  PubMed  CAS  Google Scholar 

  27. Morita, K., Sasaki, H., Fujimoto, K., Furuse, M., and Tsukita, S. (1999b) Claudin-11/0SPbased tight junctions of myelin sheaths in brain and Sertoli cells in testis. J. Cell Biol. 145, 579–588.

    Article  PubMed  CAS  Google Scholar 

  28. Morita, K., Sasaki, H., Furuse, M., and Tsukita, S. (1999c) Endothelial claudin: claudin5/TMVCF constitutes tight junction strands in endothelial cells. J. Cell Biol. 147, 185–194.

    Article  PubMed  CAS  Google Scholar 

  29. Liebner, S., Fischmann, A., Rascher, G., et al. (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 100, 323–331.

    Article  CAS  Google Scholar 

  30. Shah, G.N. and Mooradian, A.D. (1997) Age-related changes in the blood-brain barrier. Exp. Gerontol. 32, 501–519.

    Article  PubMed  CAS  Google Scholar 

  31. Maher, F., Vannucci, S.J., and Simpson, J.A. (1994) Glucose transporter proteins in brain. FASEB J. 8, 207–212.

    Google Scholar 

  32. Bauer, H., Sonnleitner, U., Lametschwandtner, A., Steiner, M., Adam, H., and Bauer, H.C. (1995) Ontogenetic expression of the erythroid-type glucose transporter (Glut-1) in the telencephalon of the mouse: correlation to the tightening of the blood-brain barrier. Develop. Brain Res. 86, 317–325.

    Article  CAS  Google Scholar 

  33. Farrell, C.L. and Pardridge, W.M. (1991) Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes. An electron microscopic immunogold study. Proc. Nat. Acad. Sci. USA 88, 5779–5783.

    Article  PubMed  CAS  Google Scholar 

  34. Bolz, S., Farrell, C.L., Dietz, K., and Wolburg, H. (1996) Subcellular distribution of glucose transporter (GLUT-1) during development of the blood-brain barrier in rats. Cell Tissue Res. 284, 355–365.

    Article  PubMed  CAS  Google Scholar 

  35. Jefferies, W.A., Brandon, M.R., Hunt, S.V., Williams, A.F., Gatter, K.C., and Mason, D.Y. (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312, 162–163.

    Article  PubMed  CAS  Google Scholar 

  36. Méresse, S., Delbart, J.C., Fruchart, J.C., and Cechelli, R. (1989) Low-density lipoprotein receptor on endothelium of brain capillaries. J. Neurochem. 53, 340–345.

    Article  PubMed  Google Scholar 

  37. Zlokovic, B.V., Shundric, D.S., Segal, M.B., Lipovac, M.V., Mackic, J.B., and Dayson, H. (1990) A saturable mechanism for transport of immunoglobulin G across the blood-brain barrier of the guinea pig. Exp. Neurol. 107, 263–290.

    Article  PubMed  CAS  Google Scholar 

  38. Bradbury, M.W.B. (1997) Trnsport of iron in the blood-brain-cerebrospinal fluid system. J. Neurochem. 69, 443–454.

    Article  PubMed  CAS  Google Scholar 

  39. Hanahan, D. (1997) Signalling vascular morphogenesis and maintenance. Science 277, 48–50.

    Article  PubMed  CAS  Google Scholar 

  40. Risau, W. (1997) Mechanisms of angiogenesis. Nature 386, 671–674.

    Article  PubMed  CAS  Google Scholar 

  41. Yancopoulos, G.D., Klagsbrun, M., and Folkman, J. (1998) Vasculogenesis, angiogenesis and growth factors: ephrins enter the fray at the border. Cell 93, 661–664.

    Article  PubMed  CAS  Google Scholar 

  42. Murphy, S., Simmons, M.L., Agullo, L., et al. (1993) Synthesis of nitric oxide in CNS glial cells. Trends Neurosci. 16, 323–328.

    Article  PubMed  CAS  Google Scholar 

  43. Goldstein, G.W., and Betz, A.L. (1986) The blood-brain barrier. Sci Am 255, 70–79.

    Article  Google Scholar 

  44. Dringen, R., Pfeiffer, B., and Hamprecht, B. (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J. Neurosci. 19, 562–569.

    PubMed  CAS  Google Scholar 

  45. Nagashima, T., Wu, S., Yamaguchi, M., and Tamaki, N. (1999) Reoxygenation injury of human brain capillary endothelial cells. Cell Mol. Neurobiol. 19, 151–161.

    Article  PubMed  CAS  Google Scholar 

  46. Cordon-Cardo, C. O’Brien, J.P., Casals, D., et al. (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 86, 695–698.

    Article  PubMed  CAS  Google Scholar 

  47. Regina, A., Koman, A., Piciotti, M., El. Hafny, B., Center, M.S., Bergmann, R., Couraud, P.O., and Roux, F. (1998) Mrpl multidrug resistance-associated protein and P-glycoprotein expression in rat brain microvessel endothelial cells. J. Neurochem. 71, 705–715.

    Google Scholar 

  48. Schlosshauer, B. and Herzog, K.-H. (1990) Neurothelin: an inducible cell surface glycoprotein of blood-brain barrier-specific endothelial cells and distinct neurons. J. Cell Biol. 110, 1261–1274.

    Article  PubMed  CAS  Google Scholar 

  49. Seulberger, H., Lottspeich, F., and Risau, W. (1990) The inducible blood-brain barrier specific molecule HT7 is a novel immunoglobuline-like cell surface glycoprotein. EMBO J. 9, 2151–2158.

    PubMed  CAS  Google Scholar 

  50. Weller, R.O., Engelhardt, B., and Phillips, M.J. (1996) Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol. 6, 275–288.

    Article  PubMed  CAS  Google Scholar 

  51. Engelhardt, B. (1997) The blood-brain barrier. In Molecular biology of multiple sclerosis (Russel WC, ed.) John Wiley & Sons, pp. 137–160.

    Google Scholar 

  52. Dermietzel, R., Krause, D. (1991) Molecular anatomy of the blood-brain barrier as defined by immunocytochemistry. Int. Rev. Cytol. 127, 57–109.

    Article  PubMed  CAS  Google Scholar 

  53. Wolburg, H. (1995a) Orthogonal arrays of intramembranous particles. A review with special reference to astrocytes. J. Brain Res. 239–258.

    Google Scholar 

  54. Verbavatz, J.-M., Ma, T., Gobin, R., and Verkman, A.S. (1997) Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J. Cell Sci. 110, 2855–2860.

    PubMed  CAS  Google Scholar 

  55. Rash, J.E., Yasumura, T., Hudson, C.S., Agre, P., and Nielsen, S. (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc. Natl. Acad. Sci. USA 95, 11981–11986.

    Article  PubMed  CAS  Google Scholar 

  56. Wolburg, H. (1995b) Glia-neuronal and glia-vascular interrelations in blood-brain barrier formation and axon regeneration in vertebrates. In: Neuron-Glia interrelations during phylogeny. II Plasticity and regeneration ( Vernadakis, A., Roots, B.I., eds.) Humana Press, Totowa, pp. 479–510.

    Chapter  Google Scholar 

  57. Donahue, J.E., Berzin, T.M., Rafii, M.S., et al. Agrin in Alzheimer’s disease: Altered solubility and abnormal distribution within microvasculature and brain parenchyme. Proc. Natl. Acad. Sci. 96, 6468–6472.

    Google Scholar 

  58. Barber, A.J. and Lieth, E. (1997) Agrin accumulates in the brain microvascular basal lamina during development of the blood-brain barrier. Del). Dyn. 208, 62–74.

    Article  CAS  Google Scholar 

  59. Broadwell, R.D., Salcman, M. (1981) Expanding the definition of the blood-brain barrier to protein. Proc. Natl. Acad. Sci. USA 78, 7820–7824.

    Article  PubMed  CAS  Google Scholar 

  60. Stewart, P.A. and Tuor, U.I. (1994) Blood-eye barriers in the rat: correlation of ultrastructure with function. J. Comp. Neurol. 340, 566–576.

    Article  PubMed  CAS  Google Scholar 

  61. Lindahl, P., Johansson, B.R., Levéen, P., and Betsholtz. (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245.

    Article  PubMed  CAS  Google Scholar 

  62. Sato, T.N., Tozawa, Y., Deutsch, U., et al. (1995) Distinct roles of the receptor tyrosine kinases tie-1 and tie-2 in blood vessel formation. Nature 376, 70–74.

    Article  PubMed  CAS  Google Scholar 

  63. Suri, C., Jones, P.F. Patan, S., et al. (1996) Requisite role of angiopoietin-1, a ligand for the tie2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180.

    Article  PubMed  CAS  Google Scholar 

  64. Sankar, R., Blossom, E., Clemons, K., and Charles, P. (1983) Afe-associated changes in the effects pf amphetamine on the blood-brain barrier of rats. Neurobiol. Aging 4, 65–68.

    Article  PubMed  CAS  Google Scholar 

  65. Westergaard, E. (1977) The blood-brain barrier to horseradish peroxidase under normal and experimental conditions. Acta Neuropathol. (Berl) 39, 181–187.

    Article  CAS  Google Scholar 

  66. Sage, J.I., van Uitert, R.L., and Duffy T.E. (1984) Early changes in blood-brain barrier permeability to small molecules after transient cerebral ischemia. Stroke 15, 46–50.

    Article  PubMed  CAS  Google Scholar 

  67. Feng, D., Nagy, J.A., Hipp, J., Dvorak, H.F., and Dvorak, A.M. (1996) Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin. J. Exp. Med. 183, 1981–1986.

    Article  PubMed  CAS  Google Scholar 

  68. Stewart, P.A., Magliocco M., Hayakawa K., et al. (1987) A quantitative analysis of blood-brain barrier ultrastructure in the aging human. Microvasc. Res. 33, 270–282.

    Article  PubMed  CAS  Google Scholar 

  69. Mooradian, A.D. (1988) Effect of aging on the blood-brain barrier. Neurobiol. Aging 9, 31–39.

    Article  PubMed  CAS  Google Scholar 

  70. Mooradian, A.D. (1994) Potential mechanisms of the age-related changes in the blood-brain barrier. Neurobiol. Aging 15, 751–755.

    Article  PubMed  CAS  Google Scholar 

  71. Kalaria, R.N. (1996) Cerebral vessels in ageing and Alzheimer s disease. Pharmacol. Ther. 72, 193–214.

    Article  PubMed  CAS  Google Scholar 

  72. Unger, J.W., (1998) Glial reaction in aging and Alzheimer’s disease. Micr. Res. Techn. 43, 24–28.

    Article  CAS  Google Scholar 

  73. Kawamata, T., Akiguchi, I., Maeda, K., et al. (1998) Age-related changes in the brains of senescence-accelerated mice (SAM): association with glial and endothelial reactions. Micr. Res. Techn. 43, 59–67.

    Article  CAS  Google Scholar 

  74. Peinado, M.A., Quesada, A., Pedrosa, J.A., et al. (1998) Quantitative and ultrastructural changes in glia and pericytes in the parietal cortex of the aging rat. Microsc. Res. Tech. 43, 34–42.

    Article  PubMed  CAS  Google Scholar 

  75. Takeda, T., Hosokawa, M., Takeshita, S., et al. (1981)A new murine model of accelerated senescence. Mech. Ageing. Dev. 17, 183–194.

    Article  PubMed  CAS  Google Scholar 

  76. Burns, E.M., Kruckeberg, T.W., and Gaetano, P.K. (1981) Changes with age in cerebral capillary morphology. Neurobiol Aging 2, 285–291.

    Article  Google Scholar 

  77. De la Torre, J.C., and Mussivand, T. (1993) Can disturbed microcirculation cause Alzheimer s disease? Neurol. Res. 15, 146–153.

    PubMed  Google Scholar 

  78. De Jong, G.I., De Vos, R.A., Steur, E.N., and Luiten, P.G. (1997) Cerebrovascular hyperfusion: a risk factor for Alzheimer disease? Animal model and postmortem human studies. Ann. NY Acad. Sci. 826, 56–74.

    Article  PubMed  Google Scholar 

  79. Tilling, T., Korte, D., Hoheisel, D., and Galla, H.J. (1998) Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J. Neurochem. 71, 1151–1157.

    Article  PubMed  CAS  Google Scholar 

  80. MunBryce, S. and Rosenberg, G.A. (1998) Matrix metalloproteinases in cerebrovascular disease. J. Cerebr. Blood Flow Metabol. 18, 1163–1172.

    Article  CAS  Google Scholar 

  81. Fujimura, M., Gasche, Y., Morita-Fujimura, Y., Massengale, J., Kawase, M., and Chan, P.H. (1999) Early appearance of activated matrix metalloproteinase-9 and blood-brain-brarrier disruption in mice after focal cerebral cerebral ischemia and reperfusion. Brain Res. 842, 92–100.

    Article  PubMed  CAS  Google Scholar 

  82. Gautam, N., Herwald, H., Hedqvist, R, and Lindbom, L. (2000) Signaling via (32 integrins triggers neutrophil-dependent alteration in endothelial barrier function. J. exp. Med. 191, 1829–1839.

    Article  PubMed  CAS  Google Scholar 

  83. Reiser, K. (1998) Nonenzymatic glycation of collagen in aging and diabetes. Proc. Soc. Exp. Biol. Med. 18, 23–37.

    Google Scholar 

  84. Handa, J.T., Reiser, K.M., Matsunaga, H., and Hjelmeland, L.M. (1998) The advanced glycation endproduct pentosidine induces the expression of PDGF-B in human retinal pigment epithelial cells. Exp. Eye. Res. 66, 411–419.

    Article  PubMed  CAS  Google Scholar 

  85. Farboud, B., Aotaki-Keen, A., Miyata, T., Hjelmeland, L.M., and Handa, J.T. (1999) Development of a polyclonal antibody with broad epitope specificity for advanced glycation endproducts and localization of these epitopes in Bruch s membrane of the aging eye. Mol. Vis. 5, 11 (http://www.molvis.org/molvis/v5/p11).

    Google Scholar 

  86. Haitoglou, C.S., Tsilibary, E.C., Brownlee, M., and Charonis, A.S. (1992) Altered cellular interactions between endothelial cells and nonenzymatically glycosylated laminin/type IV collagen. J. Biol. Chem. 267, 12404–12407.

    PubMed  CAS  Google Scholar 

  87. Hasegawa, G., Hunter, A.J., and Charonis, A.S. (1995) Matrix nonenzymatic glycosylation leads to altered cellular phenotype and intracellular tyrosine phosphorylation. J. Biol. Chem. 270, 3278–3283.

    Article  PubMed  CAS  Google Scholar 

  88. Vlassara, H., Brownlee, M., and Cerami, A. (1985) Recognition and uptake of human diabetic peripheral nerve myelin by macrophages. Diabetes 34, 553–557.

    Article  PubMed  CAS  Google Scholar 

  89. Schmidt, A.M., Hasu, M., Popov, D., et al. (1994) Receptor for advanced glycation end products (AGEs) has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins. Proc. Natl. Acad. Sci. USA 91, 8807–8811.

    Article  PubMed  CAS  Google Scholar 

  90. Schmidt, A.M., Hori, O., Cao, R., et al. (1996) A novel cellular receptor for advanced glycation end products. Diabetes 45 (Suppl 3): 577–580.

    Article  Google Scholar 

  91. Wautier, J.L., Zoukourian, C., and Chappey, O., et al. (1996) Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy: soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J. Clin. Invest. 97, 238–243.

    Article  PubMed  CAS  Google Scholar 

  92. Mooradian, A.D. and Meredith, K.E. (1992) The effect of age on protein composition of rat cerebral microvessels. Neurochem. Res. 17, 665–670.

    Article  PubMed  CAS  Google Scholar 

  93. Giri, R., Shen, Y., Stins, M. et al. (2000) (3-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1.Am J Physiol 279, C1772 - C1781.

    Google Scholar 

  94. Burns, E.M., Kruckeberg, T.W., Gaetano, P.K., and Shulman, L.M. (1983) Morphological changes in cerebral capillaries with age, in Brain aging: Neuropathology and Neuropharmacology ( Cerys-Navarro, J, Sarkander H-I, eds), Raven Press, New York, 115–132.

    Google Scholar 

  95. Mooradian, A.D. and Uko-eninn, A. (1995) Age-related changes in the antioxidative potential of cerebral microvessels. Brain Res. 671, 159–163.

    Article  PubMed  CAS  Google Scholar 

  96. Tayarani, I., Colez, I., Clement, M., and Bourre J.M., (1989) Antioxidant enzymes and related trace elements in aging brain capillaries and choroid plexus. J. Neurochem. 53, 817–824.

    Article  PubMed  CAS  Google Scholar 

  97. Tigges, J., Herndon, J.G., and Rosene, D.L. (1995) Mild age-related changes in the dentate gyrus of adult rhesus monkeys. Acta Anat. (Basel) 153, 39–48.

    Article  CAS  Google Scholar 

  98. Peters, A., Josephson, K., and Vincent, S.L. (1991a) Effects of aging on the neuroglial cells and pericytes within area 17 of the rhesus monkey cerebral cortex. Anat. Rec. 229, 384–398.

    Article  PubMed  CAS  Google Scholar 

  99. Knox, C.A., Yates, R.D., Chen, I., and Klara, P.M. (1980) Effects of aging on the structural and permeability characteristics of cerebrovasculature in normotensive and hypertensive strains of rats. Acta Neuropathol. (Berlin) 51, 1–13.

    Article  CAS  Google Scholar 

  100. Hicks, P., Rolsten, C., Brizzee, and D., Samorajski, T. (1983) Age-related changes in rat brain capillaries. Neurobiol. Aging 4, 69–75.

    Article  CAS  Google Scholar 

  101. Sturrock, R.R., (1980) A comparative and morphological study of ageing in the mouse neostriatum, indusium griseum and anterior commissure. Neuropathol. Appl. Neurobiol. 6, 51–68.

    Article  PubMed  CAS  Google Scholar 

  102. Ueno, M., Akiguchi, I., Hosokawa, M., et al. (1998) Ultrastructural and permeability features of microvessels in the olfactory bulbs of SAM mice. Acta Neuropathol 96, 261–270.

    Article  PubMed  CAS  Google Scholar 

  103. De Jong, G.I., Horvath, E., and Luiten, P.G. (1990) Effects of early onset of nimodipine treatment on microvascular integrity in the aging rat brain. Stroke 21 (Suppl 12), 113–116.

    Google Scholar 

  104. Heinsen, H., and Heinsen, Y.L. (1983) Cerebellar capillaries. Qualitative and quantitative observations in young and senile rats. Anat. Embryol. 168, 101–106.

    Article  PubMed  CAS  Google Scholar 

  105. Scheibel, A.B. and Fried, I. (1983) Age-related changes in the peri-capillary envirpment of the brain. In Aging of the brain, Vol 22, Raven, New York.

    Google Scholar 

  106. Li, J., Zhang, M., and Rui, Y.C. (1997) Tumor necrosis factor mediated release of platelet-derived growth factor from bovine cerebral microvascular endothelial cells. Acta Pharmacol. Sin. 18, 133–136.

    Google Scholar 

  107. Benjamin, L.E., Hemo, I., and Keshet, E. (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125, 1591–1598.

    PubMed  CAS  Google Scholar 

  108. Rapoport, S.I., Ohno, K. and Pettigrew, K.D. (1979) Blood-brain barrier permeability in senescent rats. J. Gerontol. 34, 162–169.

    Article  PubMed  CAS  Google Scholar 

  109. Verbeek, M.M., Otte-Hller, I., van den Born J., et al. (1999) Agrin is a major heparan sulfate proteoglycan accumulating in Alzheimers’s disease brain. Am. J. Pathol. 155, 2115–2125.

    Article  PubMed  CAS  Google Scholar 

  110. Venero, J.L., Vizuete, M.L., Machado, A. and Cano, J. (2001) Aquaporins in the central nervous system. Progr. Neurobiol 63, 321–336.

    Article  CAS  Google Scholar 

  111. Blennow, K., Wallin, A., Fredman, P., Karlsson, I., Gottfries, C.G., and Svennerholm, L. (1990) Blood-brain barrier disturbance in patients with Alzheimer’s disease is related to vascular factors. Acta Neurol. Scand. 81, 323–326.

    Article  PubMed  CAS  Google Scholar 

  112. Wada, H. (1998) Blood-brain barrier permeability of the demented elderly as studied by cerebrospinal fluid-serum albumin ratio. Intern. Med. 37, 509–513.

    Article  PubMed  CAS  Google Scholar 

  113. Skoog, I., Wallin A., Fredman, P., et al. (1998) A population study on blood-brain barrier function in 85-year-olds: Relation to Alzheimer’s disease and vascular dementia. Neurology 50, 966–971.

    Article  PubMed  CAS  Google Scholar 

  114. Rudick, R.A. and Buell, S.J. (1983) Integrity of blood-brain barrier to horseradish peroxidase in senescent mice. Neurobiol. Aging 4, 283–287.

    Article  PubMed  CAS  Google Scholar 

  115. Mayhan, W.G. (1990) Disruption of the blood-brain barrier during acute hypertension in adult and aged rats. Am. J. Physiol. 285, H1735 — H1738.

    Google Scholar 

  116. Westergaard, E.K., Go, G., Klatzo, I., and Spatz, M. (1976) Increased permeability of cerebral vessels to horseradish peroxidase induced by ischemia in Mongolian gerbils. Acta Neuropathol. 35, 307–325.

    PubMed  CAS  Google Scholar 

  117. Westergaard, E., Deurs, D., and Bronsted, H.E. (1977) Increased vesicular transfer of horseradish peroxidase across cerebral endothelium evoked by acute hypertension. Acta Neuropathol. 37, 141–152.

    Article  PubMed  CAS  Google Scholar 

  118. Hunzicker, O., Abdel`Al, S., Frey, H., Veteau, J., and Meier-Ruge, W. (1978) Quantitative studies in the cerebral cortex of aging humans. Gerontology 24, 27–31.

    Google Scholar 

  119. Ravens, J.R. (1978) Vascular changes in the human senile brain. Adv. Neurol. 20, 487–501.

    PubMed  CAS  Google Scholar 

  120. Bär, T. (1978) Morphometric evaluation of capillaries in different laminae of rat cerebral cortex by automatic image analysis: changes during development and aging. Adv. Neurol. 20, 1–9.

    PubMed  Google Scholar 

  121. Topple, A., Fifkova, E., and Cullen-Dockstader, K. (1990) Effect of age on blood vessels and neurovascular appositions in the rat dentate fascia. Neurobiol. Aging 11, 371–380.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rascher, G., Wolburg, H. (2002). The Blood-Brain Barrier in the Aging Brain. In: de Vellis, J.S. (eds) Neuroglia in the Aging Brain. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-105-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-105-3_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-088-5

  • Online ISBN: 978-1-59259-105-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics