Skip to main content

Double-Strand Break Repair and Homologous Recombination in Mammalian Cells

  • Chapter
DNA Damage and Repair

Part of the book series: Contemporary Cancer Research ((CCR))

  • 247 Accesses

Abstract

A paradigm shift has occurred over the last few years in the understanding of homologous recombination. It has long been known that DNA double-strand breaks (DSBs) in yeast are potent inducers of homologous recombination and that homologous recombination is the major pathway in yeast to repair DSBs (Chapter 16, Vol. 1). Compared with nonhomologous repair, homologous recombination has generally been considered to be inconsequential as a DSB repair pathway in mammalian cells. However, homologous repair can precisely restore the damaged DNA to its original sequence, suggesting that it should be a preferred pathway for repair, at least under some circumstances. Recently, direct examination of repair products in mammalian cells has demonstrated the importance of homologous recombination during the repair of DSBs. Supporting this conclusion has been the identification of DNA repair defects in mutant cell lines and the construction of mouse knockouts of genes implicated in homologous recombination. This chapter discusses basic parameters of DSB repair by homologous recombination in mammalian cells and emerging evidence for the involvement of various proteins in the repair process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akgün, E., J. Zahn, S. Baumes, G. Brown, F. Liang, P. J. Romanienko et al. 1997. Palindrome resolution and recombination in the mammalian germ line. Mol. Cell. Biol. 17 (9): 5559–5570.

    PubMed  Google Scholar 

  2. Ashley, C. T., and S. T. Warren. 1995. Trinucleotide repeat expansion and human disease. Ann. Rev. Genet. 29: 703–728.

    Article  PubMed  CAS  Google Scholar 

  3. Baker, M. D., and L. R. Read. 1992. Ectopic recombination within homologous immunoglobulin mu gene constant regions in a mouse hybridoma cell line. Mol. Cell. Biol. 12 (10): 4422–4432.

    PubMed  CAS  Google Scholar 

  4. Baker, M. D., and L. R. Read. 1995. High-frequency gene conversion between repeated C mu sequences integrated at the chromosomal immunoglobulin mu locus in mouse hybridoma cells. Mol. Cell. Biol. 15 (2): 766–771.

    PubMed  CAS  Google Scholar 

  5. Baumann, P., F. E. Benson, and S. C. West. 1996. Human Rad51 protein promotes ATP-dependent homolgous pairing and strand transfer reactions in vitro. Cell 87: 757–766.

    Article  PubMed  CAS  Google Scholar 

  6. Belfort, M. 1997. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 25: 3379–3388.

    Article  PubMed  CAS  Google Scholar 

  7. Belmaaza, A., E. Milot, J. F. Villemure, and P. Chartrand. 1994. Interference of DNA sequence divergence with precise recombinational DNA repair in mammalian cells. EMBO.1. 13 (22): 5355–5360.

    CAS  Google Scholar 

  8. Benjamin, M. B., and J. B. Little. 1992. X rays induce interallelic homologous recombination at the human thymidine kinase gene. Mol. Cell. Biol. 12 (6): 2730–2738.

    PubMed  CAS  Google Scholar 

  9. Benjamin, M. B., H. Potter, D. W. Yandell, and J. B. Little. 1991. A system for assaying homologous recombination at the endogenous human thymidine kinase gene. Proc. Natl. Acad. Sci. USA 88 (15): 6652–6656.

    Article  PubMed  CAS  Google Scholar 

  10. Boland, C. R. 1998. Hereditary nonpolyposis colorectal cancer, in The Genetic Basis of Human Cancer ( Vogelstein, B. and K. W. Kinzler, eds.), McGraw-Hill, New York, NY, pp. 333–346.

    Google Scholar 

  11. Bollag, R. J., and R. M. Liskay. 1991. Direct-repeat analysis of chromatid interactions during intrachromosomal recombination in mouse cells. Mol. Cell. Biol. 11 (10): 4839–4845.

    PubMed  CAS  Google Scholar 

  12. Bootsma, D., K. H. Kraemer, J. E. Cleaver, and J. H. J. Hoeijmakers. 1998. Nucleotide excision repair systems: xeroderma pigmentosa, Cockayne syndrome, and trichothiodystrophy, in The Genetic Basis of Human Cancer ( Vogelstein, B. and K. W. Kinzler, eds.), McGraw-Hill, New York, NY, pp. 245–274.

    Google Scholar 

  13. Brenneman, M., E. S. Gimble, and J. H. Wilson. 1996. Stimulation of intrachromosomal homologous recombination in human cells by electroporation with site-specific endonucleases. Proc. Natl. Acad. Sci. USA 93 (8): 3608–3612.

    Article  PubMed  CAS  Google Scholar 

  14. Brenneman, M. A., A. E. Weiss, J. A. Nickoloff, and D. J. Chen. 2000. XRCC3 is required for efficient repair of chromosome breaks by homologous recombination. Mutat. Res. 459: 89–97.

    Article  PubMed  CAS  Google Scholar 

  15. Bryant, F. E. 1989. Restriction enonuclease-and radiation-induced DNA double-strand breaks and chromosomal aberrations: similarities and differences, in Chromosomal Aberrations: Basic and Applied Aspects ( Obe G. and A. T. Natarajan, eds.), Springer, Berlin, pp. 61–69.

    Google Scholar 

  16. Capecchi, M. R. 1989. Altering the genome by homologous recombination. Science 244: 1288–1292.

    Article  PubMed  CAS  Google Scholar 

  17. Carney, J. P., R. S. Maser, H. Olivares, E. M. Davis, M. Le Beau, J. R. Yates, 3rd, et al. 1998. The hMre1l/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93 (3): 477–486.

    Article  PubMed  CAS  Google Scholar 

  18. Cartwright, R., A. M. Dunn, P. J. Simpson, C. E. Tambini, and J. Thacker. 1998. Isolation of novel human and mouse genes of the recA/RAD51 recombination-repair gene family. Nucleic Acids Res. 26 (7): 1653–1659.

    Article  PubMed  CAS  Google Scholar 

  19. Cartwright, R., C. E. Tambini, P. J. Simpson, and J. Thacker. 1998. The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family. Nucleic Acids Res. 26 (13): 3084–3089.

    Article  PubMed  CAS  Google Scholar 

  20. Cavenee, W. K., T. P. Dryja, R. A. Phillips, W. F. Benedict, R. Godbout, B. L. Gallie, et al. 1983. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305: 779–784.

    Article  PubMed  CAS  Google Scholar 

  21. Chen, J., D. P. Silver, D. Walpita, S. B. Cantor, A. F. Gazdar, G. Tomlinson, F. J. Couch, B. L. Weber, T. Ashley, D. M. Livingston, and R. Scully. 1998. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell 2 (3): 317–328.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, P. L., C. F. Chen, Y. Chen, J. Xiao, Z. D. Sharp, and W. H. Lee. 1998. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc. Natl. Acad. Sci. USA 95 (9): 5287–5292.

    Article  PubMed  CAS  Google Scholar 

  23. Choulika, A., A. Perrin, B. Dujon, and J.-F. Nicolas. 1995. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 1963–1973.

    Google Scholar 

  24. Clikeman, J. A., G. J. Khalsa, S. L. Barton, and J. A. Nickoloff. 2001. Homologous recombinational repair of double-strand breaks in yeast is enhanced by MAT heterozygosity through yKudependent and independent mechanisms. Genetics (in press).

    Google Scholar 

  25. Cohen-Tannoudji, M., S. Robine, A. Choulika, D. Pinto, F. El Marjou, C. Babinet, D. Louvard, and F. Jaisser. 1998. I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol. Cell. Biol. 18 (3): 1444–1448.

    PubMed  CAS  Google Scholar 

  26. Colleaux, L., L. d’Auriol, M. Betermier, G. Cottarel, A. Jacquier, F. Galibert, and B. Dujon. 1986. Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell 44: 521–533.

    Article  PubMed  CAS  Google Scholar 

  27. Colleaux, L., L. d’Auriol, F. Gailbert, and B. Dujon. 1988. Recognition and cleavage site of the intron-encoded omega transposase. Proc. Natl. Acad. Sci. USA 85: 6022–6026.

    Article  PubMed  CAS  Google Scholar 

  28. Collick, A., J. Drew, J. Penberth, P. Bois, J. Luckett, F. Scaerou, A. Jeffreys, and W. Reik. 1996. Instability of long inverted repeats within mouse transgenes. EMBO J. 15: 1163–1171.

    PubMed  CAS  Google Scholar 

  29. Connor, F., D. Bertwistle, P. J. Mee, G. M. Ross, S. Swift, E. Grigorieva, et al. 1997. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nature Genet. 17 (4): 423–430.

    Article  PubMed  CAS  Google Scholar 

  30. Cooper, D. N., M. Krawczak, and S. E. Antonarakis. 1998. The nature of human gene mutation, in The Genetic Basis of Human Cancer ( Vogelstein, B. and K. W. Kinzler, eds.), McGraw-Hill, New York, pp. 64–92.

    Google Scholar 

  31. Coquelle, A., E. Pipiras, F. Toledo, G. Buttin, and M. Debatisse. 1997. Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89 (2): 215–225.

    Article  PubMed  CAS  Google Scholar 

  32. de Wind, N., M. Dekker, A. Berns, M. Radman, and H. te Riele. 1995. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82: 321–330.

    Article  PubMed  Google Scholar 

  33. Dolganov, G. M., R. S. Maser, A. Novikov, L. Tosto, S. Chong, D. A. Bressan, and J. H. J. Petrini. 1996. Human Rad50 is physically associated with human Mrel l: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell. Biol. 16: 4832–4841.

    PubMed  CAS  Google Scholar 

  34. Donoho, G., M. Jasin, and P. Berg. 1998. Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol. Cell. Biol. 18: 4070–4078.

    PubMed  CAS  Google Scholar 

  35. Dosanjh, M. K., D. W. Collins, W. Fan, G. G. Lennon, J. S. Albala, Z. Shen, and D. Schild. 1998. Isolation and characterization of RAD5 1 C, a new human member of the RAD51 family of related genes. Nucleic Acids Res. 26 (5): 1179–1184.

    Article  PubMed  CAS  Google Scholar 

  36. Dronkert, M. L. G, H. B. Beverloo, R. D. Johnson, J. H. J. Hoeijmakers, M. Jasin, and R. Kanaar. 2000. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol. Cell. Biol. 20: 3147–3156.

    Article  PubMed  CAS  Google Scholar 

  37. Dujon, B. 1989. Group I introns as mobile genetic elements: facts and mechanistic speculations: a review. Gene 82: 91–114.

    Article  PubMed  CAS  Google Scholar 

  38. Elliott, B., C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin. 1998. Gene conversion tracts from double-strand break repair in mammalian cells. Mol. Cell. Biol. 18: 93–101.

    PubMed  CAS  Google Scholar 

  39. Engels, W. R., D. M. Johnson-Schlitz, W. B. Eggleston, and J. Sved. 1990. High-frequency P element loss in Drosophila is homolog dependent. Cell 62 (3): 515–525.

    Article  PubMed  CAS  Google Scholar 

  40. Essers, J., R. W. Hendriks, S. M. A. Swagemakers, C. Troelstra, J. de Wit, D. Bootsma, et al. 1997. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89: 195–204.

    Article  PubMed  CAS  Google Scholar 

  41. Fairhead, C., and B. Dujon. 1993. Consequences of unique double-stranded breaks in yeast chromosomes: death or homozygosis. Mol. Gen. Genet. 240: 170–178.

    Article  PubMed  CAS  Google Scholar 

  42. Ferguson, D. O., and W. K. Holloman. 1996. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc. Natl. Acad. Sci. USA 93: 5419–5424.

    Article  PubMed  CAS  Google Scholar 

  43. Ferguson, M., and D. C. Ward. 1992. Cell cycle dependent chromosomal movement in pre-mitotic human T-lymphocyte nuclei. Chromosoma 101 (9): 557–565.

    Article  PubMed  CAS  Google Scholar 

  44. Formosa, T., and B. M. Alberts. 1986. DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell 47 (5): 793–806.

    Article  PubMed  CAS  Google Scholar 

  45. Frank, K. M., J. M. Sekiguchi, K. J. Seidl, W. Swat, G. A. Rathbun, H. L. Cheng, et al. 1998. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396 (6707): 173–177.

    Article  PubMed  CAS  Google Scholar 

  46. Fukushige, S., and B. Sauer. 1992. Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 89: 7905–7909.

    Article  PubMed  CAS  Google Scholar 

  47. Fuller, L. F., and R. B. Painter. 1988. A Chinese hamster ovary cell line hypersensitive to ionizing radiation and deficient in repair replication. Mutat. Res. 193: 109–121.

    Article  PubMed  CAS  Google Scholar 

  48. Gao, Y., J. Chaudhuri, C. Zhu, L. Davidson, D. T. Weaver, and F. W. Alt. 1998. A targeted DNAPKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 9 (3): 367–376.

    Article  PubMed  CAS  Google Scholar 

  49. Gao, Y., Y. Sun, K. M. Frank, P. Dikkes, Y. Fujiwara, K. J. Seidl, et al. 1998. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95 (7): 891–902.

    Article  PubMed  CAS  Google Scholar 

  50. Giaccia, A., R. Weinstein, J. Hu, and T. D. Stamato. 1985. Cell cycle-dependent repair of double-strand DNA breaks in a gamma-ray-sensitive Chinese hamster cell. Somat. Cell Mol. Genet 11 (5): 485–491.

    Article  CAS  Google Scholar 

  51. Gimble, F. S., and J. Thorner. 1992. Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature 357: 301–306.

    CAS  Google Scholar 

  52. Gloor, G. B., and D. H. Lankenau. 1998. Gene conversion in mitotically dividing cells: a view from Drosophila. Trends Genet 14 (2): 43–46.

    Article  PubMed  CAS  Google Scholar 

  53. Gordenin, D. A., and M. A. Resnick. 1998. Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat Res 400 (1–2): 45–58.

    PubMed  CAS  Google Scholar 

  54. Gowen, L. C., A. V. Avrutskaya, A. M. Latour, B. H. Koller, and S. A. Leadon. 1998. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science 281: 1009–1012.

    Article  PubMed  CAS  Google Scholar 

  55. Gowen, L. C., B. L. Johnson, A. M. Latour, K. K. Sulik, and B. H. Koller. 1996. Brcal deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nature Genet 12: 191–194.

    CAS  Google Scholar 

  56. Griffin, C. S., P. J. Simpson, C. R. Wilson, and J. Thacker. 2000. Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat. Cell. Biol. 2: 757–761.

    Article  PubMed  CAS  Google Scholar 

  57. Griffith, J. D., L. Comeau, S. Rosenfield, R. M. Stansel, A. Bianchi, H. Moss, and T. de Lange. 1999. Mammalian telomeres end in a large duplex loop. Cell 97: 503–514.

    Article  PubMed  CAS  Google Scholar 

  58. Gu, Y., K. J. Seidl, G. A. Rathbun, C. Zhu, J. P. Manis, N. van der Stoep, et al. 1997. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7: 653–665.

    Article  PubMed  CAS  Google Scholar 

  59. Haber, J. E. 1998. The many interfaces of Mrell. Cell 95 (5): 583–586.

    Article  PubMed  CAS  Google Scholar 

  60. Hakem, R., J. L. de la Pompa, C. Sirard, R. Mo, M. Woo, A. Hakem, et al. 1996. The tumor suppressor gene Brcal is required for embryonic cellular proliferation in the mouse. Cell 85: 1009–1023.

    Article  PubMed  CAS  Google Scholar 

  61. Hasty, P., J. Rivera-Perez, and A. Bradley. 1992. The role and fate of DNA ends for homologous recombination in embryonic stem cells. Mol. Cell. Biol. 12 (6): 2464–2474.

    PubMed  CAS  Google Scholar 

  62. Hays, S. L., A. A. Firmenich, and R. Berg. 1995. Complex formation in yeast double-strand break repair: Participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc. Natl. Acad. Sci. 92: 6925–6929.

    Article  PubMed  CAS  Google Scholar 

  63. Holmes, A. M., and J. E. Haber. 1999. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96 (3): 415–424.

    Article  PubMed  CAS  Google Scholar 

  64. Hsieh, C. L., C. F. Arlett, and M. R. Lieber. 1993. V(D)J recombination in ataxia telangiectasia, Bloom’s syndrome, and a DNA ligase I-associated immunodeficiency disorder. J. Biol. Chem. 268(27): 20,105–20, 109.

    Google Scholar 

  65. Ivics, Z., P. B. Hackett, R. H. Plasterk, and Z. Izsvak. 1997. Molecular reconstruction of Sleeping Beauty, a Tcl-like transposon from fish, and its transposition in human cells. Cell 91 (4): 501–510.

    Article  PubMed  CAS  Google Scholar 

  66. Jasin, M. 2000. Chromosome breaks and genomic instability. Cancer Invest. 18: 78–76.

    Article  PubMed  CAS  Google Scholar 

  67. Jasin, M. 1996. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12: 224–228.

    CAS  Google Scholar 

  68. Jasin, M. 1999. LOH and mitotic recombination, In DNA Alterations in Cancer: Genetic and Epigenetic Changes. ( Ehrlich, M. eds.), Eaton Publishing, Natick, MA.

    Google Scholar 

  69. Jasin, M., and P. Berg. 1988. Homologous integration in mammalian cells without target gene selection. Genes Dev. 2: 1353–1363.

    Article  PubMed  CAS  Google Scholar 

  70. Jasin, M., J. deVilliers, F. Weber, and W. Schaffner. 1985. High frequency of homologous recombination in mammalian cells between endogenous and introduced SV40 genomes. Cell 43: 695–703.

    Article  PubMed  CAS  Google Scholar 

  71. Jasin, M., and F. Liang. 1991. Mouse embryonic stem cells exhibits high levels of extrachromosomal homologous recombination in a chloramphenicol acetyltransferase assay system. Nucleic Acids Res. 19: 7171–7175.

    Article  PubMed  CAS  Google Scholar 

  72. Johnson, R. D., and L. S. Symington. 1995. Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. Mol. Cell. Biol. 15: 4843–4850.

    PubMed  CAS  Google Scholar 

  73. Johnson, R. D., and M. Jasin. 2000. Sister-chromatid gene conversion is a prominent DNA repair pathway in mammalian cells, EMBO J. 19: 3398–3407.

    Article  PubMed  CAS  Google Scholar 

  74. Johnson, R. D., N. Liu, and M. Jasin. 1999. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 401: 397–399.

    PubMed  CAS  Google Scholar 

  75. Jones, N. J., R. Cox, and J. Thacker. 1987. Isolation and cross-sensitivity of X-ray-sensitive mutants of V79–4 hamster cells. Mut. Res. 183: 279–286.

    Article  CAS  Google Scholar 

  76. Kadyk, L. C., and L. H. Hartwell. 1992. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132: 387–402.

    CAS  Google Scholar 

  77. Kass, D. H., M. A. Batzer, and R. L. Deininger. 1995. Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution. Mol. Cell. Biol. 15 (1): 19–25.

    PubMed  CAS  Google Scholar 

  78. Kazazian, H. H., Jr., and J. V. Moran. 1998. The impact of L1 retrotransposons on the human genome. Nature Genet 19 (1): 19–24.

    Article  PubMed  CAS  Google Scholar 

  79. Kinzler, K. W., and B. Vogelstein. 1998. Familial cancer syndromes: the role of caretakers and gatekeepers, in ( Vogelstein, B. and K. W. Kinzler, eds.), The Genetic Basis of Human Cancer McGraw-Hill, New York, NY, pp. 241–242.

    Google Scholar 

  80. LaSalle, J. M., and M. Lalande. 1996. Homologous association of oppositely imprinted chromosomal domains. Science 272 (5262): 725–728.

    Article  PubMed  CAS  Google Scholar 

  81. Leach, D. R. F. 1994. Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. BioEssays 16: 893–900.

    Article  PubMed  CAS  Google Scholar 

  82. Lewis, S. 1994. P nucleotide insertions and the resolution of hairpin DNA structures in mammalian cells. Proc. Natl. Acad. Sci. USA 91: 1332–1336.

    Article  PubMed  CAS  Google Scholar 

  83. Lewis, S. M. 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56: 27–149.

    Article  PubMed  CAS  Google Scholar 

  84. Li, G. C., H. Ouyang, X. Li, H. Nagasawa, J. B. Litle, D. J. Chen, et al. 1998. Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol. Cell 2: 1–8.

    CAS  Google Scholar 

  85. Liang, E, M. Han, R. J. Romanienko, and M. Jasin. 1998. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl. Acad. Sci. USA 95: 5172–5177.

    Article  PubMed  CAS  Google Scholar 

  86. Liang, F., and M. Jasin. 1996. Ku80 deficient cells exhibit excess degradation of extrachromosomal DNA. J. Biol. Chem. 271: 14,405–14, 411.

    Google Scholar 

  87. Liang, F., R. J. Romanienko, D. T. Weaver, R. A. Jeggo, and M. Jasin. 1996. Chromosomal double-strand break repair in Ku80 deficient cells. Proc. Natl. Acad. Sci. USA 93: 8929–8933.

    Article  PubMed  CAS  Google Scholar 

  88. Lim, D. -S., and P. Hasty. 1996. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol. 16: 7133–7143.

    PubMed  CAS  Google Scholar 

  89. Lin, F. -L., K. Sperle, and N. Sternberg. 1984. Model for homologous recombination during transfer of DNA into mouse L cells: Role for DNA ends in the recombination process. Mol. Cell. Biol. 4: 1020–1034.

    PubMed  CAS  Google Scholar 

  90. Lin, Y., T. Lukacsovich, and A. S. Waldman. 1999. Multiple pathways of repair of DNA double-strand breaks in mammalian chromosomes. Mol. Cell. Biol., 19: 8353–8360.

    PubMed  CAS  Google Scholar 

  91. Liskay, R. M., and J. L. Stachelek. 1983. Evidence for intrachromosomal gene conversion in cultured mouse cells. Cell 35 (1): 157–165.

    Article  PubMed  CAS  Google Scholar 

  92. Liu, C. Y., A. Fleskin-Nikitin, S. Li, Y. Zeng, and W. H. Lee. 1996. Inactivation of the mouse BRCA1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dey. 10: 1835–1843.

    Article  CAS  Google Scholar 

  93. Liu, N., J. E. Lamerdin, R. S. Tebbs, D. Schild, J. D. Tucker, M. R. Shen, et al. 1998. XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol. Cell 1: 783–793.

    Article  PubMed  CAS  Google Scholar 

  94. Loeb, L. A. 1991. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51 (12): 3075–3079.

    PubMed  CAS  Google Scholar 

  95. Lukacsovich, T., D. Yang, and A. S. Waldman. 1994. Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI. Nucleic Acids Res. 22: 5649–5657.

    Article  CAS  Google Scholar 

  96. Ma, C., S. Martin, B. Trask, and J. L. Hamlin. 1993. Sister chromatid fusion initiates amplification of the dihydrofolate reductase gene in Chinese hamster cells. Genes. Dey. 7 (4): 605–620.

    Article  CAS  Google Scholar 

  97. Marmorstein, L. Y., T. Ouchi, and S. A. Aaronson. 1998. The BRCA2 gene product functionally interacts with p53 and RAD51. Proc. Natl. Acad. Sci. USA 95(23): 13,869–13, 874.

    Google Scholar 

  98. McClintock, B. 1941. The stability of broken ends of chromosomes in Zea mays. Genetics 41: 234–282.

    Google Scholar 

  99. Meyn, M. S. 1993. High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia. Science 260 (5112): 1327–1330.

    Article  PubMed  CAS  Google Scholar 

  100. Miyazaki, W. Y., and T. L. Orr-Weaver. 1994. Sister-chromatid cohesion in mitosis and meiosis. Ann. Rev. Genet. 28: 167–187.

    Article  PubMed  CAS  Google Scholar 

  101. Mizuta, R., J. M. LaSalle, H. L. Cheng, A. Shinohara, H. Ogawa, N. Copeland, et al. 1997. RAB22 and RAB 163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proc. Natl. Acad. Sci. USA 94 (13): 6927–6932.

    Article  PubMed  CAS  Google Scholar 

  102. Monteilhet, C., A. Perrin, A. Thierry, L. Colleaux, and B. Dujon. 1990. Purification and characterization of the in vitro activity of I-SceI, a novel and highly specific endonuclease encoded by a group I intron. Nucleic Acids Res. 18: 1407–1413.

    Article  PubMed  CAS  Google Scholar 

  103. Moolgavkar, S. H., and A. G. Knudson, Jr. 1981. Mutation and cancer: a model for human carcinogenesis. J. Natl. Cancer Inst. 66 (6): 1037–1052.

    PubMed  CAS  Google Scholar 

  104. Morimatsu, M., G. Donoho, and P. Hasty. 1998. Cells deleted for Brca2 COOH terminus exhibit hypersensitivity to gamma-radiation and premature senescence. Cancer Res. 58 (15): 3441–3447.

    PubMed  CAS  Google Scholar 

  105. Morita, T., Y. Yoshimura, A. Yamamoto, K. Kurata, M. Mori, H. Yamamoto, and A. Matsushiro. 1993. A mouse homolog of the Escherichia coli recA and Saccharomyces cerevisiae RAD51 genes. Proc. Natl. Acad. Sci. USA 90: 6577–6580.

    Article  PubMed  CAS  Google Scholar 

  106. Moynahan, M. E., and M. Jasin. 1997. Loss of heterozygosity induced by a chromosomal double-strand break. Proc. Natl. Acad. Sci. USA 94: 8988–8993.

    Article  PubMed  CAS  Google Scholar 

  107. Moynahan, M. E., J. W. Chiu, B. H. Koller, and M. Jasin. 1999. Brcal controls homology-directed DNA repair. Molecular Cell 4: 511–518.

    Article  PubMed  CAS  Google Scholar 

  108. Nickoloff, J. A. 1992. Transcription enhances intrachromosomal homologous recombination in mammalian cells. Mol. Cell. Biol. 12 (12): 5311–5318.

    PubMed  CAS  Google Scholar 

  109. Nussenzweig, A., C. Chen, V. da Costa Soares, M. Sanchez, K. Sokol. et al. 1996. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382: 551–555.

    Article  PubMed  CAS  Google Scholar 

  110. Park, M. S. 1995. Expression of human RAD52 confers resistance to ionizing radiation in mammalian cells. J. Biol. Chem. 270(26): 15,467–15, 470.

    Google Scholar 

  111. Patel, K. J., V. P. Vu, H. Lee, A. Corcoran, F. C. Thistlethwaite, M. J. Evans, et al. 1998. Involvement of Brca2 in DNA repair. Mol. Cell. 1 (3): 347–357.

    Article  PubMed  CAS  Google Scholar 

  112. Paull, T. T., and M. Gellert. 1998. The 3’ to 5’ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell 1 (7): 969–979.

    Article  PubMed  CAS  Google Scholar 

  113. Perrin, A., M. Buckle, and B. Dujon. 1993. Asymmetrical recognition and activity of the 1-SceI endonuclease on its site an on intron-exon junctions. EMBO J. 12: 2939–2947.

    PubMed  CAS  Google Scholar 

  114. Petes, T. D., R. E. Malone, and L. S. Symington. 1991. Recombination in yeast, in The Molecular and Cellular Biology of the Yeast Saccharomyces: genome Dynamics, Protein Synthesis, and Energetics. (Broach, J. R., J. R. Pringle, and E. W. Jones, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 407–521.

    Google Scholar 

  115. Petrini, J. H. J., M. E. Walsh, C. DiMare, J. R. Korenberg, X. -N. Chen, and D. T. Weaver. 1995. Isolation and characterization of the human MRE1 1 homologue. Genomics 29: 80–86.

    Article  PubMed  CAS  Google Scholar 

  116. Phillips, J. W., and W. F. Morgan. 1994. Illegitimate recombination induced by DNA double-strand breaks in a mammalian chromosome. Mol. Cell. Biol. 14: 5794–5803.

    Article  PubMed  CAS  Google Scholar 

  117. a.Pierce, A. J., R. D. Johnson, L. H. Thompson, and M. Jasin. 1999. The Rad51-related protein XRCC3 promotes homology-directed repair of damage in mammalian cells. Genes Del,. 13: 2633–2638.

    Article  Google Scholar 

  118. Pipiras, E., A. Coquelle, A. Bieth, and M. Debatisse. 1998. Interstitial deletions and intrachromosomal amplification initiated from A double-strand break targeted to a mammalian chromosome. EMBO J. 17 (1): 325–333.

    Article  PubMed  CAS  Google Scholar 

  119. Pittman, D. L., L. R. Weinberg, and J. C. Schimenti. 1998. Identification, characterization, and genetic mapping of Rad51d, a new mouse and human RAD51/RecA-related gene. Genomics 49 (1): 103–111.

    Article  PubMed  CAS  Google Scholar 

  120. a.Pittman, D. L., and J. C. Schimenti. 2000. Midgestation lethality in mice deficient for the RecArelated gene, Rad51d/Rad5113. Genesis 26: 167–173.

    Article  PubMed  Google Scholar 

  121. Plasterk, R. H. 1991. The origin of footprints of the Tcl transposon of Caenorhabditis elegans. EMBO J. 10 (7): 1919–1925.

    PubMed  CAS  Google Scholar 

  122. Plessis, A., A. Perrin, J. E. Haber, and B. Dujon. 1992. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130: 451–460.

    PubMed  CAS  Google Scholar 

  123. Rayssiguier, C., D. S. Thaler, and M. Radman. 1989. The barrier to recombination between Esche ri chia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342: 396–401.

    Article  PubMed  CAS  Google Scholar 

  124. Reiter, L. T., T. Murakami, T. Koeuth, L. Pentao, D. M. Muzny, R. A. Gibbs, and J. R. Lupski. 1996. A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element. Nature. Genet. 12 (3): 288–297.

    Article  PubMed  CAS  Google Scholar 

  125. Rice, M. C., S. T. Smith, F. Bullrich, P. Havre, and E. B. Kmiec. 1997. Isolation of human and mouse genes based on homology to REC2, a recombinational repair gene from the fungus Usti-lago maydis. Proc. Natl. Acad. Sci. USA 94 (14): 7417–7422.

    Article  PubMed  CAS  Google Scholar 

  126. Richard, M., A. Belmaaza, N. Gusew, J. C. Wallenburg, and P. Chartrand. 1994. Integration of a vector containing a repetitive LINE-1 element in the human genome. Mol. Cell. Biol. 14 (10): 6689–6695.

    PubMed  CAS  Google Scholar 

  127. Richardson, C., B. Elliott, and M. Jasin. 1999. Chromosomal double-strand breaks introduced in mammalian cells by expression of I-SceI endonuclease, in DNA Repair Protocols: Eukaryotic Systems ( Henderson, D. S. ed.), Humana Press, Totowa, NJ, pp. 453–464.

    Chapter  Google Scholar 

  128. Richardson, C., and M. Jasin. 2000. Frequent chromosomal translocations induced by DNA double-strand breaks, Nature 405: 697–700.

    Article  PubMed  CAS  Google Scholar 

  129. Richardson, C., and M. Jasin. 2000. Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol. Cell. Biol. 20: in press.

    Google Scholar 

  130. Richardson, C., M. E. Moynahan, and M. Jasin. 1998. Double-strand break repair by inter-chromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12: 3831–3842.

    Article  PubMed  CAS  Google Scholar 

  131. Rijkers, T., J. Van Den Ouweland, B. Morolli, A. G. Rolink, W. M. Baarends, P. P. Van Sloun. et al. 1998. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol. Cell. Biol. 18 (11): 6423–6429.

    PubMed  CAS  Google Scholar 

  132. Roth, D. B., and J. H. Wilson. 1985. Mechanisms of nonhomologous recombination in mammalian cells. Mol. Cell. Biol. 5: 2599–2607.

    PubMed  CAS  Google Scholar 

  133. Rouet, P., F. Smih, and M. Jasin. 1994. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91: 6064–6068.

    Article  PubMed  CAS  Google Scholar 

  134. Rouet, P., F. Smih, and M. Jasin. 1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14: 8096–8106.

    PubMed  CAS  Google Scholar 

  135. Sargent, R. G., M. A. Brenneman, and J. H. Wilson. 1997. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol. Cell. Biol. 17 (1): 267–277.

    PubMed  CAS  Google Scholar 

  136. Scheerer, J. B., and G. M. Adair. 1994. Homology dependence of targeted recombination at the Chinese hamster APRT locus. Mol. Cell. Biol. 14 (10): 6663–6673.

    PubMed  CAS  Google Scholar 

  137. Schmid, C. W. 1996. Alu: structure, origin, evolution, significance and function of one-tenth of human DNA. Prog. Nucleic Acid Res. Mol. Biol. 53: 283–319.

    Article  PubMed  CAS  Google Scholar 

  138. Scully, R., J. Chen, A. Plug, Y. Xiao, D. Weaver, J. Feunteun, T. Ashley, and D. M. Livingston. 1997. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88 (2): 265–275.

    Article  PubMed  CAS  Google Scholar 

  139. Sharan, S. K., M. Morimatsu, U. Albrecht, D. -S. Lim, E. Regel, C. Dinh, A. Sands, G. Eichele, P. Hasty, and A. Bradley. 1997. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386: 804–810.

    Article  CAS  Google Scholar 

  140. Shen, S. X., Z. Weaver, X. Xu, C. Li, M. Weinstein, L. Chen, X. Y. Guan, T. Ried, and C. X. Deng. 1998. A targeted disruption of the murine Brcal gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17 (24): 3115–3124.

    Article  PubMed  CAS  Google Scholar 

  141. a.Schild, D., Y. Lio, D. W. Collins, T. Tsomondo, T., and D. J. Chen. 2000. Evidence for simultaneous protein interactions between human Rad51 paralogs. J. Biol. Chem. 275: 16443–16449.

    Article  PubMed  Google Scholar 

  142. Shinohara, A., H. Ogawa, and T. Ogawa. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a recA-like protein. Cell 69: 457–470.

    CAS  Google Scholar 

  143. Shu Z., S. Smith, L. Wang, M. C. Rice, and E. B. Kmiec. 1999. Disruption of muREC2/ RAD51L1 in mice results in early embryonic lethality which can Be partially rescued in a p.53 (I) background. Mol. Cell. Biol. 19: 8686–8693.

    CAS  Google Scholar 

  144. Shulman, M. J., C. Collins, A. Connor, L. R. Read, and M. D. Baker. 1995. Interchromosomal recombination is suppressed in mammalian somatic cells. EMBO J. 14 (16): 4102–4107.

    PubMed  CAS  Google Scholar 

  145. Smih, F., P. Rouet, P. J. Romanienko, and M. Jasin. 1995. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 23: 5012–5019.

    Article  PubMed  CAS  Google Scholar 

  146. Smith, A. J., and P. Berg. 1984. Homologous recombination between defective neo genes in mouse 3T6 cells. Cold Spring Harb. Symp. Quant. Biol. 49: 171–181.

    Article  PubMed  CAS  Google Scholar 

  147. Sprung, C. M., G. E. Reynolds, M. Jasin, and J. P. Murnane. 1999. Chromosome healing in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 96: 6781–6786.

    Article  PubMed  CAS  Google Scholar 

  148. Subramani, S., and B. L. Seaton. 1988. Homologous recombination in mitotically dividing mammalian cells, in Genetic Recombination, ( Kucherlapati, R. and G. R. Smith, eds.), American Society for Microbiology, Washington, DC, pp. 549–573.

    Google Scholar 

  149. Sung, P. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dey 11 (9): 1111–1121.

    Article  CAS  Google Scholar 

  150. Suzuki, A., J. L. de la Pompa, R. Hakem, A. Elia, R. Yoshida, R. Mo, et al. 1997. Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dey 11 (10): 1242–1252.

    Article  CAS  Google Scholar 

  151. Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl. 1983. The double-strandbreak repair model for recombination. Cell 33: 25–35.

    Article  PubMed  CAS  Google Scholar 

  152. Taccioli, G. E., A. G. Amatucci, H. J. Beamish, D. Gell, X. H. Xiang, M. I. Torres Arzayus, et al. 1998. Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9 (3): 355–366.

    Article  PubMed  CAS  Google Scholar 

  153. Taccioli, G. E., G. Rathbun, E. Oltz, T. Stamato, P. A. Jeggo, and F. W. Alt. 1993. Impairment of V(D)J recombination in double-strand break repair mutants. Science 260: 207–210.

    Article  PubMed  CAS  Google Scholar 

  154. Taghian, D. G., and J. A. Nickoloff. 1997. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol. Cell. Biol. 17: 6386–6393.

    PubMed  CAS  Google Scholar 

  155. to Riele, H., E. R. Maandag, and A. Berns. 1992. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89: 5128–5132.

    Article  Google Scholar 

  156. Terasima, T., and L. J. Tolmach. 1961. Variations in several responses of HeLa cells to X-irradiation during the division cycle. J. Biophys. 3: 11–33.

    Article  Google Scholar 

  157. Tremblay, A., M. Jasin, and P. Chartrand. 2000. A double-strand break in a chromosomal LINE element can be repaired by gene conversion with various endogenous LINE elements in mouse cells. Mol. Cell. Biol. 20: 54–60.

    Article  PubMed  CAS  Google Scholar 

  158. Thierry, A., A. Perrin, J. Boyer, C. Fairhead, B. Dujon, B. Frey, and G. Schmitz. 1991. Cleavage of yeast and bacteriophage T7 genomes at a single site using the rare cutter endonuclease I-SceI. Nucleic Acids Res. 19: 189–190.

    Article  PubMed  CAS  Google Scholar 

  159. Tsuzuki, T., Y. Fujii, K. Sakumi, Y. Tominaga, K. Nakao, M. Sekiguchi, A. Matsushiro, Y. Yoshimura, and T. Monta. 1996. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc. Natl. Acad. Sci. USA 93: 6236–6340.

    Article  PubMed  CAS  Google Scholar 

  160. van Steensel, B., A. Smogorzewska, and T. de Lange. 1998. TRF2 protects human telomeres from end-to-end fusions. Cell 92 (3): 401–413.

    Article  PubMed  Google Scholar 

  161. Varon, R., C. Vissinga, M. Platzer, K. M. Cerosaletti, K. H. Chrzanowska, K. Saar, et al. 1998. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93 (3): 467–476.

    Article  PubMed  CAS  Google Scholar 

  162. Vispe, S., C. Cazaux, C. Lesca, and M. Defais. 1998. Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation. Nucleic Acids Res. 26 (12): 2859–2864.

    Article  PubMed  CAS  Google Scholar 

  163. Vogelstein, B., and K. W. Kinzler (eds.). 1998. The Genetic Basis of Human Cancer. McGraw-Hill, New York.

    Google Scholar 

  164. Waldman, A. S., and R. M. Liskay. 1988. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol. Cell. Biol. 8: 5350–5357.

    PubMed  CAS  Google Scholar 

  165. Waldman, A. S., and R. M. Liskay. 1987. Differential effects of base-pair mismatch on intra-chromosomal versus extrachromosomal recombination in mouse cells. Proc. Natl. Acad. Sci. USA 84 (15): 5340–5344.

    Article  PubMed  CAS  Google Scholar 

  166. Wang, P., R. H. Zhou, Y. Zou, C. K. Jackson-Cook, and L. R Povirk. 1997. Highly conservative reciprocal translocations formed by apparent joining of exchanged DNA double-strand break ends. Proc. Natl. Acad. Sci. USA 94(22): 12,018–12, 023.

    Google Scholar 

  167. Wilson, C. A., L. Ramos, M. R. Villasenor, K. H. Anders, M. F. Press, K. Clarke, et al. 1999. Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nature Genet. 21 (2): 236–240.

    Article  PubMed  CAS  Google Scholar 

  168. Xia, S. J., M. A. Shammas, and R. J. Shmookler Reis. 1997. Elevated recombination in immortal human cells is mediated by HsRAD51 recombinase. Mol. Cell. Biol. 17 (12): 7151–7158.

    PubMed  CAS  Google Scholar 

  169. Xu, X., K. U. Wagner, D. Larson, Z. Weaver, C. Li, T. Ried, et al. 1999. Conditional mutation of Brcal in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat. Genet. 22 (1): 37–43.

    Article  PubMed  CAS  Google Scholar 

  170. Xu, X., Z. Weaver, S. P. Linke, C. Li, J. Gotay, X. W. Wang, et al. 1999. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3 (3): 389–395.

    Article  PubMed  CAS  Google Scholar 

  171. Yu, G. L., and E. H. Blackburn. 1991. Developmentally programmed healing of chromosomes by telomerase in Tetrahymena. Cell 67 (4): 823–832.

    Article  PubMed  CAS  Google Scholar 

  172. Yu, G. L., J. D. Bradley, L. D. Attardi, and E. H. Blackburn. 1990. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature 344 (6262): 126–132.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Jasin, M. (2001). Double-Strand Break Repair and Homologous Recombination in Mammalian Cells. In: Nickoloff, J.A., Hoekstra, M.F. (eds) DNA Damage and Repair. Contemporary Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-095-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-095-7_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9635-2

  • Online ISBN: 978-1-59259-095-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics