Skip to main content

Abstract

Adolescence is a critical and complex phase in human development characterized by major biological, psychological, and social changes. Puberty marks the beginning of accelerated physical growth, alterations in body composition, and sexual maturation. The growth spurt in female adolescents contributes about 16% to adult height, 54% to adult weight, 73% to adult body fat content, 40% to adult lean body mass, and about 37% to the whole body calcium (Fig. 1). Similar changes are present in males. All individuals during this period of life should be in a strong positive nitrogen balance and balance of minerals required for body building. Those changes influence teenagers’ nutritional needs and status (Fig. 2). In addition, psychological changes involving the adolescent’s search for independence and identity, desire for acceptance by peers, and preoccupation with physical appearance may affect eating habits, food choices, nutrient intake, and particularly status of certain minerals of which calcium (Ca), phosphorus (P), magnesium (Mg), iron (Fe), zinc (Zn), and selenium (Se) are the most important. During the last 20 years, the focus of nutrition research and recommendations for children has shifted from the prevention of nutritional deficiencies to the early establishment of recommended diets to prevent chronic diseases.These priorities may eventually lead to dietary guidelines for the prevention and treatment of those conditions by targeting predisposed individuals early in life (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP, Timing of peak bone mass in caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 1994; 93: 799–808.

    Article  PubMed  CAS  Google Scholar 

  2. Widdowson EM. Growth and body composition in childhood. In: Brunser O, Carrazza F, Gracey M, Nichols B, Senterre J, eds. Clinical nutrition of the young child. Raven Press, New York, 1985; 1–21.

    Google Scholar 

  3. Miller GD, Jarvis JK, McBean LD. Handbook of dairy foods and nutrition. CRC Press, Boca Raton, 1995.

    Google Scholar 

  4. Matkovic V, Kostial K, Simonovic I, Buzina R, Brodarec A, Nordin, BEC. Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr 1979; 32: 540–49.

    PubMed  CAS  Google Scholar 

  5. Hu JF, Zhao XH, Jia JB, Parpia B, Campbell TC. Dietary calcium and bone density among middle-aged and elderly women in China. Am J Clin Nutr 1993; 58: 219–227.

    PubMed  CAS  Google Scholar 

  6. Sandler RB, Slemenda C, LaPorte RE, Cauley JA, Schramm MM, Baresi M, Kriska AM. Postmenopausal bone density and milk consumption in childhood and adolescence. Am J Clin Nutr 1985; 42: 270–74.

    PubMed  CAS  Google Scholar 

  7. Halioua L, Anderson JJB. Lifetime calcium intake and physical activity habits: independent and combined effects on the radial bone of healthy premenopausal Caucasian women. Am J Clin Nutr 1989; 49: 534–541.

    PubMed  CAS  Google Scholar 

  8. Murphy S, Khaw KT, May H, Compston JE. Milk consumption and bone mineral density in middle aged and elderly women. BMJ 1994; 308: 939–941.

    Article  PubMed  CAS  Google Scholar 

  9. Soroko S, Holbrook TL, Edelstein S, Barrett-Connor E. Lifetime milk consumption and bone mineral density in older women. Am J Public Health 1994; 84: 1319–1322.

    Article  PubMed  CAS  Google Scholar 

  10. Matkovic V, Heaney RP. Calcium balance during human growth: evidence for threshold behavior. Am J Clin Nutr 1992; 55: 992–996.

    PubMed  CAS  Google Scholar 

  11. Matkovic V, Ilich JZ. Calcium requirements during growth. Are the current standards adequate? Nutr Rev 1993; 51: 171–180.

    Article  PubMed  CAS  Google Scholar 

  12. Charles P, Taagehoj Jensen F, Mosekilde L, Hvid Hansen H. Calcium metabolism evaluated by 47Ca kinetics: estimation of dermal calcium loss. Clin Sci 1983; 65: 415–22.

    PubMed  CAS  Google Scholar 

  13. Klesges RC, Ward KD, Shelton ML, Applegate WB, Cantler ED, Palmieri GMA, Harmon K, Davis J. Changes in bone mineral content in male athletes. Mechanisms of action and intervention effects. JAMA 1996; 276: 226–230.

    Article  PubMed  CAS  Google Scholar 

  14. Aksnes L, Aarskog D. Plasma concentrations of vitamin D metabolites in puberty: Effect of sexual maturation and implications for growth. J Clin Endocrinol Metab 1982; 55: 94–101.

    Article  PubMed  CAS  Google Scholar 

  15. Chesney RW, Rosen JF, Hamstra AH, DeLuca HF. Serum 1,25-dihydroxyvitamin D levels in normal children and in vitamin D disorders. Am J Dis Child 1980; 134: 135–139.

    PubMed  CAS  Google Scholar 

  16. Ilich JZ, Badenhop NE, Jelic T, Clairmont AC, Nagode LA, Matkovic V. Calcitriol and bone mass accumulation in females during puberty. Calcif Tissue Int 1997; 61: 104–109.

    Article  PubMed  CAS  Google Scholar 

  17. Matkovic V. Calcium metabolism and calcium requirements during skeletal modeling and consolidation of bone mass. Am J Clin Nutr 1991; 54: 2455–260S.

    Google Scholar 

  18. Matkovic V, Fontana D, Tominac C, Goel P, Chesnut CH. Factors which influence peak bone mass formation: A study of calcium balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr 1990; 52: 878–888.

    PubMed  CAS  Google Scholar 

  19. Jackman LA, Millane SS, Martin BR, Wood OB, McCabe GP, Peacosk M, Weaver CM. Calcium retention in relation to calcium intake and postmenarcheal age in adolescent females. Am J Clin Nutr 1997; 66: 327–33.

    PubMed  CAS  Google Scholar 

  20. Matkovic V, Ilich JZ, Skugor M. Calcium intake and skeletal formation. Challenges of modern medicine 1995; 7: 129–145.

    CAS  Google Scholar 

  21. Nordin BEC, Marshall DH. Dietary requirements for calcium. In: Nordin BEC, ed. Calcium in human biology. ILSI Human Nutrition Reviews. Berlin: Springer-Verlag 1988, pp. 447–471.

    Chapter  Google Scholar 

  22. Matkovic V, Ilich JZ, Andon MB, Hsieh LC, Tzagournis MA, Lagger BJ, Goel PK. Urinary calcium, sodium, and bone mass of young females. Am J Clin Nutr 1995; 62: 417–425.

    PubMed  CAS  Google Scholar 

  23. Johnston CC Jr, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M. Calcium supplementation and increases in bone mineral density in children. N Eng J Med 1992; 327: 82–87.

    Article  Google Scholar 

  24. Lloyd T, Andon MB, Rollings N, Martel JK, Landis RJ, Demers LM, Eggli DF, Kieselhorst K, Kulin HE. Calcium supplementation and bone mineral density in adolescent girls. JAMA 1993; 270: 84 18–44.

    Google Scholar 

  25. Chan GM, Hoffman K, McMurray M. Effect of dairy products on bone and body composition in pubertal girls. J Pediatrics 1995; 126: 551–556.

    Article  CAS  Google Scholar 

  26. Bonjour JP, Carrie AL, Ferrarri S, Clavien H, Slosman D, Theintz G, Rizzoli R. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled, trial. J Clin Invest1997; 99: 1287–1294.

    Google Scholar 

  27. Cadogan J, Eastell R, Jones N, Barker ME. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ 1997; 315: 1255–60.

    Article  PubMed  CAS  Google Scholar 

  28. Lee WTK, Leung SSF, Wang SF, Xu YC, Zeng, WP, Lau J, Oppenheimer SJ Cheng JCY. Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr 1994; 60: 744–750.

    PubMed  CAS  Google Scholar 

  29. Chan GM, Hess M, Hollis J, Book LS. Bone mineral status in childhood accidental fractures. Am J Dis Child 1984; 139: 569–70.

    Google Scholar 

  30. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. Bone mineral density in girls with forearm fractures. J Bone Miner Res 1998; 13: 143–148.

    Article  PubMed  CAS  Google Scholar 

  31. Fleming KH, Heimbach JT. Consumption of calcium in the U.S.:Food sources and intake levels. J Nutr 1994; 124: 1426S–1430S.

    PubMed  CAS  Google Scholar 

  32. U.S. Department of Health and Human Services, Public Health Service. Healthy people 2000. National health promotion and disease prevention objectives. Jones and Bartlett Publ., Boston, 1992, pp. 1–153.

    Google Scholar 

  33. NIH Consensus Conference: Optimal calcium intake. JAMA 1994; 272: 1942–8.

    Article  Google Scholar 

  34. Witschi J, Capper AL, Ellison RC. Sources of fat, fatty acids, and cholesterol in the diets of adolescents. J Am Diet Assoc 1990; 90: 1429–1431.

    PubMed  CAS  Google Scholar 

  35. Badenhop NE, Ilich JZ, Skugor M, Landoll JD, Matkovic V. Changes in body composition and serum leptin in young females with high vs low dairy intake J Bone Min Res 1997; 12: S487.

    Google Scholar 

  36. Badenhop NE, Ilich JZ, Matkovic V. Trends in food choices of calcium among teenage females over a 4-year period. J Bone Min Res 1998; 13: S1.

    Article  Google Scholar 

  37. Nordin BEC. Nutritional consideration. In: Nordin BEC, ed. Calcium, phosphate and magnesium metabolism. Churchill Livingstone, Edinburgh 1976, pp. 1–35.

    Google Scholar 

  38. Landoll JD, Mobley LS, Matkovic V. The relationship between phosphorus intake and output during growth. J Bone Min Res 1998;13:Sl.

    Google Scholar 

  39. Krook L, B arrett RB. Simian bone disease - a secondary hyperparathyroidism. Cornell Vet 1962; 52: 459–492.

    PubMed  CAS  Google Scholar 

  40. Krook L, Barrett RB, Usui K, Wolke RE. Nutritional secondary hyperparathyroidism in the cat. Cornell Vet 1963; 53: 224–240.

    PubMed  CAS  Google Scholar 

  41. Krook L, Lowe JE. Nutritional secondary hyperparathyroidism in horse. Path Vet 1964, 1: S1–S98.

    Article  Google Scholar 

  42. Krook L, Whalen JP, Lesser GV, Lutwak L. Human periodontal disease and osteoporosis. Cornell Vet 1972; 62: 371–391.

    PubMed  CAS  Google Scholar 

  43. Albright F, Reifenstein EC. The parathyroid glands and metabolic bone disease. Williams & Wilkins Comp., Baltimore, 1948.

    Google Scholar 

  44. Jowsey J, Reiss E, Canterbury JM. Long term effects of high phosphate intake on parathyroid hormone levels and bone metabolism. Acta Othop Scand 1974; 45: 801–808.

    Article  CAS  Google Scholar 

  45. Calvo MS, Kumar R, Heath H.III. Persistently elevated parathyroid hormone secretion and action in young women after four weeks of ingesting high phosphorus, low calcium diets. J Clin Endocrinol Metab 1990; 70: 133–134.

    Article  Google Scholar 

  46. Spencer H, Menczel J, Lewin I, Samachson J. Effect of high phosphorus intake on calcium and phosphorus metabolism in men. J Nutr 1965; 86: 125–132.

    PubMed  CAS  Google Scholar 

  47. Spencer H, Kramer L, Osais D, Norris C. Effect of phosphorus on the absorption of calcium and on calcium balance in men. J Nutr 1978; 108: 447–457.

    PubMed  CAS  Google Scholar 

  48. Heaney RP, Recker RR. Effects of nitrogen, phosphorus, and caffeine on calcium balance in women. J Lab Clin Med 1982; 99: 46–55.

    PubMed  CAS  Google Scholar 

  49. Whybro A, Jagger H, Barker M, Eastell R. Phosphate supplementation in young men: lack of effect on calcium homeostatis and bone turnover. Eur J Clin Nutr 1998; 52: 29–33.

    Article  PubMed  CAS  Google Scholar 

  50. Tsuboi S, Nakagaki H, Ishiguro K, Kondo K, Mukai M, Robinson C, Weatherell JA. Magnesium distribution in human bone. Calcif Tissue Int 1994; 54: 34–37.

    Article  PubMed  CAS  Google Scholar 

  51. Seelig MS. Interrelationship of magnesium and estrogen in cardiovascular and bone disorders, eclampsia, migraine and premenstrual syndrome. J Am CoIl Nutr 1993; 12: 442–58.

    CAS  Google Scholar 

  52. Standing Committee on the Scientific Evaluation of Dietary Reference Intake, Food and Nutrition Board, Institute of Medicine, Dietary reference intake for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Acadamy Press, Washington, DC, 1997.

    Google Scholar 

  53. GregerJL, Baligar P, Abernathy RP, Bennett GA, Peterson T. Calcium, magnesium, phosphorus, copper, and manganese balance in adolescent females. Am J Clin Nutr 1979; 31: 117–21.

    Google Scholar 

  54. Andon MB, Ilich JZ, Tzagournis MA, and Matkovic V. Magnesium balance in adolescent females consuming a low or high calcium diet. Am J Clin Nutr 1996; 63: 950–953.

    PubMed  CAS  Google Scholar 

  55. Medeiros DM, Rich JZ, Ireton J, Matkovic V, Shiry L, Wildman R. Femurs from rats fed diets deficient in copper or iron have decreased mechanical strength and altered mineral composition. J Trace Elem Exper Med 1997; 10: 197–203.

    Article  CAS  Google Scholar 

  56. Cook JD, Finch CA, Smith NJ. Evaluation of the iron status of a population. Blood 1976; 48: 449–55.

    PubMed  CAS  Google Scholar 

  57. Expert Scientific Working Group. Summary of a report on assessment of the iron nutritional status of the United States population. Am J Clin Nutr 1985; 42: 1318–1330.

    Google Scholar 

  58. Dallman PR. Biochemical basis for the manifestations of iron deficiency. Annu Rev Nutr 1986; 6: 13–40.

    Article  PubMed  CAS  Google Scholar 

  59. Hallberg L, Hulten L, Lindstedt G, Lundberg P-A, Mark A, Purens J, Svanberg B, Swolin B. Prevalence of iron deficiency in Swedish adolescents. Pediatr Res 1993; 34: 680–687.

    Article  PubMed  CAS  Google Scholar 

  60. Hallberg L, Bengtsson C, Lapidus L, Lundberg P-A, Hulten L. Screening for iron deficiency: an analysis based on bone-marrow examinations and serum ferritin determinations in a population sample of women. Br J Hematol 1993; 85: 787–98.

    Article  CAS  Google Scholar 

  61. Bowering J, Sanchez AM, Irvin IM. A conspectus of research on iron requirement of man. J Nutr 1976; 106: 985–1074.

    PubMed  CAS  Google Scholar 

  62. Hallberg L., Rossander-Hulten L. Iron requirements in menstruating women. Am J Clin Nutr 1991; 54: 1047–1058.

    PubMed  CAS  Google Scholar 

  63. Bailey L, Ginsburg J, Wagner P, Noyes W, Christakis G, Dinning J. Serum ferritin as a measure of iron stores in adolescents. J Pediatr 1982; 101: 774–776.

    Article  PubMed  CAS  Google Scholar 

  64. Bothwell TH, Finch CA. Iron metabolism. Little, Brown and Co., Boston, 1962.

    Google Scholar 

  65. Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol 1996; 271: E941–E951.

    PubMed  CAS  Google Scholar 

  66. Hillman RS, Finch CA. Red Cell Manual. Ed 4. F.A. Davis Comp., Philadelphia, 1976, pp. 12–17.

    Google Scholar 

  67. Rich-Ernst JZ, McKenna AA, Badenhop NE, Clairmont AC, Andon MB, Nahhas RW, Goel P, Matkovic V. Iron status, menarche, and calcium supplementation in adolescent girls. Am J Clin Nutr 1998; 68: 880–887.

    Google Scholar 

  68. Hallberg L, Solvell L. Absorption of hemoglobin iron in man. Acta Med Scand 1967; 131: 335–54.

    Google Scholar 

  69. Hunt JR, Gallagher SK, Johnson LK. Effect of ascorbic acid on apparent iron absorption by women with low iron stores. Am J Clin Nutr 1994; 59: 1381–1385.

    PubMed  CAS  Google Scholar 

  70. Finch CA, Bellotti V, Sray S, Lipschitz DA, Cook JD, Pippard MJ, Huebers HA. Plasma ferritin determination as a diagnostic tool. West J Med 1986; 145: 657–63.

    PubMed  CAS  Google Scholar 

  71. Donovan UM, Gibson RS. Iron and zinc status of young women aged 14 to 19 years consuming vegetarian and omnivorous diets. J Am Coll Nutr 1995; 14: 463–472.

    PubMed  CAS  Google Scholar 

  72. Devine A, Rosen C, Mohan S, Baylink D, Prince RL. Effects of zinc and other nutritional factors on insulin-like growth factor 1 and insulin-like growth factor binding proteins in postmenopausal women. Am J Clin Nutr 1998; 68: 200–206.

    PubMed  CAS  Google Scholar 

  73. Murphy S P, Calloway DH. Nutrient intakes of women in NHANES II, emphasizing trace minerals, fiber, and phytate. J Am Diet Assoc 1986; 86: 1366–1372.

    PubMed  CAS  Google Scholar 

  74. Pilch SM, Senti FR. Analysis of zinc data from the second National Health and Nutrition Examination Survey (NHANES II). J Nutr 1985; 115: 1393–1397.

    PubMed  CAS  Google Scholar 

  75. Greger JL, Higgins MM, Abernathy RP, Kirksey A, DeCorso MB, Baligar MS. Nutritional status of adolescent girls in regard to zinc, copper, and iron. Am J Clin Nutr 1978; 31: 269–275.

    PubMed  CAS  Google Scholar 

  76. Sloane BA, Gibbons CC, Hegsted M. Evaluation of zinc and copper nutritional status and effects upon growth of southern adolescent females. Am J Clin Nutr 1985; 42: 235–241.

    PubMed  CAS  Google Scholar 

  77. Butrimovitz GP, Purdy WC. Zinc nutrition and growth in a childhood population. Am J Clin Nutr 1978; 31: 1409–1412.

    PubMed  CAS  Google Scholar 

  78. Hambidge MK, Hambidge C, Jacobs M, Baum DJ. Low levels of zinc in hair, anorexia, poor growth, and hypogeusia in children. Pediatr Res 1972; 2: 868–74.

    Article  Google Scholar 

  79. McKenna AA, Ilich JZ, Andon MB, Wang C, Matkovic V. Zinc balance in adolescent females consuming a low-or high-calcium diet. Am J Clin Nutr 1997; 65: 1460–1464.

    PubMed  CAS  Google Scholar 

  80. World Health Organisation, W.H.O. Expert Committee Report. W.H.O. Techn Rep Ser 146, 1958.

    Google Scholar 

  81. Engel RW, Price NO, Miller RF. Copper, manganese, cobalt, and molybdenum balance in pre-adolescent girls. J Nutr 1967; 92: 197–204.

    CAS  Google Scholar 

  82. Greger JL, Zaikis CS, Abernathy RP, Bennett OA, Huffman J. Zinc, nitrogen, copper, iron and manganese balance in adolescent females fed two levels of zinc. J Nutr 1978; 108: 1449–1456.

    PubMed  CAS  Google Scholar 

  83. Price NO, Bunce GE. Effect of nitrogen and calcium on balance of copper, manganese, and zinc in preadolescent girls. Nutr Rep Int 1972; 5: 275–280.

    CAS  Google Scholar 

  84. Levander OA. A global view of selenium nutrition. Annu Rev Nutr 1987; 7: 227–250.

    Article  PubMed  CAS  Google Scholar 

  85. Dietary Reference Intakes. Food and Nutrition Board, Institute of Medicine, National Academy Press, Washington, DC, 1997.

    Google Scholar 

  86. Norman DA, Fordtran 35, Brinldey U. Ct al. Jejunal and ileal adaptation to alterations in dietary calcium. J Clin Invest 1981; 67: 1599–1603.

    Article  PubMed  CAS  Google Scholar 

  87. Seelig MS. The requirement of magnesium by the normal adult: summary and analysis of published data. Am J Clin Nutr 1964; 14: 342–90.

    Google Scholar 

  88. Spencer H, Norris C, Derler J, Osis D. Effect of oat bran muffins on calcium absorption and calcium, phosphorus, magnesium and zinc balance in men. J Nutr 1991; 121: 197–83.

    Google Scholar 

  89. Greger JL, Smith SA, Snedeker SM. Effect of dietary calcium and phosphorus levels on the utilization of calcium, phosphorus, magnesium, manganese, and selenium by adult males. Nutr Res 1981; 1: 315–25.

    Article  CAS  Google Scholar 

  90. Greger JL, Krzykowski CE. Knazen RR, Krashoc CL. Mineral utilization by rats fed various commercially available calcium supplements or milk. J Nutr 1987; 117: 717–24.

    PubMed  CAS  Google Scholar 

  91. Ilich JZ, Kimura RE, Smith AM. Duodenal magnesium infusions decrease intestinal calcium absorption in the chronically catheterized rat. J Optimal Nutr 1994; 3: 72–79.

    CAS  Google Scholar 

  92. Lewis NM, Marcus MSK, Behling AR. Greger IL. Calcium supplements and milk. effects on acid-base balance and on retention of calcium, magnesium, and phosphorus. Am J Clin Nutr 1989; 49: 527–33.

    PubMed  CAS  Google Scholar 

  93. Cook JD, Dassenko SA, Whittaker P. Calcium supplementation: effect on iron absorption. Am J Clin Nutr 1991; 53: 106–11.

    PubMed  CAS  Google Scholar 

  94. Hallberg L, Brune M, Eriandsson M, Sandberg A, Rossander-Hulten L. Calcium: effect of different amounts on nonheme-and heme-iron absorption in humans. Am J Clin Nutr 1991; 53: 112–19.

    PubMed  CAS  Google Scholar 

  95. Hallberg L, Rossander-Hulten, L, Brune M, Gleerup A. Calcium and iron absorption: mechanism of action and nutritional importance. Euro J Clin Nutr 1992;46:317–327,.

    Google Scholar 

  96. Hallberg L, Rossander-Hulten, L, Brune M, Gleerup A. Inhibition of haem-iron absorption in man by calcium. Br J Nutr 1992; 69: 533–540.

    Article  Google Scholar 

  97. Deehr MS, Dallal GE, Smith KT, Taulbee JD, Dawson-Hughes B. Effects of different calcium sources on iron absorption in postmenopausal women. Am J Clin Nutr 1990; 51: 95–9.

    PubMed  CAS  Google Scholar 

  98. Monsen ER, Cook JD. Food iron absorption in human subjects IV. The effects of calcium and phosphate salts on the absorption of nonheme iron. Am J Clin Nutr 1976; 29: 1142–1148.

    PubMed  CAS  Google Scholar 

  99. Rossander L, Hallberg L, Bjorn-Rasmussen E. Absorption of iron from breakfast meals. Am J Clin Nutr 1979; 32: 2484–2489.

    PubMed  CAS  Google Scholar 

  100. Snedeker SM, Smith SA, Greger JL. Effect of dietary calcium and phosphorus levels on the utilization of iron, copper, and zinc by adult males. J Nutr 1982; 112: 136–43.

    PubMed  CAS  Google Scholar 

  101. Turnlund JR, Smith RG, Kretsch MJ, Keyes WR, Shah AG. Milk’s effect on the bioavailability of iron from cereal-based diets in young women by use of in vitro and in vivo methods. Am J Clin Nutr 1990; 52: 373–378.

    PubMed  CAS  Google Scholar 

  102. Prather TA, Miller DD. Calcium carbonate depresses iron bioavailability in rats more than calcium sulfate or sodium carbonate. J Nutr 1992; 122: 327–332.

    PubMed  CAS  Google Scholar 

  103. Dawson-Hughes B, Seligson FH, Hughes VA. Effects of calcium carbonate and hydroxyapatite on zinc and iron retention in postmenopausal women. Am J Clin Nutr 1986; 44: 83–88.

    PubMed  CAS  Google Scholar 

  104. Kalkwarf HJ, Harrast SD. Effects of calcium supplementation and lactation on iron status. Am J Clin Nutr 1998; 67: 1244–1249.

    PubMed  CAS  Google Scholar 

  105. Minihane AM, Fairweather-Tait SJ. Effect of calcium supplementation on daily nonheme-iron absorption and long-term iron status. Am J Clin Nutr 1998; 68: 96–102.

    PubMed  CAS  Google Scholar 

  106. Yan L, Prentice A, Dibba B, Jarjou LMA, Stirling DM, Fairweather-Tait S. The effect of long-term calcium supplementation on indices of iron, zinc, and magnesium status in lactating Gambian women. Br J Nutr 1996; 76: 821–831.

    Article  PubMed  CAS  Google Scholar 

  107. Hallberg L. Does calcium interfere with iron absorption. Am J Clin Nutr 1998; 68: 3–4.

    PubMed  CAS  Google Scholar 

  108. Sokoll LJ, Dawson-Hughes B. Calcium supplementation and plasma ferritin concentrations in premenopausal women. Am J Clin Nutr 1992; 56: 1045–1048.

    PubMed  CAS  Google Scholar 

  109. Reddy MB, Cook JD. Effect of calcium intake on nonheme-iron absorption from a complete diet. Am J Clin Nutr 1997; 65: 1820–1825.

    PubMed  CAS  Google Scholar 

  110. Forbes RM. Nutritional interactions of zinc and calcium. Fed Proc 1960; 19: 643–647.

    PubMed  CAS  Google Scholar 

  111. Hoekstra WG, Lewis PK, Phillips PH, Grmmer RH. The relationship of parakeratosis, supplemental calcium and zinc to the content of certain body components of swine. J Anim Sci 1956; 15: 752–764.

    CAS  Google Scholar 

  112. Luecke RW, Hoeter JA, Brammell WS, Schmidt DA. Calcium and zinc in parakeratosis of swine. J Anim Sci 1957; 16: 3–11.

    CAS  Google Scholar 

  113. Dursun N, Aydogan S. Comparative effects of calcium deficiency and supplements on the intestinal absorption of zinc in rats. Jap J Physiol 1994; 44: 157–166.

    Article  CAS  Google Scholar 

  114. Wood RI, Hanssen DA. Effect of milk and lactose on zinc absorption in lactose-intolerant postmenopausal women. J Nutr 1988; 118: 982–986.

    PubMed  CAS  Google Scholar 

  115. Argiratos V, Samman S. The effect of calcium carbonate and calcium citrate on the absorption of zinc in healthy female subjects. Eur J Clin Nutr 1994; 45: 198–204.

    Google Scholar 

  116. Wood RJ, Zheng JJ. Milk consumption and zinc retention in postmenopausal women. J Nutr 1990; 120: 398–403.

    PubMed  CAS  Google Scholar 

  117. Holben D, Smith AM, Ha EJ, Ilich JZ, Matkovic V. Selenium (Se) absorption, balance, and status in adolescent females throughout puberty. Faseb J 1996; 10: A532.

    Google Scholar 

  118. Dimai HP, Porta S, Wirnsberger G, Lindschinger M, Pamperl I, Dobnig H, Wilders—Trusching M, Lau KHW. Daily oral magnesium supplementation supresses bone turnover in young adult males. J Clin Endocrinol Metab 1998; 83: 2742–2748.

    Article  PubMed  CAS  Google Scholar 

  119. Matkovic V, Bich JZ, Skugor M, Badenhop NE, Clairmont A, Goel P, Klisovic D, Nasseh RW, Landoll JD. Leptin is inversely related to age at menarche in human females. J Clin Endo Metab 1997.; 82: 3239–3245.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matkovic, V., Badenhop, N.E., Ilich, J.Z. (2000). Trace Element and Mineral Nutrition in Adolescents. In: Bogden, J.D., Klevay, L.M. (eds) Clinical Nutrition of the Essential Trace Elements and Minerals. Nutrition ◊ and ◊ Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-040-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-040-7_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-090-8

  • Online ISBN: 978-1-59259-040-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics