Skip to main content

Prolactin and the Prolactin Receptor

  • Chapter
Transgenics in Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

  • 108 Accesses

Abstract

In mammals, prolactin is both an explicit inducer of mammary-gland development and lactation, and an integrator of multiple physiological adaptations during the post-mating phase of the reproductive cycle. These general features of the physiology of mammalian prolactin appear to have evolved from the effects of prolactin on parental physiology and osmoregulation in nonmammalian vertebrates. Recent application of mouse genetic technologies to studies of prolactin have clarified several controversial concepts, and provided systems for studying basic prolactin biology and clinical questions in areas such as pituitary tumors, infertility, breast cancer, and prostate neoplasia. This chapter focuses primarily on results from mouse genetic experiments after a basic introduction to the biology and pathobiology of prolactin signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooke NE, Liebhaber SA. Molecular biology of the growth hormone-prolactin gene system. Vita Horm 1995; 50: 385–459.

    Article  CAS  Google Scholar 

  2. Ben-Jonathan N, Arbogast LA, Hyde JF. Neuroendocrine regulation of prolactin release. Prog Neurobiol 1989; 33: 399–447.

    Article  PubMed  CAS  Google Scholar 

  3. Ben-Jonathan N. Regulation of prolactin secretion. In: Imura H, ed. The Pituitary Gland, Second Edition, Raven Press, New York, NY, 1994, pp. 261–283.

    Google Scholar 

  4. Lea RW, Talbot RT, Sharp PJ. Passive immunization against chicken vasoactive intestinal polypeptide suppresses plasma prolactin and crop sac development in incubating ring doves. Horm Behav 1991; 25: 283–294.

    Article  PubMed  CAS  Google Scholar 

  5. Ingraham HA, Chen R, Mangalam HJ, Elsholtz HP, Flynn SE, Lin CR, et al. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 1988; 55: 519–529.

    Article  PubMed  CAS  Google Scholar 

  6. Simmons DM, Voss JW, Ingraham HA, Holloway JM, Broide RS, Rosenfeld MG Swanson L, W. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev 1990; 4: 695–71 1.

    Google Scholar 

  7. Boutin J-M, Jolicoeur C, Okamura H, Gagnon J, Edery M, Shirota M, et al. Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family. Cell 1988; 53: 69–77.

    Article  PubMed  CAS  Google Scholar 

  8. Kelly PA, Djiane J, Postel-Vinay M-C, Edery M. The prolactin/growth hormone receptor family. Endocrine Rev 1991; 12: 235–251.

    Article  CAS  Google Scholar 

  9. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 1998; 19: 225–268.

    Article  PubMed  CAS  Google Scholar 

  10. Chen X, Horseman ND. Cloning, expression, and mutational analysis of the pigeon prolactin receptor. Endocrinology 1994; 135: 269–276.

    Article  PubMed  CAS  Google Scholar 

  11. Tanaka M, Maeda K, Okubo T, Nakashima K. Double antenna structure of chicken prolactin receptor deduced from the cDNA sequence. Biochem Biophys Res Commun 1992; 188: 490–496.

    Article  PubMed  CAS  Google Scholar 

  12. Sandra O, Sohm F, De Luze A, Prunet P, Edery M, Kelly PA. Expression cloning of a cDNA encoding a fish prolactin receptor. Proc Natl Acad Sci USA 1995; 92: 6037–6041.

    Article  PubMed  CAS  Google Scholar 

  13. Horseman ND, Yu-Lee L-Y. Transcriptional regulation by the helix bundle peptide hormones: GH, PRL, and hematopoietic cytokines. Endocr Rev 1994; 15: 627–649.

    PubMed  CAS  Google Scholar 

  14. Cosman D. The hematopoietin receptor superfamily. Cytokine 1993; 5: 95–106.

    Article  PubMed  CAS  Google Scholar 

  15. Darnell Jr JE, Kerr IM, Stark GR. Jak-Stat pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415–1421.

    Article  PubMed  CAS  Google Scholar 

  16. Liu S, Robinson GW, Gouilleux F, Groner B, Henninghausen L. Cloning and expression of Stat 5 and an additional homologue (Stat 513) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci USA 1995; 92: 8831–8835.

    Article  PubMed  CAS  Google Scholar 

  17. Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, et al. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J 1997; 16: 6926–6935.

    Article  PubMed  CAS  Google Scholar 

  18. Ormandy C, J., Camus A, Barra J, Damotte D, Lucas B, Buteau H, et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Devel 1997; 11: 167–178.

    Article  PubMed  CAS  Google Scholar 

  19. Liu X, Robinson GW, Wagner K-U, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Deve 1997; 11: 179–186.

    Article  CAS  Google Scholar 

  20. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park S-H, Ram PA, Waxman DJ, Davey HW. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA 1997; 94: 7239–7244.

    Article  PubMed  CAS  Google Scholar 

  21. Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 1998; 93: 841–850.

    Article  PubMed  CAS  Google Scholar 

  22. Parganas E, Wang D, Stravopodis D, Topham D, Marine J-C, Teglund S, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998; 93: 385–395.

    Article  PubMed  CAS  Google Scholar 

  23. Steger RW, Chandrashekar V, Zhao W, Bartke A, Horseman ND. Neuroendocrine and reproductive functions in male mice with targeted disruption of the prolactin gene. Endocrinology 1998; 139: 3691–3695.

    Article  PubMed  CAS  Google Scholar 

  24. Wennbo H, Kindblom J, Isaksson OG, Tornell J. Transgenic mice overexpressing the prolactin gene development dramatic enlargement of the prostate gland. Endocrinology 1997; 138: 4410–4415.

    Article  PubMed  CAS  Google Scholar 

  25. Adler RA. Anterior piruitary-grafted rat: a valid model of chronic hyperprolactinemia. Endo Rev 1986; 7: 302–313.

    Article  CAS  Google Scholar 

  26. Milton S, Cecim M, Li YS, Yun JS, Wagner TE, Bartke A. Transgenic female mice with high human growth hormone levels are fertile and capable of normal lactation without even having been pregnant. Endocrinology 1992; 131: 536–538.

    Article  PubMed  CAS  Google Scholar 

  27. Cecim M, Bartke A, Yun JS, Wagner TE. Expression of human, but not bovine growth hormone genes promotes development of mammary tumors in transgenic mice. Transgenics 1994; 1: 431–437.

    CAS  Google Scholar 

  28. Wennbo H, Gebre-Medhin M, Gritli-Linde A, Ohlsson C, Isaksson OG, Tornell J. Activation of the prolactin receptor but not the growth hormone receptor is important for induction of mammary tumors in transgenic mice. J Clin Invest 1997; 100: 2744–2751.

    Article  PubMed  CAS  Google Scholar 

  29. Briskin C, Kaur S, Chavarria TE, Binart N, Sutherland RL, Weinberg RA Kelly PA, Ormandy CJ. Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol 1999; 210: 96–106.

    Article  Google Scholar 

  30. Lyons W, Li CH, Johnson RE. Hormonal control of mammary growth and lactation. Rec Prog Horm Res 1958; 14: 219–254.

    PubMed  CAS  Google Scholar 

  31. Lydon JP, MeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery Jr CA, et al. Mice lacking progeserone receptor exhibit pleiotropic reproductive abnomalities. Genes Dev 1995; 9: 2266–2278.

    Article  PubMed  CAS  Google Scholar 

  32. Shipman SL, Scheiber MD, Horseman ND. Immunohistochemical analysis of prolactin gene expression in mice carrying a targeted mutation of the prolactin structural gene. Program of the 81st Annual Meeting of The Endocrine Society, San Diego, CA, 1999, p. 384

    Google Scholar 

  33. Saiardi A, Bozzi Y, Bail J-H, Borrelli E. Antiproliferative role of dopamine: loss of D2 receptors causes hormonal dysfunction and pituitary hyperplasia. Neuron 1997; 19: 115–126.

    Article  PubMed  CAS  Google Scholar 

  34. Kelly M, Rubinstein M, Asa S, Zhang G, Saez C, Bunzow J, et al. Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 1997; 19: 103–113.

    Article  PubMed  CAS  Google Scholar 

  35. Krown KA, Wang Y-F, Ho TWC, Kelly PA, Walker AM. Prolactin isoform 2 as an autocrine growth factor for GH3 cells. Endocrinology 1992; 131: 595–602.

    Article  PubMed  CAS  Google Scholar 

  36. Lucas BK, Ormandy CJ, Binart N, Bridges RS, Kelly PA. Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology 1998; 139: 4102–4107.

    Article  PubMed  CAS  Google Scholar 

  37. McCarthy MM, Curran GH, Siegal HI. Evidence for the involvement of prolactin in the maternal behavior of the hamster. Physiol Behav 1994; 55: 181–184.

    Article  PubMed  CAS  Google Scholar 

  38. McCarthy MM, vom Saal FS. Influence of reproductive state on infanticide by wild female house mice (Mus musculus). Physiol Behav 1985; 35: 843–849.

    Article  PubMed  CAS  Google Scholar 

  39. Bridges RS. The role of lactogenic hormones in maternal behavior in female rats. Acta Pædiatr Suppl 1994; 397: 33–39.

    Article  PubMed  CAS  Google Scholar 

  40. Emanuele NV, Jurgens JK, Halloran MM, Tentler JJ, Lawrence AM, Kelley MR. The rat prolactin gene is expressed in brain tissue: detection of normal and alternatively spliced prolactin messenger RNA. Mol Endocrinol 1992; 6: 35–42.

    Article  PubMed  CAS  Google Scholar 

  41. DeVito WJ. Distribution of immunoreactive prolactin in the male and female brain: effects of hypophysectomy and intraventricular administration of colchicine. Neuroendocrinology 1988; 47: 284–289.

    Article  PubMed  CAS  Google Scholar 

  42. Niall HD, Hogan ML, Tregear GW, Segre GV, Hwang P, Friesen H. The chemistry of growth hormone and the lactogenic hormones. Rec Prog Horm Res 1973; 29: 387–404.

    PubMed  CAS  Google Scholar 

  43. Wells JA, de Vos AM. Hematopoietic receptor complexes. Annu Rev Biochem 1996; 65: 609–634.

    Article  PubMed  CAS  Google Scholar 

  44. Soares MJ, Muller H, Orwig KE, Peters TJ, Dai G. Uteroplacental prolactin family and pregnancy. Biol Reprod 1998; 58: 273–284.

    Article  PubMed  CAS  Google Scholar 

  45. Kacsóh B, Veress Z, Tóth BE, Avery LM, Grosvenor CE. Bioactive and immunoreactive variants of prolactin in milk and serum of lactating rats and their pups. J Endocrinol I993; 138: 243–257.

    Google Scholar 

  46. Klibanski A, Neer RM, Beitins IZ, Ridgway EC, Zervas NT, McArthur JW. Decreased bone density in hyperprolactinemic women. N Engl J Med 1980; 303: 1511–1514.

    Article  PubMed  CAS  Google Scholar 

  47. Freemark M, Nagano M, Edery M, Kelly PA. Prolactin receptor gene expression in the fetal rat. J Endocrinol 1995; 144: 285–292.

    Article  PubMed  CAS  Google Scholar 

  48. Royster M, Driscoll P, Kelly PA, Freemark M. The prolactin receptor in the fetal rat: cellular localizaton of messenger ribonucleic acid, immunoreactive protein, and ligand-binding activity and induction of expression in late gestation. Endocrinology 1995; 136: 3892–3900.

    Article  PubMed  CAS  Google Scholar 

  49. Freemark M, Driscoll P, Maaskant R, Petryk A, Kelly PA. Ontogenesis of prolactin receptrs in the human fetus in early gestation. J Clin Invest 1997; 99: 1107–1117.

    Article  PubMed  CAS  Google Scholar 

  50. Tzeng S, Linzer D. Prolactin receptor expression in the developing mouse embryo. Mol Reprod Dev 1997; 48: 45–52.

    Article  PubMed  CAS  Google Scholar 

  51. Clément-Lacroix P, Ormandy C, Lepescheux L, Ammann P, Damotte D, Goffin V, et al. Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology 1999; 140: 96–105.

    Article  PubMed  Google Scholar 

  52. Dardenne M, Kelly PA, Bach J-F, Saving W. Identification and functional activity of prolactin receptors in thymic epithelial cells. Proc Natl Acad Sci USA 1991; 88: 9700–9704.

    Article  PubMed  CAS  Google Scholar 

  53. O’Neal KD, Schwarz LA, Yu-Lee L-Y. Prolactin receptor gene expression in lymphoid cells. Mol Cell Endocrinol 1991; 82: 127–135.

    Article  PubMed  Google Scholar 

  54. Gagnerault MC, Touraine P, Savino W, AKP, Dardenne M. Expression of proalctin receptors in murine lymphoid cells in normal and autoimmune situations. J Immunol 1993; 150: 5673–5681.

    PubMed  CAS  Google Scholar 

  55. Touraine P, do Carmo Leite de Moraes M, Dardenne M, Kelly PA. Expression of short and long forms of prolactin receptor in murine lymphoid tissues. Mol Cell Endocrinol 1994; 104: 183–190.

    Article  PubMed  CAS  Google Scholar 

  56. O’Neal K, Montgomery DW, Truong TM, Yu-Lee L-Y. Prolactin gene expression in human thymocytes. Mol Cell Endocrinol 1992; 87: 19–23.

    Article  Google Scholar 

  57. Matera L, Cesano A, Bellone G, Oberholtaer E. Modulatory effect of prolactin on the resting and mitogen-induced activity of T, B, and NK lymphocytes. Brain Behav Immun 1992; 6: 409–417.

    Article  PubMed  CAS  Google Scholar 

  58. Murphy WJ, Durum SK, Longo DL. Differential effects of growth hormone and prolactin on murine T cell development and function. J Exp Med 1993; 178: 231–236.

    Article  PubMed  CAS  Google Scholar 

  59. Hooghe R, Delhase M, Vergani P, Malur A, Hooghe-Peters EL. Growth hormone and prolactin are paracrine growth and differentiation factors in the haemopoietic system. Immunol Today 1993; 14: 212–214.

    Article  PubMed  CAS  Google Scholar 

  60. Koojiman R, Hooghe-Peters EL, Hooghe R. Prolactin, growth hormone, and insulin-like growth factor-I in the immune system. Adv Immunol 1996; 63: 377–454.

    Article  Google Scholar 

  61. Walker SE, Allen SH, McMurray RW. Prolactin and autoimmune disease. Trends Endocrinol Metab 1993; 4: 147–151.

    Article  PubMed  CAS  Google Scholar 

  62. Gout PW, Beer CT, Noble RL. Prolactin-stimulated growth of cell cultures established from malignant Nb rat lymphomas. Canc Res 1980; 40: 2433–2436.

    CAS  Google Scholar 

  63. Bouchard B, Ormandy C, Di Santo JP, Kelly PA. Immune system development and function in prolactin receptor-deficient mice. J Immunol 1999; 163: 576–582.

    PubMed  CAS  Google Scholar 

  64. Dorshkind K, Horseman ND. The roles of prolactin, growth hormone, insuline-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency. Endocrine Rev 2000; 21: 292–312.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Horseman, N.D. (2001). Prolactin and the Prolactin Receptor. In: Matzuk, M.M., Brown, C.W., Kumar, T.R. (eds) Transgenics in Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-102-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-102-2_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9640-6

  • Online ISBN: 978-1-59259-102-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics