Skip to main content

The p53-Deficient Mouse as a Cancer Model

  • Chapter
Tumor Models in Cancer Research

Abstract

Among the various tumor-suppressor mouse models that have been generated since 1992 (1), the p53-knockout mouse has been the most widely used for cancer studies for a number of reasons. The p53 tumor-suppressor gene is mutated in over 50% of all human cancers, and it has been estimated that over 80% of all cancers have disruptions in p53 signaling pathways (2,3). Because loss or mutation of p53 is such a central event in the progression of human tumors, it has become perhaps the most intensively studied cancer-associated gene. Moreover, both heterozygous and nullizygous p53-deficient mice display an accelerated tumorigenesis phenotype in comparison to their wild-type p53-containing litter mates (4–7). Because of the increased sensitivity of the heterozygous p53-deficient mice to a variety of carcinogens, they are considered by the U.S. Food and Drug Administration as one of the rodent models which can be utilized in carcinogenicity assays of candidate pharmaceuticals (8). Use of the p53-deficient mice has provided important insights into p53 function in cell-cycle control, regulation of apoptosis, response to DNA damage, hypoxia, oncogenic stimuli, embryonic development, cancer biology, molecular biology, treatment, and prevention (9–13). The focus of this chapter is on the insights provided by the p53-deficient mice in cancer-related studies at the organismal level. Further discussion of the biology of p53-deficient mice is also available (9–13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ghebranious N, Donehower LA. Mouse models in tumor suppression. Oncogene 1998; 17: 3385–3400.

    Article  PubMed  Google Scholar 

  2. Levine M. P53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–331.

    Article  PubMed  CAS  Google Scholar 

  3. Lozano G, Elledge SJ. p53 sends nucleotides to repair DNA. Nature 404: 23–25.

    Google Scholar 

  4. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215–221.

    Article  PubMed  CAS  Google Scholar 

  5. Harvey M, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A, Donehower LA. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet 1993; 5: 225–229.

    Article  PubMed  CAS  Google Scholar 

  6. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4: 1–7.

    Article  PubMed  CAS  Google Scholar 

  7. Purdie CA, Harrison DJ, Peter A, Dobbie L, White S, Howie SEM, et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 1994; 9: 603–609.

    PubMed  CAS  Google Scholar 

  8. Contrera JF, DeGeorge JJ. In vivo transgenic bioassays and assessment of the carcinogenic potential of pharmaceuticals. Environ Health Perspect 1998; 106 (Suppl. 1): 71–80.

    Article  PubMed  CAS  Google Scholar 

  9. Donehower LA. The p53-deficient mouse: a model for basic and applied cancer studies. Semin Cancer Biol 1996; 7: 269–278.

    Article  PubMed  CAS  Google Scholar 

  10. Attardi LD, Jacks T. The role of p53 in tumour suppression: lessons from mouse models. Cell Mol Life Sci 1999; 55: 48–63.

    Article  PubMed  CAS  Google Scholar 

  11. Jacks T. Lessons from the p53 mutant mouse. J Cancer Res Clin Oncol 1996; 122: 319–327.

    Article  PubMed  CAS  Google Scholar 

  12. Donehower LA. Effects of p53 mutation on tumor progression: recent insights from mouse tumor models. Biochim Biophys Acta 1996; 1242: 171–176.

    PubMed  Google Scholar 

  13. Lozano G, Liu G. Mouse models dissect the role of p53 in cancer and development. Semin Cancer Biol 1998; 8: 337–344.

    Article  PubMed  CAS  Google Scholar 

  14. Finlay CA, Hinds PW, Levine M. The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989; 57: 1083–1093.

    Article  PubMed  CAS  Google Scholar 

  15. Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 1989; 86: 8763–8767.

    Article  PubMed  CAS  Google Scholar 

  16. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989; 342: 705–708.

    Article  PubMed  CAS  Google Scholar 

  17. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990; 250: 1233–1238.

    Article  PubMed  CAS  Google Scholar 

  18. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 1990; 348: 747–749.

    Article  PubMed  CAS  Google Scholar 

  19. Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 1990; 249: 912–915.

    Article  PubMed  CAS  Google Scholar 

  20. Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 1998; 12: 2973–2983.

    Article  PubMed  CAS  Google Scholar 

  21. Steele RJ, Thompson AM, Hall PA, Lane DR. The p53 tumour suppressor gene. Br J Surg 1998; 85: 1460–1467.

    Article  PubMed  CAS  Google Scholar 

  22. Bradley A, Zheng B, Liu P. Thirteen years of manipulating the mouse genome: a personal history. Int J Dev Biol 1998; 42: 943–950.

    PubMed  CAS  Google Scholar 

  23. Kumar TR, Donehower LA, Bradley A, Matzuk MM. Transgenic mouse models for tumour-suppressor genes. J Intern Med 1995; 238: 233–238.

    Article  PubMed  CAS  Google Scholar 

  24. Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T. A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 1995; 10: 175–180.

    Article  PubMed  CAS  Google Scholar 

  25. Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR. High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 1995; 5: 931–936.

    Article  PubMed  CAS  Google Scholar 

  26. Donehower LA, Harvey M, Vogel H, McArthur MJ, Montgomery CA Jr, Park SH, et al. Effects of genetic background on tumorigenesis in p53-deficient mice. Mol Carcinog 1995; 14: 16–22.

    Article  PubMed  CAS  Google Scholar 

  27. Altman PL, Katz DD. Biological Handbooks III: inbred and genetically defined strains of laboratory animals. Part 1: mouse and rat. FASEB J. Bethesda, MD, 1979.

    Google Scholar 

  28. Harvey M, McArthur MJ, Montgomery CA Jr, Bradley A, Donehower LA. Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J 1993 Jul; 7 (10): 938–943.

    PubMed  CAS  Google Scholar 

  29. Stevens LC, Little CC. Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci USA 1954; 40: 1080–1087.

    Article  PubMed  CAS  Google Scholar 

  30. van Meyel DJ, Sanchez-Sweatman OH, Kerkvliet N, Stitt L, Ramsay DA, Khokha R, et al. Genetic background influences timing, morphology and dissemination of lymphomas in p53-deficient mice. Int J Oncol 1998; 13: 917–922.

    PubMed  Google Scholar 

  31. Kuperwasser C, Hurlbut GD, Kittrell FS, Dickinson ES, Laucirica R, Medina D, Naber SP, Jerry DJ. Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice: A model for Lifraumeni syndrome. Am J Pathol. 2000; 157: 2151–2159.

    Article  PubMed  CAS  Google Scholar 

  32. Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ, et al. A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene 2000; 19: 1052–1058.

    Article  PubMed  CAS  Google Scholar 

  33. Donehower LA, Godley LA, Aldaz CM, Pyle R, Shi YP, Pinkel D, et al. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dey 1995; 9: 882–895.

    Article  CAS  Google Scholar 

  34. Tyner SD, Choi J, Laucirica R, Ford RJ, Donehower LA. Increased tumor cell proliferation in murine tumors with decreasing dosage of wild-type p53. Mol Carcinog 1999; 24: 197–208.

    Article  PubMed  CAS  Google Scholar 

  35. Mao JH, Lindsay KA, Balmain A, Wheldon TE. Stochastic modelling of tumorigenesis in p53 deficient mice. Br J Cancer 1998; 77: 243–352.

    Article  PubMed  CAS  Google Scholar 

  36. Wahl GM, Linke SP, Paulson TG, Huang LC. Maintaining genetic stability through TP53 mediated checkpoint control. Cancer Sury 1997; 29: 183–219.

    CAS  Google Scholar 

  37. Cross SM, Sanchez CA, Morgan CA, Schimke MK, Ramel S, Idzerda RL, et al. A p53-dependent mouse spindle checkpoint. Science 1995; 267: 1353–1356.

    Article  PubMed  CAS  Google Scholar 

  38. Fukasawa K, Wiener F, Vande Woude GF, Mai S. Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 1997; 15: 1295–1302.

    Article  PubMed  CAS  Google Scholar 

  39. Kallioniemi OP, Kallioniemi A, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin Cancer Biol 1993; 4: 41–46.

    PubMed  CAS  Google Scholar 

  40. Venkatachalam S, Shi YP, Jones SN, Vogel H, Bradley A, Pinkel D, et al. Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation EMBO J 1998; 17: 4657–4667.

    Article  PubMed  CAS  Google Scholar 

  41. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68: 820–823.

    Article  PubMed  Google Scholar 

  42. Liu G, McDonnell T.1, Montes de Oca Luna R, Kapoor M, Mims B, El-Naggar AK, et al. High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci USA 2000; 97: 4174–4179.

    Article  PubMed  CAS  Google Scholar 

  43. Bogue MA, Zhu C, Aguilar-Cordova E, Donehower LA, Roth DB. p53 is required for both radiation-induced differentiation and rescue of V(D)J rearrangement in scid mouse thymocytes. Genes Dey 1996; 10: 553–565.

    Article  CAS  Google Scholar 

  44. Nacht M, Strasser A, Chan YR, Harris AW, Schlissel M, Bronson RT, et al. Mutations in the p53 and SCID genes cooperate in tumorigenesis. Genes Dey 1996; 10: 2055–2066.

    Article  CAS  Google Scholar 

  45. Guidos CJ, Williams CJ, Grandal I, Knowles G, Huang MT, Danska JS. V(D)J recombination activates a p53-dependent DNA damage checkpoint in scid lymphocyte precursors. Genes Dey 1996; 10: 2038–2054.

    Article  CAS  Google Scholar 

  46. Nacht M, Jacks T. V(D)J recombination is not required for the development of lymphoma in p53-deficient mice. Cell Growth Differ 1998; 9: 131–138.

    PubMed  CAS  Google Scholar 

  47. Liao MJ, Zhang XX, Hill R, Gao J, Qumsiyeh MB, Nichols W, et al. No requirement for V(D)J recombination in p53-deficient thymic lymphoma. Mol Cell Biol 1998; 18: 3495–3501.

    PubMed  CAS  Google Scholar 

  48. Hundley JE, Koester SK, Troyer DA, Hilsenbeck SG, Subler MA, Windle JJ. Increased tumor proliferation and genomic instability without decreased apoptosis in MMTV-ras mice deficient in p53. Mol Cell Biol 1997; 17: 723–731.

    PubMed  CAS  Google Scholar 

  49. Elson A, Deng C, Campos-Torres J, Donehower LA, Leder P. The MMTV/c-myc transgene and p53 null alleles collaborate to induce T-cell lymphomas, but not mammary carcinomas in transgenic mice. Oncogene 1995; 11: 181–190.

    PubMed  CAS  Google Scholar 

  50. Blyth K, Terry A, O’Hara M, Baxter EW, Campbell M, Stewart M, et al. Synergy between a human cmyc transgene and p53 null genotype in murine thymic lymphomas: contrasting effects of homozygous and heterozygous p53 loss. Oncogene 1995; 10: 1717–1723.

    PubMed  CAS  Google Scholar 

  51. Condorelli GL, Facchiano F, Valtieri M, Proietti E, Vitelli L, Lulli V, et al. T-cell-directed TAL-1 expression induces T-cell malignancies in transgenic mice. Cancer Res 1996; 56: 5113–5119.

    PubMed  CAS  Google Scholar 

  52. Harvey M, Vogel H, Morris D, Bradley A, Bernstein A, Donehower LA. A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53-deficient mice. Nat Genet 1995; 9: 305–311.

    Article  PubMed  CAS  Google Scholar 

  53. Jones SN, Hancock AR, Vogel H, Donehower LA, Bradley A. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci USA 1998; 95:15, 608–15, 612.

    Google Scholar 

  54. Freedman DA, Wu L, Levine AJ. Functions of the MDM2 oncoprotein. Cell Mol Life Sci 1999; 55: 96–107.

    Article  PubMed  CAS  Google Scholar 

  55. Williams BO, Remington L, Albert DM, Mukai S, Bronson RT, Jacks T. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat Genet 1994; 7: 480–484.

    Article  PubMed  CAS  Google Scholar 

  56. Harvey M, Vogel H, Lee EY, Bradley A, Donehower LA. Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res 1995; 55: 1146–1151.

    PubMed  CAS  Google Scholar 

  57. Clarke AR, Cummings MC, Harrison DJ. Interaction between murine germline mutations in p53 and APC predisposes to pancreatic neoplasia but not to increased intestinal malignancy. Oncogene 1995; 11: 1913–1920.

    PubMed  CAS  Google Scholar 

  58. Halberg RB, Katzung DS, Hoff PD, Moser AR, Cole CE, Lubet RA, et al. Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specificity of modifiers. Proc Natl Acad Sci USA 2000; 97: 3461–3466.

    Article  PubMed  CAS  Google Scholar 

  59. Bilger A, Shoemaker AR, Gould KA, Dove WF. Manipulation of the mouse germline in the study of Min-induced neoplasia. Semin Cancer Biol 1996; 7: 249–260.

    Article  PubMed  CAS  Google Scholar 

  60. Schuyer M, Berns EM. Is TP53 dysfunction required for BRCA1-associated carcinogenesis? Mol Cell Endocrinol 1999; 155: 143–152.

    Article  PubMed  CAS  Google Scholar 

  61. Cressman VL, Backlund DC, Hicks EM, Gowen LC, Godfrey V, Koller BH. Mammary tumor formation in p53- and BRCA1-deficient mice. Cell Growth Differ 1999; 10: 1–10.

    PubMed  CAS  Google Scholar 

  62. Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T, et al. Conditional mutation of Brcal in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 1999; 22: 37–43.

    Article  PubMed  CAS  Google Scholar 

  63. Westphal CH, Rowan S, Schmaltz C, Elson A, Fisher DE, Leder P. Atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nat Genet 1997; 16: 397–401.

    Article  PubMed  CAS  Google Scholar 

  64. Cheo DL, Meira LB, Hammer RE, Burns DK, Doughty AT, Friedberg EC. Synergistic interactions between XPC and p53 mutations in double-mutant mice: neural tube abnormalities and accelerated UV radiation-induced skin cancer. Curr Biol 1996; 6: 1691–1694.

    Article  PubMed  CAS  Google Scholar 

  65. Robinson D. The International Life Sciences Institute’s role in the evaluation of alternative methodologies for the assessment of carcinogenic risk. Toxicol Pathol 1998; 26: 474–475.

    Article  PubMed  CAS  Google Scholar 

  66. Tennant RW, Stasiewicz S, Mennear J, French JE, Spalding JW. Genetically altered mouse models for identifying carcinogens. IARC Sci Publ 1999; 146: 123–150.

    PubMed  CAS  Google Scholar 

  67. Sands AT, Suraokar MB, Sanchez A, Marth JE, Donehower LA, Bradley A. P53 deficiency does not affect the accumulation of point mutations in a transgene target. Proc Natl Acad Sci USA 1995; 92: 8517–8521.

    Article  PubMed  CAS  Google Scholar 

  68. Nishino H, Knoll A, Buettner VL, Frisk CS, Maruta Y, Haavik J, et al. P53 wild-type and p53 nullizygous Big Blue transgenic mice have similar frequencies and patterns of observed mutation in liver, spleen and brain. Oncogene 1995; 11: 263–270.

    PubMed  CAS  Google Scholar 

  69. Buettner VL, Nishino H, Haavik J, Knoll A, Hill K, Sommer SS. Spontaneous mutation frequencies and spectra in p53 (+/+) and p53 (-/-) mice: a test of the guardian of the hypothesis in the Big Blue transgenic mouse mutation detection system. Mutat Res 1997; 379: 13–20.

    Article  PubMed  CAS  Google Scholar 

  70. Bates S, Vousden KH. Mechanisms of p53-mediated apoptosis. Cell Mol Life Sci 1999; 55: 28–37.

    Article  PubMed  CAS  Google Scholar 

  71. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. P53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993; 362: 847–849.

    Article  PubMed  CAS  Google Scholar 

  72. Sukata T, Ozaki K, Uwagawa S, Seki T, Wanibuchi H, Yamamoto S, et al. Organ-specific, carcinogen-induced increases in cell proliferation in p53-deficient mice. Cancer Res 2000; 60: 74–79.

    PubMed  CAS  Google Scholar 

  73. Tennant RW, Spalding J, French JE. Evaluation of transgenic mouse bioassays for identifying carcinogens and noncarcinogens. Mutat Res 1996; 365: 119–127.

    Article  PubMed  Google Scholar 

  74. Spalding JW, French JE, Stasiewicz S, Furedi-Machacek M, Conner F, Tice RR, et al. Responses of transgenic mouse lines p53(+/-) and Tg.AC to agents tested in conventional carcinogenicity bioassays. Toxicol Sci 2000; 53: 213–223.

    Article  PubMed  CAS  Google Scholar 

  75. Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 2000; 15; 14: 994–1004.

    Google Scholar 

  76. Kemp CJ, Donehower LA, Bradley A, Balmain A. Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 1993; 74: 813–822.

    Article  PubMed  CAS  Google Scholar 

  77. Tennant RW, French JE, Spalding JW. Identifying chemical carcinogens and assessing potential risk in short-term bioassays using transgenic mouse models. Environ Health Perspect 1995; 103: 942–950.

    Article  PubMed  CAS  Google Scholar 

  78. Jerry DJ, Butel JS, Donehower LA, Paulson EJ, Cochran C, Wiseman RW, et al. Infrequent p53 mutations in 7,12-dimethylbenz[alanthracene-induced mammary tumors in Balb/c and p53 hemizygous mice. Mol Carcinog 1994; 9: 175–183.

    Article  PubMed  CAS  Google Scholar 

  79. Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ, et al. A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene 2000; 21: 1052–1058.

    Article  CAS  Google Scholar 

  80. Kemp CJ. Hepatocarcinogenesis in p53-deficient mice. Mol. Carcinog 1995; 12: 132–136.

    Article  PubMed  CAS  Google Scholar 

  81. Matzinger SA, Crist KA, Stoner GD, Anderson MW, Pereira MA, Steele VE, et al. K-ras mutations in lung tumors from A/J and A/J x TSG-p53 Fl mice treated 4-(methylnitrosamino)-1-(3-pyridyl)-1butanone and phenethyl isothiocyanate. Carcinogenesis 1995; 16: 2487–2492.

    Article  PubMed  CAS  Google Scholar 

  82. Dunnick JK, Hardisty JF, Herbert RA, Seely JC, Furedi-Machacek EM, Foley JF, et al. Lacks GD, Stasiewicz S, French JE. Phenolphthalein induces thymic lymphomas accompanied by loss of the p53 wild type allele in heterozygous p53-deficient (+/-) mice. Toxicol Pathol 1997; 25: 533–540.

    Article  PubMed  CAS  Google Scholar 

  83. Yamamoto S, Min W, Lee CC, Salim EI, Wanibuchi H, Sukata T, et al. Enhancement of urinary bladder carcinogenesis in nullizygous p53-deficient mice by N-butyl-N-(4-hydroxybutyl)nitrosamine. Cancer Lett 1999; 135: 137–144.

    Article  PubMed  CAS  Google Scholar 

  84. Dass SB, Bucci TJ, Heflich RH, Casciano DA. Evaluation of the transgenic p53+/- mouse for detecting genotoxic liver carcinogens in a short-term bioassay. Cancer Lett 1999; 143: 81–85.

    Article  PubMed  CAS  Google Scholar 

  85. Kemp CJ, Wheldon T, Balmain A. p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat Genet 1994; 8: 66–69.

    Article  PubMed  CAS  Google Scholar 

  86. Park CB, Kim DJ, Uehara N, Takasuka N, Hiroyasu BT, Tsuda H. Heterozygous p53-deficient mice are not susceptible to 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx) carcinogenicity. Cancer Lett 1999; 139: 177–182.

    Article  PubMed  CAS  Google Scholar 

  87. Li G, Tron V, HoV. Induction of squamous cell carcinoma in p53-deficient mice after ultraviolet irradiation. J Invest Dermatol 1998; 110: 72–75.

    Article  PubMed  CAS  Google Scholar 

  88. Boley SE, Anderson EE, French JE, Donehower LA, Walker DB, Recio L. Loss of p53 in benzene-induced thymic lymphomas in p53+/- mice: evidence of homologous recombination. Cancer Res 2000; 60: 2831–2835.

    PubMed  CAS  Google Scholar 

  89. Ohgaki H, Fukuda M, Tohma Y, Huang, H, Stoica G, Tatematsu M, et al. Effect of intragastric application of N-Methylnitrosourea (MNU) in p53 knockout mice. Mol Carcinog 28, 97–101.

    Google Scholar 

  90. Finch GL, March TH, Hahn FF, Barr EB, Belinsky SA, Hoover MD, et al. Carcinogenic responses of transgenic heterozygous p53 knockout mice to inhaled 239PuO2 or metallic beryllium. Toxicol Pathol 1998; 26: 481–491.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Venkatachalam, S., Tyner, S., Donehower, L.A. (2002). The p53-Deficient Mouse as a Cancer Model. In: Teicher, B.A. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-100-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-100-8_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6883-1

  • Online ISBN: 978-1-59259-100-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics