Skip to main content

Physiology and Rheology of Arteries

  • Chapter
Book cover The Arterial Circulation
  • 128 Accesses

Abstract

Anatomical descriptions of the human and other mammalian arterial trees can be found in many textbooks. For the purpose of illustrating the blood perfusion and pressure pulse transmission path, the major branches of the arterial tree are shown in Fig. 2–1. There are considerable similarities among the corresponding anatomical sites of the arterial circulation in mammals (Li, 1996). The root of the aorta begins immediately at the aortic valve. The outlet of the aortic valve sits in the ascending aorta, which has the largest diameter of the aorta. The first branches off the aorta are the left and right main coronary arteries. The aortic arch junction is formed by the ascending aorta, the brachiocephalic artery, the left subclavian artery, and the descending thoracic aorta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aars, H. Diameters and elasticity of the ascending aorta in normal and hypertensive rabbits. Acta Physiol. Scand. 83: 133 - 138, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Apter, J. T. Correlation of visco-elastic properties of large arteries with microscopic structure. IV. Thermal responses of collagen, elastin, smooth muscle, and intact arteries. Circ. Res. 21: 901 - 918, 1967.

    Article  PubMed  CAS  Google Scholar 

  • Apter, J. T., Rabinowitz, M., and Cummings, D. H. Correlation of viscoelastic properties of large arteries with microscopic structure. 1. Collagen, elastin, and smooth muscle determined chemically, histologically, and physiologically. Circ. Res. 19: 104 - 121, 1966.

    Article  CAS  Google Scholar 

  • Bergel, D. H. Static elastic properties of the arterial wall. J. Physiol. 156: 455 - 457, 1961.

    Google Scholar 

  • Bergel, D. H. Dynamic elastic properties of the arterial wall. J. Physiol. 156: 458 - 469, 1961.

    PubMed  CAS  Google Scholar 

  • Bergel, D. H. Properties of blood vessels. In: Fung, Y. C., ed., Biomechanics, Prentice-Hall, Englewood Cliffs, NJ, 1972.

    Google Scholar 

  • Bloom, W. and Fawcett, D. W. A Textbook of Histology. Saunders, Philadelphia, 1975. Burton, A. C. Relation of structure to function of the tissues of walls of blood vessels. Physiol. Rev. 34: 619 - 642, 1954.

    Google Scholar 

  • Carew, T. E., Vaishnav, R. N., and Patel, D. J. Compressibility of the arterial wall. Circ. Res. 22: 61 - 68, 1968.

    Article  Google Scholar 

  • Carton, T. W., Dainanskas, J., and Clark, J. W. Elastic properties of single elastic fibers. J. Appl. Physiol. 17: 5457 - 5551, 1962.

    Google Scholar 

  • Cheung, J. B. and Hsiao, C. C. Nonlinear anisotropic viscoelastic stresses in blood vessels. J. Biomech. 5: 607, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R. H. Pressure dependence of the mechanical properties of arteries in vivo. Am. J. Physiol. 229: 1371 - 1375, 1975.

    PubMed  CAS  Google Scholar 

  • Dobrin, P. B. and Rovick, A. A. Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Am. J. Physiol. 217: 1644 - 1651, 1969.

    PubMed  CAS  Google Scholar 

  • Dobrin, P. B. Biaxial anisotropy of dog carotid artery: estimation of circumferential elastic modulus. J. Biomech. 19: 351 - 358, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Drzewiecki, G., Field, S., Mubarak, I., and Li, J. K.-J. Effect of vascular growth pattern on lumen area and compliance using a novel pressure-area model for collapsible vessels. Am. J. Physiol. (Heart & Circ. Physiol.) 273: H2030 - 2043, 1997.

    CAS  Google Scholar 

  • Goedhard, W. J. A. and Knoop, A. A. Model of the arterial wall. J. Biomech. 6: 281 - 288, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Gow, B. S. and Taylor, M. G. Measurement of viscoelastic properties of arteries in the living dog. Circ. Res. 23: 111 - 122, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Green, H. D. Circulatory system: physical principles. In: Glasser, O., ed., Medical Physics, vol. II, Year Book, Chicago, 1950.

    Google Scholar 

  • Herlihy, J. T. and Murphy, R. A. Force-velocity and series elastic characteristics of smooth muscle from the hog carotid artery. Circ. Res. 34: 461, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Hinke, J. A. M. and Wilson, M. L. Study of elastic properties of a 55011 artery in vitro. Am. J. Physiol. 203: 1153 - 1160, 1962.

    CAS  Google Scholar 

  • lberall, A. S. Anatomy and steady flow characteristics of the arterial system with an introduction to its pulsatile characteristics. Math. Biosci. 1: 375 - 395, 1967.

    Article  Google Scholar 

  • Learoyd, B. M. and Taylor, M. G. Alterations with age in the viscoelastic properties of human arterial walls. Circ. Res. 18: 278 - 192, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. K.-J. Mammalian Hemodynamics: Wave Transmission Characteristics and Similarity Analysis. Ph.D. dissertation, University of Pennsylvania, Philadelphia, 1978. University Microfilms, Ann Arbor, 1978.

    Google Scholar 

  • Li, J. K.-J., Melbin, J., and Noordergraaf, A. Optimality of pulse transmission at vascular branching junctions. Proc. 6th Int. Conf. Cardiovasc. Syst. Dynamics, pp. 228 - 230, 1984.

    Google Scholar 

  • Li, J. K.-J., Melbin, J., Riffle, R.A., and Noordergraaf, A. Pulse wave propagation. Circ. Res. 49: 442 - 452, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. K.-J. Arterial System Dynamics. New York University Press, New York, 1987.

    Google Scholar 

  • Li, J. K.-J. Comparative Cardiovascular Dynamics of Mammals. CRC Press, New York, 1996.

    Google Scholar 

  • Li, J. K.-J., Cui, T., and Drzewiecki, G. Nonlinear model of the arterial system incorporating a pressure-dependent compliance. IEEE Trans. Biomed. Eng. BME-37: 673 - 678, 1990.

    Google Scholar 

  • Li, J. K.-J. Feedback effects in heart-arterial system interaction. Adv. Exp. Med. Biol., 346: 325 - 333, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. K-J. and Zhu, Y. Arterial compliance and its pressure-dependence in hypertension and vasodilation. Angiology J. Vas. Dis. 45: 113 - 117, 1994.

    CAS  Google Scholar 

  • Ling, S.C., Atabek, H. B., Fry, D. L., Patel, D. J., and Janicki, J. S. Application of heated film velocity and shear probes to hemodynamic studies. Circ. Res. 23: 789 - 801, 1968.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, D. A. Blood Flow in Arteries. Arnold, London, 1974.

    Google Scholar 

  • Oka, O. Cardiovascular Hemorheology. Cambridge University Press, New York, 1981.

    Google Scholar 

  • Patel, D. J., Janicki, J. S., and Carew, T. E. Static anisotropic elastic properties of the aorta in living dogs. Circ. Res. 25: 765 - 769, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Patel, D. J. and Vaishnav, R. N. Rheology of large blood vessels. In: Bergel, D. H, ed.,Cardiovascular Fluid Dynamics, pp. 2 - 64, Academic, London, 1972.

    Google Scholar 

  • Peterson, L. H., Jensen, R. E., and Parnell, J. Mechanical properties of arteries in vivo. Circ. Res. 8: 622 - 639, 1960.

    Article  Google Scholar 

  • Rushmer, R. F. Structure and Function of the Cardiovascular System. Saunders, Philadelphia, 1972.

    Google Scholar 

  • Somlyo, A. P. and Somlyo, A. V. Vascular smooth muscle, 1. Normal structure, pathology, biochemistry and biophysics. Pharm. Rev. 20: 197 - 272, 1968.

    PubMed  CAS  Google Scholar 

  • Van der Werff, T. J. Significant parameters in arterial pressure and velocity development. J. Biomech. 7: 437, 1974.

    Article  Google Scholar 

  • Wessling, K. H., Weber, H., and Dewit, B. Estimated five component viscoelastic model parameters for human arterial walls. J. Biomech. 6: 13, 1973.

    Article  Google Scholar 

  • Westerhof, N., Bosman, F., DeVries, C. J., and Noordergraaf, A. Analog studies of the human systemic arterial tree. J. Biomech. 2: 121 - 143, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Westerhof, N. and Noordergraaf, A. Arterial viscoelasticity: a generalized model. J. Biomech. 3: 357 - 379, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Woods, R. H. A few applications of a physical theorem to membranes in the human body in a state of tension. J. Anat. Physiol. 26: 362 - 370, 1892.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, J.KJ. (2000). Physiology and Rheology of Arteries. In: The Arterial Circulation. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-034-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-034-6_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-106-6

  • Online ISBN: 978-1-59259-034-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics