Skip to main content

The Role of the C-Kit/Kit Ligand Axis in Mammalian Gametogenesis

  • Chapter
Transgenics in Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The survival of the germline is vital to the survival of all animal species. Failure of germ cells to survive or to differentiate properly in the animal can result in reduced fertility, or in some cases, complete sterility (1). In addition, defects in germline development can predispose individuals to development of cancer. For example, loss of germ cells from the ovary can be associated with premature ovarian failure, but can also dispose affected individuals to the development of ovarian cancer (2). Similarly in the male, loss of germ cells from the developing testis can be associated with the development of testicular teratocarcinoma (3). Testicular cancer is the most common malignancy in young men with a peak incidence from 18–35 yr of age (4, 5). This contrasts with the incidence of ovarian tumors, which show a higher incidence after 50 yr of age, as is the case with most other solid tumors (6). Thus, even in otherwise healthy individuals, survival of the germline is an important feature of adult homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McLaren A. Germ Cells and Soma: A New Look at an Old Problem. Yale Univeristy Press, New Haven, CT, 1981.

    Google Scholar 

  2. Bondy CA, Nelson LM, Kalantaridou SN. The genetic origins of ovarian failure. J Womens Health 1998; 7 (10): 1225–1229.

    Article  PubMed  CAS  Google Scholar 

  3. Skakkebaek NE, Rajpert-De Meyts E, Jorgensen N, Carlsen E, Petersen PM, Giwercman A, et al. Germ cell cancer and disorders of spermatogenesis: an environmental connection? Apmis 1998;106(1):3-ll; discussion 12.

    Google Scholar 

  4. Schottenfeld D, Warshauer ME, Sherlock S, Zauber AG, Leder M, Payne R. The epidemiology of testicular cancer in young adults. Am J Epidemiol 1980; 112 (2): 232–246.

    PubMed  CAS  Google Scholar 

  5. Osterlind A. Diverging trends in incidence and mortality of testicular cancer in Denmark, 1943–1982. Brit J Cancer 1996; 53 (4): 501–505.

    Article  Google Scholar 

  6. Bjorge T, Engeland A, Hansen S, Trope CG. Trends in the incidence of ovarian cancer and borderline tumours in Norway, 1954–1993. Int J Cancer 1997; 71 (5): 780–786.

    Article  PubMed  CAS  Google Scholar 

  7. Lawson KA, Hage WJ. Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Foundation Symposium, 1994;182:68–84; discussion 84–91.

    Google Scholar 

  8. Donovan PJ, Stott D, Cairns LA., Heasman J, Wylie CC. Migratory and postmigratory mouse primordial germ cells behave differently in culture. Cell 1986; 44 (6): 831–838.

    Article  PubMed  CAS  Google Scholar 

  9. Paniagua R, Nistal M. Morphological and histometric study of human spermatogonia from birth to the onset of puberty. J Anat 1984; 139 (Pt 3): 535–552.

    PubMed  Google Scholar 

  10. Vergouwen RP, Jacobs SG, Huiskamp R, Davids JA, de Rooij DG. Proliferative activity of gonocytes, Sertoli cells and interstitial cells during testicular development in mice. J Reprod Fertil 1991; 93 (1): 233–243.

    Article  PubMed  CAS  Google Scholar 

  11. Hilscher B, Hilscher W, Bulthoff-Ohnolz B, Kramer U, Birke A, Pelzer H, et al. Kinetics of gametogenesis. I. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell Tissue Res 1974; 154 (4): 443–470.

    Article  PubMed  CAS  Google Scholar 

  12. Tilly JL. Apoptosis and ovarian function. Rev Reprod 1996; 1 (3): 162–172.

    Article  PubMed  CAS  Google Scholar 

  13. Kaipia A, Hsueh AJ. Regulation of ovarian follicle atresia. Ann Rev Physiol 1997; 59: 349–363.

    Article  CAS  Google Scholar 

  14. Braun RE. Every sperm is sacred-or is it? Nat Genet 1998; 18 (3): 202–204.

    Article  PubMed  CAS  Google Scholar 

  15. Furuchi T, Masuko K, Nishimune Y, Obinata M, Matsui Y. Inhibition of testicular germ cell apoptosis and differentiation in mice misexpressing Bcl-2 in spermatogonia. Development 1996; 122 (6): 1703–1709.

    PubMed  CAS  Google Scholar 

  16. De Rooij DG, Van Dissel-Emiliani FM, Van Pelt AM. Regulation of spermatogonial proliferation. Ann NY Acad Sci 1989; 564: 140–153.

    Article  PubMed  Google Scholar 

  17. Matsui Y. Regulation of germ cell death in mammalian gonads. APMIS 1998;106(1):142–147; discussion 147,148.

    Google Scholar 

  18. Geissler EN, Ryan MA, Housman DE. The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell, 1988; 55 (1): 185–192.

    Article  PubMed  CAS  Google Scholar 

  19. Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 1988; 335(6185):88,89.

    Google Scholar 

  20. Anderson DM, Lyman SD, Baird A, Wignall JM, Eisenman J, Rauch C, et al. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell 1990; 63 (l): 235–243.

    Article  PubMed  CAS  Google Scholar 

  21. Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL, et al. Stem cell factor is encoded at the S1 locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 1990; 63 (1): 213–224.

    Article  PubMed  CAS  Google Scholar 

  22. Copeland NG, Gilbert DJ, Cho BC, Donovan PJ, Jenkins NA, Cosman D, Anderson D, Lyman SD, Williams DE. Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell 1990; 63 (1): 175–183.

    Article  PubMed  CAS  Google Scholar 

  23. Huang E, Nocka K, Beier DR, Chu TY, Buck J, Lahm HW, et al. The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 1990; 63 (1): 225–233.

    Article  PubMed  CAS  Google Scholar 

  24. Huang EJ, Nocka KH, Buck J, Besmer P. Differential expression and processing of two cell associated forms of the kit-ligand: KL-1 and KL-2. Mol Biol Cell 1992; 3 (3): 349–362.

    CAS  Google Scholar 

  25. Majumdar MK, Feng L, Medlock E Toksoz D, Williams DA. Identification and mutation of primary and secondary proteolytic cleavage sites in murine stem cell factor cDNA yields biologically active, cell-associated protein. J Biol Chem 1994; 269 (2): 1237–1242.

    PubMed  CAS  Google Scholar 

  26. Tajima Y, Moore MA, Soares V, Ono M, Kissel H, Besmer P. Consequences of exclusive expression in vivo of Kit-ligand lacking the major proteolytic cleavage site. Proc Natl Acad Sci USA 1998;95(20):11,903–11,908.

    Google Scholar 

  27. Lev S, Blechman JM, Givol D, Yarden Y. Steel factor and c-kit protooncogene: genetic lessons in signal transduction. Crit Rev Oncogenesis 1994; 5 (2–3): 141–168.

    Article  PubMed  CAS  Google Scholar 

  28. Besmer P, Manova K, Duttlinger R, Huang EJ, Packer A, Gyssler C, et al The kit-ligand (steel factor) and its receptorc-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Development (Suppl) 1993; 125–137.

    Google Scholar 

  29. Silvers WK. The Coat Colors of Mice. Springer-Verlag, New York, NY, 1979.

    Book  Google Scholar 

  30. Matsui Y, Zsebo KM, Hogan BL. Embryonic expression of a haematopoietic growth factor encoded by the SI locus and the ligand for c-kit. Nature 1990; 347 (6294): 667–669.

    Article  PubMed  CAS  Google Scholar 

  31. Nocka K, Majumder S, Chabot B, Ray P Cervone M, Bernstein A, et al. Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice-evidence for an impaired c-kit kinase in mutant mice. Genes Dev 1989; 3 (6): 816–826.

    Article  PubMed  CAS  Google Scholar 

  32. Keshet E, Lyman SD, Williams DE, Anderson DM, Jenkins NA, Copeland NG, et al. Embryonic RNA expression patterns of the c-kit receptor and its cognate ligand suggest multiple functional roles in mouse development. EMBO J 1991; 10 (9): 2425–2435.

    PubMed  CAS  Google Scholar 

  33. Mintz B. Embryological development of primordial germ cells in the mouse: influence of a new mutation, Wj. J Embryol Exp Morphol 1957; 5: 396–406.

    Google Scholar 

  34. Mintz B, Russell ES. Gene-induced embryological modifications of primordial germ cells in the mouse. J Exp Morphol 1957; 134: 207–237.

    CAS  Google Scholar 

  35. Buehr M, McLaren A, Bartley A, Darling S. Proliferation and migration of primordial germ cells in We/We mouse embryos. Dev Dyn 1993; 198 (3): 182–189.

    Article  PubMed  CAS  Google Scholar 

  36. McCoshen JA, McCallion DJ. A study of the primordial germ cells during their migratory phase in Steel mutant mice. Experientia 1975;31(5):589,590.

    Google Scholar 

  37. Dolci S, Williams DE, Ernst MK, Resnick JL, Brannan CI, Lock LF, et al. Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature 1991; 352 (6338): 809–811.

    Article  PubMed  CAS  Google Scholar 

  38. Matsui Y, Toksoz D, Nishikawa S, Williams D, Zsebo K, Hogan BL. Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature 1991; 353 (6346): 750–752.

    Article  PubMed  CAS  Google Scholar 

  39. Godin I, Deed R, Cooke J, Zsebo K, Dexter M, Wylie CC. Effects of the steel gene product on mouse primordial germ cells in culture. Nature 1991; 352 (6338): 807–809.

    Article  PubMed  CAS  Google Scholar 

  40. Brannan CI, Lyman SD, Williams DE, Eisenman J, Anderson DM, Cosman D, et al. Steel-Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci USA 1991; 88 (11): 4671–4674.

    Article  PubMed  CAS  Google Scholar 

  41. Flanagan JG, Chan DC, Leder P. Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell 1991; 64 (5): 1025–1035.

    Article  PubMed  CAS  Google Scholar 

  42. Brannan CI, Bedell MA, Resnick JL, Eppig JJ, Handel MA, Williams DE, et al. Developmental abnormalities in Steel 17H mice result from a splicing defect in the steel factor cytoplasmic tail. Genes Dev 1992; 6 (10): 1832–1842.

    Article  PubMed  CAS  Google Scholar 

  43. Orth JM, Qiu J, Jester WF Jr, Pilder S. Expression of the c-kit gene is critical for migration of neonatal rat gonocytes in vitro. Biol Reprod 1997; 57 (3): 676–683.

    Article  PubMed  CAS  Google Scholar 

  44. van Haaster LH., de Rooij DG. Spermatogenesis is accelerated in the immature Djungarian and Chinese hamster and rat. Biol Reprod 1993; 49 (6): 1229–1235.

    Article  PubMed  CAS  Google Scholar 

  45. Vitale R, Fawcett DW, Dym M. The normal development of the blood-testis barrier and the effects of clomiphene and estrogen treatment. Anat Rec 1973; 176 (3): 331–344.

    Article  PubMed  CAS  Google Scholar 

  46. Yoshinaga K, Nishikawa S, Ogawa M, Hayashi S, Kunisada T, Fujimoto T. Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 1991; 113 (2): 689–699.

    PubMed  CAS  Google Scholar 

  47. Blume-Jensen P, Janknecht R, Hunter T. The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad and Ser 136. Curr Biol 1998; 8 (13): 779–782.

    Article  PubMed  CAS  Google Scholar 

  48. Blume-Jensen P, Jiang G, Hyman R, Lee KF, O’Gorman S, Hunter V. Kit/stem cell factor receptor-induced activation of phosphatildylinositol 3’-kinase is essential for male fertility. Nat Gene 2000; 24 (2): 157–162.

    Article  CAS  Google Scholar 

  49. Kissel H, Timokhina I, Hardy MP, Rothschild G, Tjima T, Soares V, Angeles M, et al. Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affectivn other kit responses. EMBO J 1000; 19 (6); 1312–1326.

    Article  Google Scholar 

  50. Ding HF, Fisher DE. Mechanisms of p53-mediated apoptosis. Crit Rev Oncogenesis 1998; 9 (1): 83–98.

    Article  PubMed  CAS  Google Scholar 

  51. Steele RJ, Thompson AM, Hall PA, Lane DP. The p53 tumour suppressor gene. Brit J Surg 1998; 85 (11): 1460–1467.

    Article  PubMed  CAS  Google Scholar 

  52. Bates S, Vousden KH. Mechanisms of p53-mediated apoptosis. Cell Mol Life Sci 1999; 55 (1): 28–37.

    Article  PubMed  CAS  Google Scholar 

  53. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356 (6366): 215–221.

    Article  PubMed  CAS  Google Scholar 

  54. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4 (1): 1–7.

    Article  PubMed  CAS  Google Scholar 

  55. Jordan SA, Speed RM, Bernex F, Jackson U. Deficiency of Trp53 rescues the male fertility defects of KitW-v mice but has no effect on the survival of melanocytes and mast cells. Dev Biol 1999; 215: 78–90.

    Article  PubMed  CAS  Google Scholar 

  56. Kapur R, Cooper R, Xiao X Weiss MJ, Donovan P, Williams DA. The presence of novel amino acids in the cytoplasmic domain of stem cell factor results in hematopoietic defects in Steel(17H) mice. Blood 1999; 94 (6): 1915–1925.

    PubMed  CAS  Google Scholar 

  57. Wehrle-Haller B, Weston JA. Altered cell-surface targeting of stem cell factor causes loss of melanocyte precursors in Steel17H mutant mice. Dev Biol 1999; 210 (1): 71–86.

    Article  PubMed  CAS  Google Scholar 

  58. Vincent S, Segretain D, Nishikawa S, Nishikawa SI, Sage J, Cuzin F, et al. Stage-specific expression of the Kit receptor and its ligand (KL) during male gametogenesis in the mouse: a Kit-KL interaction critical for meiosis. Development 1998; 125 (22): 4585–4593.

    PubMed  CAS  Google Scholar 

  59. Rossi P, Marziali G, Albanesi C, Charlesworth A, Geremia R, Sorrentino V. A novel c-kit transcript, potentially encoding a truncated receptor, originates within a kit gene intron in mouse spermatids. Dev Biol 1992; 152 (1): 203–207.

    Article  PubMed  CAS  Google Scholar 

  60. Sandlow JI, Feng HL, Sandra A. Localization and expression of the c-kit receptor protein in human and rodent testis and sperm. Urology 1997; 49 (3): 494–500.

    Article  PubMed  CAS  Google Scholar 

  61. Albanesi C, Geremia R, Giorgio M, Dolci S, Sette C, Rossi P. A cell-and developmental stage-specific promoter drives the expression of a truncated c-kit protein during mouse spermatid elongation. Development 1996; 122 (4): 1291–1302.

    PubMed  CAS  Google Scholar 

  62. Sette C, Bevilacqua A, Bianchini A, Mangia F, Geremia R, Rossi P. Parthenogenetic activation of mouse eggs by microinjection of a truncated c-kit tyrosine kinase present in spermatozoa. Development1997;124(11):2267–2274.

    Google Scholar 

  63. Sandlow JI, Feng HL, Zheng LJ, Sandra A. Migration and ultrastructural localization of the c-kit receptor protein in spermatogenic cells and spermatozoa of the mouse. J Urol 1999; 161 (5): 1676–1680.

    Article  PubMed  CAS  Google Scholar 

  64. Feng H, Sandlow JI, Sandra A. The c-kit receptor and its possible signaling transduction pathway in mouse spermatozoa. Molecular Reproduction & Development, 1998; 49 (3): 317–326.

    Article  CAS  Google Scholar 

  65. Eppig JJ, Chesnel F, Hirao Y, O’Brien MJ, Pendola FL, Watanabe S, et al. Oocyte control of granulosa cell development: how and why. Human Reprod 1997; 12 (11 Suppl): 127–132.

    CAS  Google Scholar 

  66. Buccione R, Schroeder AC, Eppig JJ. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod 1990; 43 (4): 543–547.

    Article  PubMed  CAS  Google Scholar 

  67. Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol 1999; 13 (6): 1035–1048.

    Article  PubMed  CAS  Google Scholar 

  68. Manova K, Nocka K, Besmer P, Bachvarova RF. Gonadal expression of c-kit encoded at the W locus of the mouse. Development 1990; 110 (4): 1057–1069.

    PubMed  CAS  Google Scholar 

  69. Yoshida H, Takakura N, Kataoka H, Kunisada T, Okamura H, Nishikawa SI. Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development. Dev Biol 1997; 184 (1): 122–137.

    Article  PubMed  CAS  Google Scholar 

  70. Keshet E, Lyman SD, et al. Embryonic RNA expression patterns of the c-kits receptor and its cognate ligand suggest multiple functional roles in mouse development. EMBO J 1991; 10 (9): 2425–2435.

    PubMed  CAS  Google Scholar 

  71. Parrott JA, Skinner MK. Direct actions of kit-ligand on theca cell growth and differentiation during follicle development. Endocrinology 1997; 138 (9): 3819–3827.

    Article  PubMed  CAS  Google Scholar 

  72. Motro B, Bernstein A. Dynamic changes in ovarian c-kit and Steel expression during the estrous reproductive cycle. Dev Dyn 1993; 197 (1): 69–79.

    Article  PubMed  CAS  Google Scholar 

  73. Bedell MA, Brannan CI, Evans EP, Copeland NG, Jenkins NA, Donovan PJ. DNA rearrangements located over 100 kb 5’ of the Steel (SI)-coding region in Steel-panda and Steel-contrasted mice deregulate SI expression and cause female sterility by disrupting ovarian follicle development. Genes Dev 1995; 9 (4): 455–470.

    Article  PubMed  CAS  Google Scholar 

  74. Packer AI, Hsu YC, Besmer P, Bachvarova RF. The ligand of the c-kit receptor promotes oocyte growth. Dev Biol 1994; 161 (1): 194–205.

    Article  PubMed  Google Scholar 

  75. Joyce IM, Pendola FL, Wiggelsworth K, Eppig JJ. Oocyte regulation of Kit ligand expression in mouse ovarian follicles. Dev Biol 1999; 214: 342–353.

    Article  PubMed  CAS  Google Scholar 

  76. McPherron AC, Lee SJ. GDF-3 and GDF-9: two new members of the transforming growth factor-beta superfamily containing a novel pattern of cysteines. J Biol Chem 1993;268(5):3444 3449.

    Google Scholar 

  77. McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol 1995; 9 (1): 131–136.

    Article  PubMed  CAS  Google Scholar 

  78. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature, 1996; 383 (6600): 531–535.

    Article  PubMed  CAS  Google Scholar 

  79. Carabatsos MJ, Elvin J, Matzuk MM, Albertini DF. Characterization of oocyte and follicle development in growth differentiation factor-9 deficient mice. Dev Biol 1998; 204: 373–384.

    Article  PubMed  CAS  Google Scholar 

  80. Ismail RS, Okawara Y, Fryer JN, Vanderhyden BC. Hormonal regulation of the ligand for c-kit in the rat ovary and its effects on spontaneous oocyte meiotic maturation. Mol Reprod Dev 1996; 43 (4): 458–469.

    Article  PubMed  CAS  Google Scholar 

  81. Ismail RS, Dube M, Vanderhyden BC. Hormonally regulated expression and alternative splicing of kit ligand may regulate kit-induced inhibition of meiosis in rat oocytes. Dev Biol 1997; 184 (2): 333–342.

    Article  PubMed  CAS  Google Scholar 

  82. Miyazawa K, Williams DA, Gotoh A, Nishimaki J, Broxmeyer HE, Toyama K. Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood 1995; 85 (3): 641–649.

    PubMed  CAS  Google Scholar 

  83. Inoue M, Kyo S, Fujita M, Enomoto T, Kondoh G. Coexpression of the c-kit receptor and the stem cell factor in gynecological tumors. Cancer Res 1994; 54 (11): 3049–3053.

    PubMed  CAS  Google Scholar 

  84. Stevens LC. Genetic influences on teratocarcinogenesis and parthenogenesis. Prog Clin Biol Res 1981; 45: 93–104.

    PubMed  CAS  Google Scholar 

  85. Noguchi T, Stevens LC. Primordial germ cell proliferation in fetal testes in mouse strains with high and low incidences of congenital testicular teratomas. J Natl Cancer Inst 1982; 69 (4): 907–913.

    PubMed  CAS  Google Scholar 

  86. Tam PP, Snow MH. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J Embryol Exp Morphol 1981; 64: 133–147.

    PubMed  CAS  Google Scholar 

  87. Moller H, Prener A, Skakkebaek NE. Testicular cancer, cryptorchidism, inguinal hernia, testicular atrophy, and genital malformations: case-control studies in Denmark. Cancer Causes Control 1996; 7 (2): 264–274.

    Article  PubMed  CAS  Google Scholar 

  88. Muller J, Skakkebaek NE. Gonadal malignancy in individuals with sex chromosome anomalies. Birth Defects: Original Article Series, 1990; 26 (4): 247–255.

    CAS  Google Scholar 

  89. Collins GM, Kim DU, Logrono R, Rickert RR, Zablow A, Breen JL. Pure seminoma arising in androgen insensitivity syndrome (testicular feminization syndrome): a case report and review of the literature. Mod Pathol 1993; 6 (1): 89–93.

    PubMed  CAS  Google Scholar 

  90. Giwercman A, Lenz S, Skakkebaek NE. Carcinoma in situ in atrophic testis: biopsy based on abnormal ultrasound pattern. Brit J Urol 1993; 72 (1): 118–120.

    Article  PubMed  CAS  Google Scholar 

  91. Petersen PM, Skakkebaek NE., Giwercman A. Gonadal function in men with testicular cancer: biological and clinical aspects. Apmis 1998;106(1):24–34; discussion 34–36.

    Google Scholar 

  92. Skakkebaek NE, Berthelsen JG, Giwercman A, Muller J. Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int J Androl 1987; 10 (1): 19–28.

    Article  PubMed  CAS  Google Scholar 

  93. Muller J. Abnormal infantile germ cells and development of carcinoma-in-situ in maldeveloped testes: a stereological and densitometric study. Int J Androl 1987; 10 (3): 543–567.

    Article  PubMed  CAS  Google Scholar 

  94. Meyts ER, Jorgensen N, Muller J, Skakkebaek NE. Prolonged expression of the c-kit receptor in germ cells of intersex fetal testes. J Pathol 1996; 178 (2): 166–169.

    Article  PubMed  CAS  Google Scholar 

  95. Rajpert-De Meyts E, Jorgensen N, Brondum-Nielsen K, Muller J, Skakkebaek NE. Developmental arrest of germ cells in the pathogenesis of germ cell neoplasia. Apmis 1998;106(1):198–204; discussion 204–206.

    Google Scholar 

  96. Jorgensen N, Giwercman A, Muller J, Skakkebaek NE. Immunohistochemical markers of carcinoma in situ of the testis also expressed in normal infantile germ cells. Histopathology 1993; 22 (4): 373–378.

    Article  PubMed  CAS  Google Scholar 

  97. Tian Q, Frierson HF Jr, Krystal GW, Moskaluk CA. Activating c-kit gene mutations in human germ cell tumors. Am J Pathol 1999; 154 (6): 1643–1647.

    Article  PubMed  CAS  Google Scholar 

  98. Li Q, Kondoh G, Inafuku S, Nishimune Y, Hakura A. Abrogation of c-kit/Steel factor-dependent tumorigenesis by kinase defective mutants of the c-kit receptor: c-kit kinase defective mutants as candidate tools for cancer gene therapy. Cancer Res 1996; 56 (19): 4343–4346.

    PubMed  CAS  Google Scholar 

  99. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA 1994;91(24):11,303–11,307.

    Google Scholar 

  100. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 1994;91(24):11,298–11,302.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Donovan, P.J., de Miguel, M.P. (2001). The Role of the C-Kit/Kit Ligand Axis in Mammalian Gametogenesis. In: Matzuk, M.M., Brown, C.W., Kumar, T.R. (eds) Transgenics in Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-102-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-102-2_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9640-6

  • Online ISBN: 978-1-59259-102-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics