Skip to main content

Inherited Phosphate Wasting Disorders

  • Chapter

Abstract

There are several hereditary disorders of isolated phosphate wasting that have been described. These include X-linked hypophosphatemic rickets (XLH); autosomal dominant hypophosphatemic rickets (ADHR); hypophosphatemic bone disease (HBD), and hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Phosphate wasting is also a predominant feature of disorders that result from mutations in the CLCN5 gene, however, these disorders are covered in Chapter 8. The large number of hereditary renal phosphate wasting disorders indicates that control over renal phosphate homeostasis is a complex process. Investigators are starting to find genes that when mutated result in renal phosphate wasting. The discovery of these genes provides insights into phosphate homeostasis and helps to elucidate the pathophysiology of these disorders. Additionally, in some instances, the isolation of a disease gene allows clinicians to combine what were previously thought to be distinct disorders into one disorder.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davies, M. and Stanbury, S. W. (1981) The rheumatic manifestations of metabolic bone disease. Clin. Rheum. Dis. 7, 595–646.

    Google Scholar 

  2. Econs, M. J. and Drezner, M. K. (1992) Bone disease resulting from inherited disorders of renal tubule transport and vitamin D metabolism, in Disorders of Bone and Mineral Metabolism ( Favus, M. J. and Coe, F. L., eds.), Raven Press, New York, pp. 935–950.

    Google Scholar 

  3. Tenenhouse, H. S. and Econs, M. J. (2000) Mendelian hypophosphatemias, in The Metabolic and Molecular Basis of Inherited Disease (Scriver, C. R., ed) McGraw-Hill, New York, in press.

    Google Scholar 

  4. Coleman, E. N. and Foote, J. B. (1954) Craniostenosis with familial vitaminD-resistant rickets. Br. Med. J. 561–562.

    Google Scholar 

  5. Bradbury, P. G., Brenton, D. P., and Stern, G. M. (1987) Neurological involvement in X-linked hypophosphatemic rickets. J. Neurol. Neurosurg. Psychiatr. 50, 810–812.

    Article  PubMed  CAS  Google Scholar 

  6. Vera, C., Cure, J. K., Naso, W. B., Gelven, P. L., Worsham, F., Roof, B. F., Resnick, D., Salinas, C. F., Gross, J. A., and Pacult, A. (1997) Paraplegia due to ossification of ligamenta flava in X-linked hypophosphatemia. Spine 22, 710–715.

    Article  PubMed  CAS  Google Scholar 

  7. Cartwright, D. W., Masel, J. P., and Latham, S. C. (1981) The lumbar spinal canal in hypophosphatemic vitamin D-resistant rickets. Aust. N. Z. J. Med. 11, 154–157.

    CAS  Google Scholar 

  8. Econs, M. J., Samsa, G. P., Monger, M., Drezner, M. K., and Feussner, J. R. (1994) X—linked hypophosphatemic rickets: a disease often unknown to affected patients. J. Bone Miner. Res. 24, 17–24.

    Article  CAS  Google Scholar 

  9. Winters, R. W., Graham, J. B., Williams, T. F., McFalls, V. W., and Burnett, C. H. (1958) A genetic study of familial hypophosphatemia and vitamin D resistant rickets with a review of the literature. Medicine 37, 97–142.

    Article  PubMed  CAS  Google Scholar 

  10. Whyte, M. P., Schrank, F. W., and Armamento, V. R. (1996) X-linked hypophosphatemia: a search for gender, race, anticipation, or parent of origin effects on disease expression in children. J. Clin. Endocrinol. Metab. 81, 4075.

    Article  PubMed  CAS  Google Scholar 

  11. Eicher, E. M., Southard, J. L., Scriver, C. R., and Glorieux, F. H. (1976) Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc. Natl. Acad. Sci. USA 73, 4667–4671.

    Article  PubMed  CAS  Google Scholar 

  12. Lyon, M. F., Scriver, C. R., Baker, L. R., Tenenhouse, H. S., Kronick, J., and Mandla, S. (1986) The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Proc. Natl. Acad. Sci. USA 83, 4899–4903.

    Article  PubMed  CAS  Google Scholar 

  13. Kay, G., Thakker, R. V., and Rastan, S. (1991) Determination of a molecular map position for Hyp using a new interspecific backcross produced by in vitro fertilization. Genomics 11, 651–657.

    Article  PubMed  CAS  Google Scholar 

  14. Sonin, N. V., Taggart, R. T., Meyer, M. H., Meyer, R. A., and Meyer, Jr. (1996) Molecular mapping of the mouse Gy mutation on chromosome X. Mouse Genome 94, 491–493.

    Google Scholar 

  15. Qiu, Z. Q., Tenenhouse, H. S., and Scriver, C. R. (1993) Parental origin of mutant allele does not explain absence of gene dose in X-linked Hyp mice. Genet. Res. 62, 39–43.

    Article  PubMed  CAS  Google Scholar 

  16. Tenenhouse, H. S., Scriver, C. R., McInnes, R. R., and Glorieux, F. H. (1978) Renal handling of phosphate in vivo and in vitro by the X-linked hypophosphatemic male mouse: evidence for a defect in the brush border membrane. Kidney Int. 14, 236–244.

    Article  PubMed  CAS  Google Scholar 

  17. Tenenhouse, H. S., Klugerman, A. H., and Neal, J. L. (1989) Effect of phosphonoformic acid, dietary phosphate and the HYP mutation on kinetically distinct phosphate transport processes in mouse kidney. Biochim. Biophys. Acta 984, 207–213.

    Article  PubMed  CAS  Google Scholar 

  18. Magagnin, S., Werner, A., Markovich, D., Sorribas, V., Stange, G., Biber, J., and Murer, H. (1993) Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc. Natl. Acad. Sci. USA 90, 5979–5983.

    Article  PubMed  CAS  Google Scholar 

  19. Ryan, E. A. and Reiss, E. (1984) Oncogenous osteomalacia: review of the world literature of 42 cases and report of two new cases. Am. J. Med. 77, 501–512.

    Article  PubMed  CAS  Google Scholar 

  20. Tenenhouse, H. S., Werner, A., Biber, J., Ma, S., Martel, J., Roy, S., and Murer, H. (1994) Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization. J. Clin. Invest. 93, 671–676.

    Article  PubMed  CAS  Google Scholar 

  21. Tenenhouse, H. S. and Beck, L. (1996) Renal Na(+)-phosphate cotransporter gene expression in X-linked Hyp and Gy mice. Kidney Int. 49, 1027–1032.

    Article  PubMed  CAS  Google Scholar 

  22. Kos, C. H., Tihy, F., Econs, M. J., Murer, H., Lemieux, N., and Tenenhouse, H. S. (1994) Localization of a renal sodium-phosphate cotransporter gene to human chromosome 5q35. Genomics 19, 176–177.

    Article  PubMed  CAS  Google Scholar 

  23. Meyer, R. A., Jr., Meyer, M. H., and Gray, R. W. (1989) Parabiosis suggests a humoral factor is involved in X-linked hypophosphatemia in mice. J. Bone Miner. Res. 4, 493–500.

    Article  PubMed  Google Scholar 

  24. Meyer, R. A., Jr., Tenenhouse, H. S., Meyer, M. H., and Klugerman, A. H. (1989) The renal phosphate transport defect in normal mice parabiosed to X-linked hypophosphatemic mice persists after parathyroidectomy. J. Bone Miner. Res. 4, 523–532.

    Article  PubMed  CAS  Google Scholar 

  25. Nesbitt, T., Coffman, T. M., Griffiths, R., and Drezner, M. K. (1992) Cross-transplantation of kidneys in normal and Hyp mice. Evidence that the Hyp mouse phenotype is unrelated to an intrinsic renal defect. J. Clin. Invest. 89, 1453–1459.

    Article  PubMed  CAS  Google Scholar 

  26. Ecarot-Charrier, B., Glorieux, F. H., Travers, R., Desbarats, M., Bouchard, F., and Hinek, A. (1988) Defective bone formation by transplanted Hyp mouse bone cells into normal mice. Endocrinology 123, 768–773.

    Article  PubMed  CAS  Google Scholar 

  27. Ecarot, B., Glorieux, F. H., Desbarats, M., Travers, R., and Labelle, L. (1995) Effect of 1,25-dihydroxyvitamin D3 treatment on bone formation by transplanted cells from normal and X-linked hypophosphatemic mice. J. Bone Miner. Res. 10, 424–431.

    Article  PubMed  CAS  Google Scholar 

  28. Cao, X. Y., Jiang, X. M., Dou, Z. H., Rakeman, M. A., Zhang, M. L., O’Donnell, K., Ma, T., Amette, K., DeLong, N., and DeLong, G. R. (1994) Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N. Engl. J. Med. 331, 1739–1744.

    Article  PubMed  CAS  Google Scholar 

  29. Lajeunesse, D., Meyer, JR. R. A., and Hamel, L. (1996) Direct demonstration of a humorally mediated inhibition of renal phosphate transport in the Hyp mouse. Kidney Int. 50, 1531–1538.

    Article  PubMed  CAS  Google Scholar 

  30. Lajeunesse, D. and Delalandre, A. (1998) Evidence that the putative phophaturic product present in Hyp mouse may be modified, not produced, by osteoblasts and bone marrow stromal cells. Bone 23(5), S546(Abstract).

    Google Scholar 

  31. Econs, M. J. and Drezner, M. K. (1994) Tumor-induced osteomalacia-unveiling a new hormone. N. Engl. J. Med. 330, 1679–1681.

    Google Scholar 

  32. Cai, Q., Hodgson, S. F., Kao, P. C., Lennon, V. A., Klee, G. G., Zinsmiester, A. R., and Kumar, R. (1994) Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia. N. Engl. J. Med. 330, 1645–1649.

    Article  PubMed  CAS  Google Scholar 

  33. Drezner, M. K. (1996) Tumor-induced rickets and osteomalacia, in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism ( Favus, M. J., ed), Lippincott—Raven, Philadelphia, pp. 319–325.

    Google Scholar 

  34. Rowe, P. S., Ong, A. C., Cockerill, F. J., Goulding, J. N., and Hewison, M. (1996) Candidate 56 and 58 kda protein(s) responsible for mediating the renal defects in oncogenic hypophosphatemic osteomalacia. Bone 18, 159–169.

    Article  PubMed  CAS  Google Scholar 

  35. Scriver, C. R., Reade, T. M., DeLuca, H. F., and Hamstra, A. J. (1978) Serum 1,25dihydroxyvitamin D levels in normal subjects and in patients with hereditary rickets or bone disease. N. Engl. J. Med. 299, 976–979.

    Article  PubMed  CAS  Google Scholar 

  36. Drezner, M. K. and Haussler, M. R. (1979) Correspondence. N. Engl. J. Med. 300, 435.

    Google Scholar 

  37. Lyles, K. W., Clark, A. G., and Drezner, M. K. (1982) Serum 1,25-dihydroxyvitamin D levels in subjects with X-linked hypophosphatemic rickets and osteomalacia. Calcif. Tissue Int. 34, 125–130.

    Article  PubMed  CAS  Google Scholar 

  38. Lobaugh, B. and Drezner, M. K. (1983) Abnormal regulation of renal 25-hydroxyvitamin D-1 alpha-hydroxylase activity in the X—linked hypophosphatemic mouse. J. Clin. Invest. 71, 400–403.

    Article  PubMed  CAS  Google Scholar 

  39. Cunningham, J., Gomes, H., Seino, Y., and Chase, L. R. (1983) Abnormal 24-hydroxylation of 25-hydroxyvitamin din the X-linked hypophosphatemic mouse. Endocrinology 112, 633–638.

    Article  PubMed  CAS  Google Scholar 

  40. Tenenhouse, H. S., Yip, A., and Jones, G. (1988) Increased renal catabolism of 1,25-dihydroxyvitamin D3 in murine X—linked hypophosphatemic rickets. J. Clin. Invest. 81, 461–465.

    Article  PubMed  CAS  Google Scholar 

  41. Davidai, G. A., Nesbitt, T., and Drezner, M. K. (1990) Normal regulation of calcitriol production in Gy mice. Evidence for biochemical heterogeneity in the X-linked hypophosphatemic diseases. J. Clin. Invest. 85, 334–339.

    Article  PubMed  CAS  Google Scholar 

  42. Tenenhouse, H. S., Meyer, R. A., Jr., Mandla, S., Meyer, M. H., and Gray, R. W. (1992) Renal phosphate transport and vitamin D metabolism in X-linked hypophosphatemic Gy mice: Responses to phosphate deprivation. Endocrinology 131, 51–56.

    Article  PubMed  CAS  Google Scholar 

  43. Meyer, R. A., Jr., Meyer, M. H., and Morgan, P. L. (1996) Effects of altered diet on serum levels of 1,25-dihydroxyvitamin D and parathyroid hormone in X-linked hypophosphatemic (Hyp and Gy) mice. Bone 18, 23–28.

    Article  PubMed  CAS  Google Scholar 

  44. Meyer, R. A., Jr., Meyer, M. H., Gray, R. W., and Bruns, M. E. (1995) Femoral abnormalities and vitamin D metabolism in X-linked hypophosphatemic (Hyp and Gy) mice. J. Orthop. Res. 13, 30–40.

    Article  PubMed  CAS  Google Scholar 

  45. Econs, M. J. (1996) Positional cloning of the HYP gene: a review. Kidney Int. 49, 1033–1037.

    Article  PubMed  CAS  Google Scholar 

  46. Econs, M. J. and Francis, F. (1997) Positional cloning of the PEX gene: new insights into the pathophysiology of X-linked hypophosphatemic rickets. Am. J. Physiol. 273, F489 — F498.

    PubMed  CAS  Google Scholar 

  47. Collins, F. S. (1995) Positional cloning moves from perditional to traditional. Nat. Genet. 9, 347–350.

    Article  PubMed  CAS  Google Scholar 

  48. Machler, M., Frey, D., Gal, A., Orth, U., Wienker, T. F., Fanconi, A., and Schmid, W. (1986) X-linked dominant hypophosphatemia is closely linked to DNA markers DXS41 and DXS43 at Xp22. Hum. Genet. 73, 271–275.

    Article  PubMed  CAS  Google Scholar 

  49. Read, A. P., Thakker, R. V., Davies, K. E., Mountford, R. C., Brenton, D. P., Davies, M., et al. (1986) Mapping of human X-linked hypophosphataemic rickets by multilocus linkage analysis. Hum. Genet. 73, 267–270.

    Article  PubMed  CAS  Google Scholar 

  50. Econs, M. J., Rowe, P. S., Francis, F., Barker, D. F., Speer, M. C., Norman, M., et al. (1994) Fine structure mapping of the human X-linked hypophosphatemic rickets gene locus. J. Clin. Endocrinol. Metab. 79, 1351–1354.

    Article  PubMed  CAS  Google Scholar 

  51. Rowe, P. S., Goulding, J. N., Francis, F., Oudet, C., Econs, M. J., Hanauer, A., et al. (1996) The gene for X-linked hypophosphataemic rickets maps to a 200–300kb region in Xp22.1-Xp22.2 and is located on a single YAC containing a putative vitamin D response element (VDRE). Hum. Genet. 97, 345–352.

    Article  PubMed  CAS  Google Scholar 

  52. Econs, M. J., Barker, D. F., Speer, M. C., Pericak-Vance, M. A., Fain, P. R., and Drezner, M. K. (1992) Multilocus mapping of the X-linked hypophosphatemic rickets gene. J. Clin. Endocrinol. Metab. 75, 201–206.

    Article  PubMed  CAS  Google Scholar 

  53. Econs, M. J., Fain, P.R., Norman, M., Speer, M. C., Pericak-Vance, M. A., Becker, P. A., et al. (1993) Flanking markers define the X-linked hypophosphatemic rickets gene locus. J. Bone Miner. Res. 8, 1149–1152.

    Article  PubMed  CAS  Google Scholar 

  54. Massry, S. G. (1995) Hypophosphatemia and Hyperphosphatemia, in Textbook of Nephrology ( Massry, S. G. and Glassock, R. J., eds) William and Wilkins, Baltimore, pp. 398–412.

    Google Scholar 

  55. Francis, F., Rowe, P. S. N., Econs, M. J., See, C. G., Benham, F., O’Riordan, J. L. H., Drezner, M. K., Hamvas, R. M. J., and Leharach, H. (1994) A YAC contig spanning the hypophosphatemic rickets gene candidate region. Genomics 21, 229–237.

    Article  PubMed  CAS  Google Scholar 

  56. Econs, M. J., Francis, F., Rowe, P. S., Speer, M. C., O’Riordan, J. L., Lehrach, H., and Becker, P. A. (1994) Dinucleotide repeat polymorphism at the DXS1683 locus. Hum. Mol. Genet. 3, 680.

    Article  PubMed  CAS  Google Scholar 

  57. Rowe, P. S., Francis, F., and Goulding, J. (1994) Rapid isolation of DNA sequences flanking microsatellite repeats. Nucleic Acids Res. 22, 5135–5136.

    Article  PubMed  CAS  Google Scholar 

  58. HYP Consortium (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat. Genet. 11, 130–136.

    Article  Google Scholar 

  59. Buckler, A. J., Chang, D. D., Graw, S. L., Brook, J. D., Haber, D. A., Sharp, P. A., and Housman, D. E. (1991) Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc. Natl. Acad. Sci. USA 88, 4005–4009.

    Article  PubMed  CAS  Google Scholar 

  60. Francis, F., Strom, T. M., Hennig, S., Boddrich, A., Lorenz, B., Brandau, O., et al. (1997) Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res. 7, 573–585.

    PubMed  CAS  Google Scholar 

  61. Du, L., Desbarats, M., Viel, J., Glorieux, F. H., Cawthorn, C., and Ecarot, B. (1996) cDNA cloning of the murine Pex gene implicated in X-linked hypophosphatemia and evidence for expression in bone. Genomics 36, 22–28.

    Google Scholar 

  62. Strom, T. M., Francis, F., Lorenz, B., Boddrich, A., Econs, M. J., Lehrach, H., and Meitinger, T. (1997) Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophosphatemia. Hum. Mol. Genet. 6, 165–171.

    Article  PubMed  CAS  Google Scholar 

  63. Kozak, M. (1987) An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–8148.

    Article  PubMed  CAS  Google Scholar 

  64. Kozak, M. (1991) An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115, 887–903.

    Article  PubMed  CAS  Google Scholar 

  65. Welches, W. R., Brosnihan, K. B., and Ferrario, C. M. (1993) A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11. Life Sci. 52, 1461–1480.

    Article  PubMed  CAS  Google Scholar 

  66. Xu, D., Emoto, N., Giaid, A., Slaughter, C., Kaw, S., deWit, D., and Yanagisawa, M. (1987) ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell Nucleic Acids Res. 15, 8125–8148.

    Article  Google Scholar 

  67. Beck, L., Soumounou, Y., Martel, J., Krishnamurthy, G., Gauthier, C., Goodyer, C. G., and Tenenhouse, H. S. (1997) Pex/PEX tissue distribution and evidence for a deletion in the 3’ region of the Pex gene in X—linked hypophosphatemic mice. J. Clin. Invest. 99, 1200–1209.

    Article  PubMed  CAS  Google Scholar 

  68. Lipman, M. L., Panda, D., Bennett, H. P., Henderson, J. E., Shane, E., Shen, Y., et al. (1998) Cloning of human PEX cDNA. Expression, subcellular localization, and endopeptidase activity. J. Biol. Chem. 273, 13,729–13, 737.

    Google Scholar 

  69. Ruchon, A. F., Marcinkiewicz, M., Siegfried, G., Tenenhouse, H. S., DesGroseillers, L., Crine, P., and Boileau, G. (1998) Pex mRNA is localized in developing mouse osteoblasts and odontoblasts. J. Histochem. Cytochem. 46, 459–468.

    Article  PubMed  CAS  Google Scholar 

  70. Meyer, M. H. and Meyer, R. A. Jr. (1998) The effect of low phosphate diet on Pex mRNA expression in the normal mouse. Bone 23(5), S545(Abstract).

    Google Scholar 

  71. Holm, I. A., Huang, X., and Kunkel, L. M. (1997) Mutational analysis of the PEX gene in patients with X-linked hypophosphatemic rickets. Am. J. Hum. Genet. 60, 790–797.

    PubMed  CAS  Google Scholar 

  72. Rowe, P. S., Oudet, C. L., Francis, F., Sinding, C., Pannetier, S., Econs, M. J., et al. (1997) Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP). Hum. Mol. Genet. 6, 539–549.

    Article  PubMed  CAS  Google Scholar 

  73. Dixon, P. H., Christie, P. T., Wooding, C., Trump, D., Grieff, M., Holm, I., et al. (1998) Mutational analysis of PHEX gene in X-linked hypophosphatemia. J. Clin. Endocrinol. Metab. 83, 3615–3623.

    Article  PubMed  CAS  Google Scholar 

  74. Econs, M. J., Friedman, N. E., Rowe, P. S. N., Speer, M. C., Francis, F., Strom, T. M., et al. (1998) A PHEX gene mutation is responsible for adult onset vitamin-Dresistant hypophosphatemic osteomalacia: evidence that the disorder is not a distinct entity from X-linked hypophosphatemic rickets (HYP). J. Clin. Endocrinol. Metab. 83, 3459–3462.

    Article  PubMed  CAS  Google Scholar 

  75. Scriver, C. R., Tenenhouse, H. S., and Glorieux, F. H. (1991) X-linked hypophosphatemia: an appreciation of a classic paper and a survey of progress since 1958. Medicine 70, 218–228.

    Article  PubMed  CAS  Google Scholar 

  76. Lorenz, B., Francis, F., Gempel, K., Boddrich, A., Josten, M., Schmahl, W., et al. (1998) Spermine deficiency in Gy mice caused by deletion of the spermine synthase gene. Hum. Mol. Genet. 7, 541–547.

    Article  PubMed  CAS  Google Scholar 

  77. Meyer, R. A.,Jr., Henley, C. M., Meyer, M. H., Morgan, P. L., Mcdonald, A. G., Mills, C., and Price, D. K. (1998) Partial deletion of both the spermine synthase gene and the PEX gene in the X-linked hypophosphatemic, gyro (Gy) mouse. Genomics 48, 289–295.

    Article  PubMed  CAS  Google Scholar 

  78. Orstavik, K. H., Orstavik, R. E., Halse, J., and Knudtzon, J. (1996) X chromosome inactivation pattern in female carriers of X linked hypophosphataemic rickets. J. Med. Genet. 33, 700–703.

    Article  PubMed  CAS  Google Scholar 

  79. Nelson, A. E., Namkung, H. J., Patava, J., Wilkinson, M. R., Chang, A. C.-M., Reddel, R. R., Robinson, B. G., and Mason, R. S. (1996) Characteristics of tumor cell bioactivity in oncogenic osteomalacia. Mol. Cell. Endocrinol. 124, 17–23.

    Article  PubMed  CAS  Google Scholar 

  80. Miyauchi, A., Fukase, M., Tsutsumi, M., and Fujita, T. (1988) Hemangiopericytomainduced osteomalacia: tumor transplantation in nude mice causes hypophosphatemia and tumor extracts inhibit renal 25—hydroxyvitamin D 1-hydroxylase activity. J. Clin. Endocrinol. Metab. 67, 46–53.

    Article  PubMed  CAS  Google Scholar 

  81. Chalew, S. A., Lovechild, J. C., Brown, C. M., and Sun, C.-C. J. (1996) Hypophosphatemia induced in mice by transplantation of a tumor-derived cell line from a patient with oncogenic rickets. J. Pediatr. Endocrinol. Metab. 9, 593–597.

    Article  PubMed  CAS  Google Scholar 

  82. Frymoyer, J. W. and Hodgkin, W. (1977) Adult-onset vitamin D-resistant hypophosphatemic osteomalacia. A possible variant of vitamin D-resistant rickets. J. Bone Joint Surg. (Am. Vol.) 59, 101–106.

    CAS  Google Scholar 

  83. Econs, M. J., Feussner, J. R., Samsa, G. P., Effman, E. L., Vogler, J. B., Martinez, S., et al. (1991) X-linked hypophosphatemic rickets without “rickets.” Skeletal Radiol 20, 109–114.

    Article  PubMed  CAS  Google Scholar 

  84. Bianchine, J. W., Stambler, A. A., and Harrison, H. E. (1971) Familial hypophosphatemic rickets showing autosomal dominant inheritance. Birth Defects: Original Article Series 7, 287–295.

    CAS  Google Scholar 

  85. Harrison, H. E. and Harrison, H. C. (1979) Rickets and osteomalacia, in: Disorders of Calcium and Phosphate Metabolism in Childhood and Adolescence W.B. Saunders Company, Philadelphia, pp. 230–249

    Google Scholar 

  86. Econs, M. J. and McEnery, P. T. (1997) Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate wasting disorder. J. Clin. Endocrinol. Metab. 82, 674–681.

    Article  PubMed  CAS  Google Scholar 

  87. Scriver, C. R., MacDonald, W., Reade, T., Glorieux, R. H., and Nogrady, B. (1977) Hypophosphatemic nonrachitic bone disease: an entity distinct from X-linked hypophosphatemia in the renal defect, bone involvement, and inheritance. Am. J. Med. Genet. 1, 101–117.

    Article  PubMed  CAS  Google Scholar 

  88. Koenig, M., Beggs, A. H., Moyer, M., Scherpf, S., Heindrich, K., Bettecken, T., et al. (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am. J. Hum. Genet. 45, 498–506.

    PubMed  CAS  Google Scholar 

  89. Econs, M. J., McEnery, P. T., Lennon, F., and Speer, M. C. (1997) Autosomal dominant hypophosphatemic rickets is linked to chromosome 12p13. J. Clin. Invest. 100 2653–2657.

    Google Scholar 

  90. Chong, S. S., Kozak, C. A., Liu, L., Kristjansson, K., Dunn, S. T., Bourdeau, J. E., and Hughes, M. R. (1995) Cloning, genetic mapping, and expression analysis of a mouse renal sodium-dependent phosphate cotransporter. Am. J. Physiol. 268, F1038 — F1045.

    PubMed  CAS  Google Scholar 

  91. White, K. E., Speer, M. C., Biber, J., Murer, H., and Econs, M. J. (1998) Refining the autosomal dominant hypophosphatemic rickets (ADHR) interval on chromosome 12p13 and localization of two candidate ADHR genes. Bone 23 (5), S379(Abstract).

    Google Scholar 

  92. Tieder, M., Modai, D., Samuel, R., Arie, R., Halabe, A., Bab, I., Gabizon, D., and Liberman, U. A. (1985) Hereditary hypophosphatemic rickets with hypercalciuria. N. Engl. J. Med. 312, 611–617.

    Article  PubMed  CAS  Google Scholar 

  93. Chen, C., Carpenter, T., Steg, N., Baron, R., and Anast, C. (1989) Hypercalciuric hypophosphatemic rickets, mineral balance, bone histomorphometry, and therapeutic implications of hypercalciuria. Pediatrics 84, 276–280.

    PubMed  CAS  Google Scholar 

  94. Tieder, M., Modai, D., Shaked, U., Samuel, R., Arie, R., Halabe, A., et al. (1987) “Idiopathic” hypercalciuria and a hereditary hypophosphatemic rickets. Two phenotypical expressions of a common genetic defect. N. Engl. J. Med. 316,125–129.

    Google Scholar 

  95. Proesmans, W. C., Fabry, G., Marchal, G. J., Gillis, P. L., and Boullian, R. (1987) Autosomal dominant hypophosphataemia with elevated serum 1,25 dihydroxyvitamin D and hypercalciuria. Pediatr. Nephrol. 1, 479–484.

    Article  PubMed  CAS  Google Scholar 

  96. Olsen, H. S., Cepeda, M. A., Zhang, Q. Q., Rosen, C. A., and Vozzolo, B. L. (1996) Human stanniocalcin: a possible hormonal regulator of mineral metabolism. Proc. Natl. Acad. Sci. USA 93, 1792–1796.

    Article  PubMed  CAS  Google Scholar 

  97. Beck, L., Karaplis, A. C., Amizuka, N., Hewson, A. S., Ozawa, H., and Tenenhouse, H. S. (1998) Targeted inactivation of NPT2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc. Natl. Acad. Sci. USA 95, 5372–5377.

    Article  PubMed  CAS  Google Scholar 

  98. Custer, M., Spindler, B., Verrey, F., Murer, H., and Biber, J. (1997) Identification of a new gene product (Diphor-1) regulated by dietary phosphate. Am. J. Physiol. 273, F801 — F806.

    Google Scholar 

  99. Norbis, F., Boll, M., Stange, G., Markovich, D., Verrey, F., Biber, J., and Murer, H. (1997) Identification of a cDNA/protein leading to an increased Pi-uptake in Xenopus laevis oocytes. J. Memb. Biol. 156, 19–24.

    Article  CAS  Google Scholar 

  100. White, K. E., Biber, J., Murer, H., and Econs, M. J. (1998) A PDZ domain-containing protein with homology to Diphor-1 maps to human chromosome 1q21. Ann. Hum. Genet. 62, 287–290.

    Article  PubMed  CAS  Google Scholar 

  101. White, K. E. and Econs, M. J. (1998) Localization of PiUS, a stimulator of cellular phosphate uptake to human chromosome 3p21.3. Somat. Cell Mol. Genet. 24, 71–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Econs, M.J., White, K.E. (2000). Inherited Phosphate Wasting Disorders. In: Econs, M.J. (eds) The Genetics of Osteoporosis and Metabolic Bone Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-033-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-033-9_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-142-4

  • Online ISBN: 978-1-59259-033-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics