Skip to main content

DNA End-Processing and Heteroduplex DNA Formation During Recombinational Repair of DNA Double-Strand Breaks

  • Chapter
Book cover DNA Damage and Repair

Part of the book series: Contemporary Cancer Research ((CCR))

  • 234 Accesses

Abstract

Two enzymatic mechanisms, DNA end-joining and homologous recombination, operate in eukaryotic cells to repair DNA double-strand breaks (DSB) induced by ionizing radiation and by other agents. The recombinational repair pathway relies on an intact DNA homolog to direct the healing of the DNA break, and is designed to restore the original configuration of the injured chromosome. In contrast, the DNA end joining process has no requirement for a DNA homolog and often results in gain or loss of genetic information, and at times chromosomal rearrangements and translocations. There is emerging evidence that DNA end-joining and homologous recombination are differentially required at specific stages of the cell cycle, with the former appearing to be the more critical mechanism in the G1 phase and the latter taking on a prominent role in late S and G2 when a sister chromatid becomes available to direct the repair process (113). In this article, we will provide an account of what is currently known about homologous recombination and its DNA repair role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, D. W., M. L. Freeman, and J. Holt. 1998. Double-strand break repair deficiency and radiation sensitivity in BRCA2 mutant cancer cells. J. Natl. Cancer Inst. 90: 6–13.

    Google Scholar 

  2. Adzuma, K. 1998. No sliding during homology search by RecA protein. J. Biol. Chem. 273: 31,565–31, 573.

    CAS  Google Scholar 

  3. Albala, J. S., M. P. Thelen, C. Prange, W. Fan, M. Christensen, L. H. Thompson, G. G. Lennon. 1997. Identification of a novel human RAD51 homolog, RADS I B. Genomics 46: 476–479.

    CAS  Google Scholar 

  4. Bai, Y., and L. S. Symington. 1996. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes and Develop. 10: 2025–2037.

    CAS  Google Scholar 

  5. Banin, S., L. Moyal, S. Shieh, Y. Taya, C. W. Anderson, L. Chessa, et al. 1998. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281: 1674–1677.

    PubMed  CAS  Google Scholar 

  6. Barlow, C., M. Liyanage, P. B. Moens, M. Tarsounas, K. Nagashima, K. Brown, et al. 1998. Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development 125: 4007–4017.

    PubMed  CAS  Google Scholar 

  7. Baumann, P., F. E. Benson, and S. C. West. 1996. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87: 757–766.

    PubMed  CAS  Google Scholar 

  8. Benson, F. E., P. Baumann, and S. C. West. 1998. Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391: 401–404.

    PubMed  CAS  Google Scholar 

  9. Bergerat, A., B. de Massy, D. Gadelle, P-C. Varoutas, A. Nicolas, and P. Forterre. 1997. An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature 386: 414–417.

    PubMed  CAS  Google Scholar 

  10. Bishop, D. K. 1994. recA homologs Dmcl and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79: 1081–1092.

    Google Scholar 

  11. Bishop, D. K., D. Park, L. Xu, and N. Kleckner. 1992. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69: 439–456.

    CAS  Google Scholar 

  12. Bishop, D. K., U. Ear, A. Bhattacharyya, C. Calderone, M. Beckett, R. R. Weichselbaum, and A. Shinohara. 1998. Xrcc3 is required for assembly of Rad51 complexes in vivo. J Biol Chem. 273: 21, 482–21, 488.

    Google Scholar 

  13. Boulton, S. J., and S. P. Jackson. 1998. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17: 1819–1928.

    PubMed  CAS  Google Scholar 

  14. Camerini-Otero, R. D., and P. Hsieh. 1995. Homologous recombination proteins in prokaryotes and eukaryotes. Ann. Rev. Genet. 29: 509–552.

    PubMed  CAS  Google Scholar 

  15. Canman, C. E., D. S. Lim, K. A. Cimprich, Y. Taya, K. Tamai, K. Sakaguchi, E. Appella, M. B. Kastan, and J. D. Siliciano. 1998. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281: 1677–1679.

    PubMed  CAS  Google Scholar 

  16. Cao, L., E. Alani, and N. Kleckner. 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61: 1089–1101.

    PubMed  CAS  Google Scholar 

  17. Carney, J. P., R. S. Maser, H. Olivares, E. M. Davis, M. Le Beau, J. R. Yates, et al. 1998. The hMrel l/hRad50 protein complex and Nijmegen Breakage Syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93: 477–486.

    PubMed  CAS  Google Scholar 

  18. Cartwright, R., C. E. Tambini, P. J. Simpson, and J. Thacker. 1998. The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family. Nucleic Acids Res. 26: 3084–9.

    PubMed  CAS  Google Scholar 

  19. Chen, P. L., C. F. Chen, Y. Chen, J. Xiao, D. Sharp, and W-H. Lee. 1998. The BRC repeats in BRCA2 are critical for Rad51 binding and resistance to methyl methanesulfonate treatment. Proc. Natl. Acad. Sci. USA 95: 5287–5292.

    PubMed  CAS  Google Scholar 

  20. Clever, B., H. Interhal, J. Schmuckli-Maurer, J. King, M. Sigrist, and W-D. Heyer. 1997. Recombinational repair in yeast: functional interactions between Rad51 and Rad54 proteins. EMBO J. 16: 2535–2544.

    PubMed  CAS  Google Scholar 

  21. Connelly, J. C., L. A. Kirkham, and D. R. Leach. 1998. The SbcCD nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA. Proc. Natl. Acad. Sci. USA 95: 7969–7974.

    PubMed  CAS  Google Scholar 

  22. Connor, F., D. Bertwistle, J. Mee, G. M. Ross, S. Swift, E. Grigorieva, V. Tybulewicz, and A. Ashworth. 1997. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nature Genet. 17: 423–430.

    PubMed  CAS  Google Scholar 

  23. Cox, M. M. 1998. A broadening view of recombinational DNA repair in bacteria. Genes Cells 3: 65–78.

    PubMed  CAS  Google Scholar 

  24. Dar, M. E., T. A. Winters, and T. J. Jorgensen. 1997. Identification of defective illegitimate recombinational repair of oxidatively-induced DNA double-strand breaks in ataxia-telangiectasia cells. Mutat. Res. 384: 169–179.

    PubMed  CAS  Google Scholar 

  25. Dernburg, A. F., K. McDonald, G. Moulder, R. Barstead, M. Dresser, and A. M. Villeneuve. 1998. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94: 387–398.

    PubMed  CAS  Google Scholar 

  26. Dolganov, G. M., R. S. Maser, A. Novikov, L. Tosto, S. Chong, D. A. Bressan, and J. H. Petrini. 1996. Human Rad50 is physically associated with human Mrell: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell. Biol. 16: 4832–4841.

    PubMed  CAS  Google Scholar 

  27. Dosanjh, M. K., D. W. Collins, W. Fan, G. G. Lennon, J. S. Albala, Z. Shen, and D. Schild. 1998. Isolation and characterization of RAD51C, a new human member of the RAD51 family of related genes. Nucleic Acids Res. 26: 1179–1184.

    PubMed  CAS  Google Scholar 

  28. Dresser, M. E., D. J. Ewing, M. N. Conrad, A. M. Domingues, R. Barstead, H. Jiang, and T. Kodadek. 1997. DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway. Genetics 147: 533–544.

    PubMed  CAS  Google Scholar 

  29. Van Dyck, E., A. Z. Stasiak, A. Stasiak, and S. C. West. 1999. Binding of double-strand breaks in DNA by human Rad52 protein. Nature 398: 728–731.

    PubMed  Google Scholar 

  30. Eisen, J. A., K. S. Sweder, and P. C. Hanawalt. 1995. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucl. Acid Res. 23: 2715–2723.

    CAS  Google Scholar 

  31. Emery, H. S., D. Schild, D. E. Kellogg, and R. K. Mortimer. 1991. Sequence of RAD54, a Saccharomyces cerevisiae gene involved in recombination and repair. Gene 104: 103–109.

    PubMed  CAS  Google Scholar 

  32. Featherstone, C. and S. P. Jackson. 1998. DNA repair: the Nijmegen breakage syndrome protein. Curr. Biol. 8: R622 - R625.

    PubMed  CAS  Google Scholar 

  33. Friedberg, E. C. 1988. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 52: 70–102.

    PubMed  CAS  Google Scholar 

  34. Furuse, M., Y. Nagase, H. Tsubouchi, K. Murakami-Murofushi, T. Shibata, and K. Ohta. 1998. Distinct roles of two separable in vitro activities of yeast Mrel 1 in mitotic and meiotic recombination. EMBO J. 17: 6412–6425.

    PubMed  CAS  Google Scholar 

  35. Game, J. C. 1993. DNA double-strand breaks and the RAD50 RAD57 genes in Saccharomyces. Seminars Cancer Biol. 4: 73–83.

    CAS  Google Scholar 

  36. Gasior, S. L., A. K. Wong, Y. Kora, A. Shinohara, and D. K. Bishop. 1998. Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes. Genes Dev. 12: 2208–2221.

    PubMed  CAS  Google Scholar 

  37. Goggins, M., M. Schutte, J. Lu, C. A. Moskalukm, C. L. Weinstein, G. M. Peterson, et al. 1996. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res. 56: 5360–5364.

    PubMed  CAS  Google Scholar 

  38. Golub, E. I., O. V. Kovalenko, R. C. Gupta, D. C. Ward, and C. M. Radding. 1997. Interaction of human recombination proteins Rad51 and Rad54. Nucleic Acid Res. 25: 4106–4110.

    PubMed  CAS  Google Scholar 

  39. Gupta, R. C., L. R. Bazemore, E. I. Golub, and C. M. Radding. 1997. Activities of human recombination protein Rad51. Proc. Natl. Acad. Sci. USA 94: 463–468.

    PubMed  CAS  Google Scholar 

  40. Hashimoto, K., and T. Yonesaki. 1991. The characterization of a complex of three bacteriophage T4 recombination proteins, UvsX protein, UvsY protein, and gene 32 protein, on single-stranded DNA. J. Biol. Chem. 266: 4883–4888.

    PubMed  CAS  Google Scholar 

  41. Hays, S. L., A. A. Firmenich, and R. Berg. 1995. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc. Natl. Acad. Sci. USA 92: 6925–2929.

    PubMed  CAS  Google Scholar 

  42. Hollingsworth, N. M., L. Ponte, and C. Halsey. 1995. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 9: 1728–1739.

    PubMed  CAS  Google Scholar 

  43. Holmes, A. M., and J. E. Haber. 1999. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell. 96: 415–24.

    PubMed  CAS  Google Scholar 

  44. Hunter, N. and R. H. Borts. 1997. Mlhl is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev. 11: 1573–1582.

    PubMed  CAS  Google Scholar 

  45. Ivanov, E. L., N. Sugawara, J. Fishman-Lobell, and J. E. Haber. 1996. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142: 693–704.

    PubMed  CAS  Google Scholar 

  46. Jiang, H., D. Giedroc, and T. Kodadek. 1993. The role of protein-protein interactions in the assembly of the presynaptic filament for T4 homologous recombination. J. Biol. Chem. 268: 7904–7911.

    PubMed  CAS  Google Scholar 

  47. Jiang, H., Y. Xie, R. Houston, K. Stemke-Hale, U. H. Mortensen, R. Rothstein, and T. Kodadek. 1996. Direct association between the yeast Rad51 and Rad54 recombination proteins. J. Biol. Chem. 271: 33,181–33, 186.

    Google Scholar 

  48. Johnson, R. D., and L. S. Symington. 1995. Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. Mol. Cell. Biol. 15: 4843–4850.

    PubMed  CAS  Google Scholar 

  49. Johzuka, K., and H. Ogawa. 1995. Interaction of Mrel1 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139: 1521–1532.

    PubMed  CAS  Google Scholar 

  50. Jones, N. J., Y. Zhao, M. J. Siciliano, and L. H. Thompson. 1995. Assignment of the XRCC2 human DNA repair gene to chromosome 7q36 by complementation analysis. Genomics 26: 619–622.

    PubMed  CAS  Google Scholar 

  51. Kanaar, R., and J. H. J. Hoeijmakers. 1998. From competition to collaboration. Nature 391: 335–337.

    PubMed  CAS  Google Scholar 

  52. Kanaar, R., C. Troelstra, S. M. A. Swagemakers, J. Essers, B. Smit, J-H. Franssen, et al. 1996. Human and mouse homologs of the Saccharomyces cerevisiae RAD54 DNA repair gene: evidence for functional conservation. Curr. Biol. 6: 828–838.

    PubMed  CAS  Google Scholar 

  53. Katagiri, T., H. Saito, A. Shinohara, H. Ogawa, N. Kamada, Y. Nakamura, and Y. Miki. 1998. Multiple possible sites of BRCA2 interacting with DNA repair protein Rad51. Genes Chromosomes Cancer 21: 217–222.

    PubMed  CAS  Google Scholar 

  54. Keeney, S., N. Giroux, and N. Kleckner. 1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spoll, a member of a widely conserved protein family. Cell 88: 375–384.

    PubMed  CAS  Google Scholar 

  55. Klein, H. 1997. RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147: 1533–1543.

    PubMed  CAS  Google Scholar 

  56. Klein, H. personal communication.

    Google Scholar 

  57. Kowalczykowski, S. C., D. A. Dixon, A. K. Eggleston, S. D. Lauder, and W. M. Rehrauer. 1994. Biochemistry of homologous recombination in E. coli. Microbio. Rev. 58: 401–465.

    CAS  Google Scholar 

  58. Lavin, M. F., and Y. Shiloh. 1997. The genetic defects in ataxia-telangiectasia. Ann. Rev. Immunol. 15: 177–202.

    CAS  Google Scholar 

  59. Li, Z., E. I. Golub, R. Gupta, and C. M. Radding. 1997. Recombination activities of HsDmc1 protein, the meiotic human homolog of RecA protein. Proc. Natl. Acad. Sci. USA 94: 11,221–11, 226.

    Google Scholar 

  60. Liu N, J. E. Lamerdin, R. S. Tebbs, D. Schild, J. D. Tucker, M. R. Shen, et al. (1998). XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol. Cell 6: 783–793.

    Google Scholar 

  61. Lovett, S. T. 1994. Sequence of the RAD55 gene of Saccharomyces cerevisiae: similarity of RAD55 to prokaryotic RecA and other RecA like proteins. Gene 142: 103–106.

    PubMed  CAS  Google Scholar 

  62. Lovett, S. T., and R. K. Mortimer. 1987. Characterization of null mutants of the RAD55 gene of Saccharomyces cerevisiae: effects of temperature, osmotic strength, and mating type. Genetics 116: 547–553.

    PubMed  CAS  Google Scholar 

  63. Luo, C. M., W. Tang, K. L. Mekeel, J. S. DeFrank, R. R. Anneí, and S. N. Powell. 1996. High frequcy and error-prone DNA recombination in ataxia telangiectasia cell lines. J. Biol. Chem. 271: 4497–4503.

    PubMed  CAS  Google Scholar 

  64. Lydall, D., Y. Nikolsky, D. K. Bishop, and T. Weinert. 1996. A meiotic recombination checkpoint controlled by mitotic DNA damage checkpoint genes. Nature 383: 840–843.

    PubMed  CAS  Google Scholar 

  65. Malkova, A., E. L. Ivanov, and J. E. Haber. 1996. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc. Natl. Acad. Sci. USA 93: 7131–7136.

    PubMed  CAS  Google Scholar 

  66. McKim, K. S., and A. Hayashi-Hagihara. 1998. mei-W68 in Drosophila melanogaster encodes a Spoil homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev. 12: 2932–2942.

    Google Scholar 

  67. Meyn, M. S. 1993. High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia. Science 260: 1327–1330.

    PubMed  CAS  Google Scholar 

  68. Meyn, M. S. 1995. Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res. 55: 5991–6001.

    PubMed  CAS  Google Scholar 

  69. Milne, G. T., and D. T. Weaver. 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 7: 1755–1765.

    PubMed  CAS  Google Scholar 

  70. Moore, J. K., and J. E. Haber. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2164–2173.

    PubMed  CAS  Google Scholar 

  71. Moreau, S., J. R. Ferguson, and L. S. Symington. 1999. The nuclease activity of Mrell is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19: 556–566.

    PubMed  CAS  Google Scholar 

  72. Morimatsu, M., G. Donoho, and P. Hasty. 1998. Cells deleted for Brca2 COOH terminus exhibit hypersensitivity to gamma-radiation and premature senescence. Cancer Res. 58: 3441–3447.

    PubMed  CAS  Google Scholar 

  73. Mortensen U. H., C. Bendixen, I. Sunjevaric, and R. Rothstein. 1990. DNA strand annealing is promoted by the yeast Rad52 protein. Proc. Natl. Acad. Sci. USA 93: 10,729–10, 734.

    Google Scholar 

  74. New, J. H., T. Sugiyama, E. Zaitseva, and S. C. Kowalczykowski. 1998. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391: 407–410.

    PubMed  CAS  Google Scholar 

  75. Ogawa, T., X. Yu, A. Shinohara, and E. H. Egelman. 1993. Similarity of the yeast Rad51 filament to the bacterial RecA filament. Science 259: 1896–1899.

    PubMed  CAS  Google Scholar 

  76. Patel, K. J., V. Yu, H. Lee, A. Corcoran, F. C. Thistlethwaite, M. J. Evans, et al. 1998. Involvement of Brca2 in DNA repair. Mol. Cell 1: 347–357.

    PubMed  CAS  Google Scholar 

  77. Paques, E. and J. E. Haber. 1998. Multiple pathways of double-strand break-induced recombination in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. In press.

    Google Scholar 

  78. Paull, T. T., and M. Gellert. 1998. The 3’ to 5’ exonuclease activity of Mrel l facilitates repair of DNA double-strand breaks. Mol. Cell 1: 969–979.

    PubMed  CAS  Google Scholar 

  79. Paull, T. T., M. Gellert. 1999. Nbsl potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mrel l/Rad50 complex. Genes Dev. 13: 1276–1288.

    PubMed  CAS  Google Scholar 

  80. Pazin, M. J., and J. T. Kadonaga. 1997. Swi2/Snf2 and related proteins: ATP driven motors that disrupt protein-DNA interactions? Cell 88: 737–740.

    PubMed  CAS  Google Scholar 

  81. Petes T. D., R. E. Malone, and L. S. Symington. 1991. Recombination in yeast, in The Molecular and Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis, and Energetics (Broach, J. R., E. W. Jones, and J. R. Pringle eds. ), Cold Spring Harbor Laboratory Press, pp. 407–521.

    Google Scholar 

  82. Petrini J. H., M. E. Walsh, C. DiMare, X. N. Chen, J. R. Korenberg, and D. T. Weaver. 1995. Isolation and characterization of the human MRE11 homologue. Genomics 29: 80–86.

    PubMed  CAS  Google Scholar 

  83. Petukhova, G., S. Stratton, and P. Sung. 1998. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393: 91–94.

    PubMed  CAS  Google Scholar 

  84. Petukhova, G., S. Van Komen, S. Vergano, H. Klein, and R. Sung. 1999. Yeast Rad54 promotes Rad51-dependent homologous DNA pairing via ATP hydrolysis-driven change in DNA helix conformation. J. Biol. Chem. 274: 29,453–29, 462.

    Google Scholar 

  85. Pittman, D. L., J. Cobb, K. J. Schimenti, L. A. Wilson, D. M. Cooper, E. Brignull, et al. 1998. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmcl, a germline-specific RecA homolog. Mol. Cell 1: 697–705.

    PubMed  CAS  Google Scholar 

  86. Pittman, D. L., L. R. Weinberg, J. C. Schimenti. 1998. Identification, characterization, and genetic mapping of Rad51d, a new mouse and human RAD51/RecA-related gene. Genomics 49: 103–11.

    PubMed  CAS  Google Scholar 

  87. Pochart, P., D. Woltering, and N. M. Hollingsworth. 1997. Conserved properties between functionally distinct MutS homologs in yeast. J. Biol. Chem. 272: 30,345–30, 349.

    Google Scholar 

  88. Radding, C. M. 1991. Helical interactions in homologous pairing and strand exchange driven by RecA protein. J. Biol. Chem. 266: 5355–5358.

    PubMed  CAS  Google Scholar 

  89. Reddy, G., E. I. Golub, and C. M. Radding. 1997. Human Rad52 protein promotes single-strand DNA annealing followed by branch migration. Mutat Res. 377: 53–59.

    PubMed  CAS  Google Scholar 

  90. Rice, M. C., S. T. Smith, E Bullrich, R. Havre, and E. B. Kmiec. 1997. Isolation of human and mouse genes based on homology to REC2, a recombinational repair gene from the fungus Usti-lago maydis. Proc. Natl. Acad. Sci. USA 94: 7417–7422.

    PubMed  CAS  Google Scholar 

  91. Roeder, G. S. 1997. Meiotic chromosomes: it take two to tango. Genes Dev. 11: 2600–2621.

    PubMed  CAS  Google Scholar 

  92. Ross-MacDonald, R, and G. S. Roeder. 1994. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79: 1069–1080.

    PubMed  CAS  Google Scholar 

  93. Schiestl, R. H., J. Zhu, and T. D. Petes. 1994. Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 4493–4500.

    PubMed  CAS  Google Scholar 

  94. Schild, D., B. J. Glassner, R. K. Mortimer, M. Carlson, and B. C. Laurent. 1992. Identification of RAD16, a yeast excision repair gene homologous to the recombinational repair gene RAD54 and to the SNF2 gene involved in transcriptional activation. Yeast 8: 385–395.

    PubMed  CAS  Google Scholar 

  95. Schwacha, A., and N. Kleckner. 1995. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83: 783–791.

    PubMed  CAS  Google Scholar 

  96. Sharpies, G. J. and D. F. R. Leach. 1995. Structural and functional similarities between the SbcCD proteins of Escherichia coli and the Rad50 and Mre11 (Rad32) recombination and repair proteins of yeast. Mol. Microbiol. 17: 1215–1217.

    Google Scholar 

  97. Shiloh, Y. 1997. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Ann. Rev. Genet. 31: 635–662.

    PubMed  CAS  Google Scholar 

  98. Shinohara, A., H. Ogawa, and T. Ogawa. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69: 457–470.

    PubMed  CAS  Google Scholar 

  99. Shinohara, M., E. Shita-Yamaguchi, J. M. Buerstedde, H. Shinagawa, H. Ogawa, and A. Shinohara. 1997. Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis. Genetics 147: 1545–1556.

    PubMed  CAS  Google Scholar 

  100. Shinohara, A., and T. Ogawa. 1998. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391: 404–407.

    PubMed  CAS  Google Scholar 

  101. Shinohara, A., M. Shinohara, T. Ohta, S. Matsuda, and T. Ogawa. 1998. Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3: 145–156.

    PubMed  CAS  Google Scholar 

  102. Sugawara, N., E. L. Ivanov, J. Fishman-Lobell, B. L. Ray, X. Wu, and J. E. Haber. 1995. DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature 373: 84–86.

    PubMed  CAS  Google Scholar 

  103. Sugiyama, T., E. M. Zaitseva, and S. C. Kowalczykowski. 1997. A single-stranded DNA binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. J. Biol. Chem. 272: 7940–7945.

    PubMed  CAS  Google Scholar 

  104. Sugiyama, T., J. H. New, and S. C. Kowalczykowski. 1998. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc. Natl. Acad. Sci. USA 95: 6049–6054.

    PubMed  CAS  Google Scholar 

  105. Sun, H., D. Treco, and J. W. Szostak. 1991. Extensive 3’-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64: 1155–1161.

    PubMed  CAS  Google Scholar 

  106. Sung, P. 1994. Catalysis of ATP dependent homologous DNA pairing and strand exchange by the yeast Rad51 protein. Science 265: 1241–1243.

    PubMed  CAS  Google Scholar 

  107. Sung, P., and D. L. Robberson. 1995. DNA strand exchange mediated by a Rad51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 83: 453–461.

    Google Scholar 

  108. Sung, P., and S. A. Stratton. 1996. Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J. Biol. Chem. 271: 27,983–27, 986.

    Google Scholar 

  109. Sung, R 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with RPA to promote DNA strand exchange by Rad51 recombinase. Genes Dey. 11: 1111–1121.

    CAS  Google Scholar 

  110. Sung, P. 1997. Function of Rad52 protein as mediator between RPA and the Rad51 recombinase. J. Biol. Chem. 272: 28,194–28, 197.

    Google Scholar 

  111. Swagemakers, S. M. A., J. Essers, J. de Wit, J. H. J. Hoeijmakers, and R. Kanaar. 1998. The human Rad54 recombinational DNA repair protein is a double-stranded DNA-dependent ATPase. J. Biol. Chem. 273: 28,292–28, 297.

    Google Scholar 

  112. Szostak, J. W., T. L. Orr-Weaver, and Rothstein, R. J. 1983. The double-strand-break repair model for recombination. Cell 33: 25–35.

    PubMed  CAS  Google Scholar 

  113. Takata, M., M. S. Sasaki, E. Sonoda, C. Morrison, M. Hashimoto, H. Utsumi, et al. 1998. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17: 5497–5508.

    PubMed  CAS  Google Scholar 

  114. Tan, T. L., J. Essers, E. Citterio, S. M. Swagemakers, J. de Wit, F. E. Benson, et al. 1999. Mouse Rad54 affects DNA conformation and DNA damage-induced Rad51 foci formation. Curr. Biol. 9: 325–328.

    PubMed  CAS  Google Scholar 

  115. Tebbs, R. S., Y. Zhao, J. D. Tucker, J. B. Scheerer, M. J. Siciliano, M. Hwang, et al. 1995. Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene. Proc. Natl. Acad. Sci. USA 92: 6354–6358.

    PubMed  CAS  Google Scholar 

  116. Thacker, J. 1994. Cellular radiosensitivity in ataxia-telangiectasia. Int. J. Radiat. Biol. 66: s87 - s96.

    PubMed  CAS  Google Scholar 

  117. Thacker, J., C. E. Tambini, P. J. Simpson, L. C. Tsui, and S. W. Scherer. 1995. Localization to chromosome 7g36.1 of the human XRCC2 gene, determining sensitivity to DNA-damaging agents. Human Mol. Genet. 4: 113–20.

    CAS  Google Scholar 

  118. Trujillo, K. M., S-S. F. Yuan, E. Y-H. P Lee, and P. Sung. 1998. Nuclease activities in a complex of human recombination and repair factors Rad50, Mrel 1, and p95. J. Biol. Chem. 273: 21,447–21, 450.

    Google Scholar 

  119. Umezu, K, N. W. Chi, and R. D. Kolodner. 1993. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc. Natl. Acad. Sci. USA 90: 3875–3879.

    PubMed  CAS  Google Scholar 

  120. Usui, T., T. Ohta, H. Oshiumi, J. Tomizawa, H. Ogawa, T. Ogawa. 1998. Complex formation and functional versatility of MRE11 of budding yeast in recombination. Cell 95: 701–716.

    Google Scholar 

  121. Varon, R., C. Vissinga, M. Platzer, K. M. Cerosaletti, K. H. Chrzanowska, K. Saar, et al. 1998. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen Breakage Syndrome. Cell 93: 467–476.

    PubMed  CAS  Google Scholar 

  122. Wong, A., R. Pero, P. A. Ormonde, S. V. Tavtigian, and P. L. Bartel. 1997. Rad51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J. Biol. Chem. 272: 31,941–31, 944.

    Google Scholar 

  123. Xu, L, B. M. Weiner, and N. Kleckner. 1997. Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dell. 11: 106–118.

    CAS  Google Scholar 

  124. Yoshida, K., G. Kondoh, Y. Matsuda, T. Habu, Y. Nishimune, Y., and T. Morita. 1998. The mouse RecA-like gene Dmcl is required for homologous chromosome synapsis during meiosis. Mol. Cell. 1: 707–718.

    CAS  Google Scholar 

  125. Zakian, V. A. 1995. ATM-related genes: what do they tell us about functins of the human gene? Cell 82: 685–687.

    PubMed  CAS  Google Scholar 

  126. Zhang, H., G. Tombline, and B. L. Weber. 1998. BRCA1, BRCA2, and DNA damage response: collision or collusion? Cell 92: 433–436.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Petukhova, G., Lee, E.YH.P., Sung, P. (2001). DNA End-Processing and Heteroduplex DNA Formation During Recombinational Repair of DNA Double-Strand Breaks. In: Nickoloff, J.A., Hoekstra, M.F. (eds) DNA Damage and Repair. Contemporary Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-095-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-095-7_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9635-2

  • Online ISBN: 978-1-59259-095-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics