Effects of Melanocortins in the Nervous System

  • Roger A. H. Adan
Part of the The Receptors book series (REC)


Effects of melanocortins on the nervous system have been known since the 1950s. This chapter focuses on the effects of melanocortins that have been described during the last decades and will cover effects on avoidance behavior (which relate to the effects of melanocortins on learning and memory), on grooming behavior, on social and sexual behavior, on inflammation and fever, on neural control of the cardiovascular system, on the interaction with the opioid system, on epilepsy, and on nerve regeneration. Taken together, the present data indicate that the brain melanocortin system has a widespread involvement in neuroendocrine and behavioral responses to the environment.


Avoidance Behavior Infantile Spasm Melanocortin Receptor Sciatic Nerve Crush Grooming Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mirsky, R., Miller, R. E., and Stein, M. (1953) Relation of adrenocortical activity and adaptive behavior. Psychosom. Med. 15, 574–588.Google Scholar
  2. 2.
    Applezweig, M. H. and Baudry, F. D. (1955) The pituitary-adrenocortical system in avoidance learning. Psychol. Rep. 1, 417–420.Google Scholar
  3. 3.
    Miller, R. E. and Ogawa, N. (1962) The effect of adrenocorticotropic hormone (ACTH) on avoidance conditioning in the adrenalectomized rat. J. Comp. Physiol. Psychol. 55, 211–213.PubMedCrossRefGoogle Scholar
  4. 4.
    Klavdieva, M. (1996) The history of neuropeptides III. Front. Neuroendocrinol. 17, 155–179.PubMedCrossRefGoogle Scholar
  5. 5.
    De Wied, D. (1966) Inhibitory effect of ACTH and related peptides on extinction of conditioned avoidance behavior in rats. Proc. Soc. Exp. Biol. Med. 122, 28–32.PubMedGoogle Scholar
  6. 6.
    De Wied, D. (1983) Neuropeptides and behavior. Psychoneuropharmacology. 1, 307–353.Google Scholar
  7. 7.
    Ferrari, W. (1958) Behavioural changes in animals after intracisternal injection with adrenocoticotrophic hormone and melanocyte stimulating hormone. Nature 925–926.Google Scholar
  8. 8.
    Ferrari, W., Gessa, G. L., and Vargiu, L. (1963) Behavioral effects inducted by intracisternally injected ACTH and MSH. Ann. N. Y. Acad. Sci. 104, 330–345.PubMedCrossRefGoogle Scholar
  9. 9.
    Greven, H. M. and De Wied, D. (1977) Influence of peptides structurally related to ACTH and MSH on active avoidance behavior. Front. Horm. Res. 4, 140–152.PubMedGoogle Scholar
  10. 10.
    De Wied, D. and Jolles, J. (1982) Neuropeptides derived form pro-opiomelanocortin, behavioral, physiological, and neurochemical effects. Physiol. Rev. 62, 976–1059.PubMedGoogle Scholar
  11. 11.
    Wiegant, V. M., Jolles, J., Colbern, D. L., Zimmerman, E., and Gispen, W. H. (1979) Intracerebroventricular ACTH activates the pituitary-adrenal system: dissociation from a behavioral response. Life Sci 25, 1791–1796.PubMedCrossRefGoogle Scholar
  12. 12.
    Fekete, M. and De Wied, D. (1982) Potency and duration of action of the ACTH 4–9 analog (ORG 2766) as compared to ACTH 4–10 and [D-Phe7] ACTH 4–10 on active and passive avoidance behavior of rats. Pharmacol. Biochem. Behay. 16, 387–392.CrossRefGoogle Scholar
  13. 13.
    Wiegant, V. M., Colbern, D., van Wimersma Greidanus, T. J., and Gispen, W. H. (1978) Differential behavioral effects of ACTH 4–10 and [D-Phe7] ACTH 4–10. Brain Res. Bull. 3, 167–170.PubMedCrossRefGoogle Scholar
  14. 14.
    Kobobun, K., O’Donohue, T. L., Handelman, G. E., Sawyer, T. K., Hruby, V. J., and Hadley, M. E. (1983) Behavioral effects of [4-norleucine,7-D-phenylalanine]a-melanocyte-stimulating hormone. Peptides 4, 721–724.PubMedCrossRefGoogle Scholar
  15. 15.
    Beckwith, B. E., Tinius, T. P., Hruby, V. J., Al-Obeidi, F., Sawyer, T. K., and Affholter, J. A. (1989) The effects of structure-conformation modifications of melanotropin analogs on learning and memory, D-amino acids substituted linear and cyclic analogs. Peptides 10, 361–368.PubMedCrossRefGoogle Scholar
  16. 16.
    Bijlsma, W. A., Jennekens, F. G. I., Schotman, P., and Gispen, W. H. (1981) Effects of corticotropin (ACTH) on recovery of sensorimotor function in the rat, structure-activity study. Eur. J. Pharmacol. 76, 73–79.PubMedCrossRefGoogle Scholar
  17. 17.
    Van Der Zee, C. E. E. M., Brakkee, J. H., and Gispen, W. H. (1991) Putative neurotrophic factors and functional recovery from peripheral nerve damage in the rat. Br. J. Pharmacol. 103, 1041–1046.PubMedCrossRefGoogle Scholar
  18. 18.
    Eberle, A. N. (1988) The Melanotropins. S.Karger, Basel.Google Scholar
  19. 19.
    Watson, S. J., Richard-III, C. W., and Barchas, J. D. (1978) Adrenocorticotropin in rat brain, immunocytochemical localization in cells and axons. Science 200, 1180–1182.PubMedCrossRefGoogle Scholar
  20. 20.
    Jacobowitz, D. M., and O’Donohue, T. L. (1978) Alfa-melanocyte stimulating hormone, immunohistochemical identification and mapping in neurons of the rat brain. Proc. Natl. Acad. Sci. U. S. A. 75, 6300–6304.PubMedCrossRefGoogle Scholar
  21. 21.
    Krieger, D. T., Liotta, A., and Brownstein, M. J. (1977) Presence of corticotropin in brain of normal and hypophysectomized rats. Proc. Natl. Acad. Sci. U. S. A. 74, 648–652.PubMedCrossRefGoogle Scholar
  22. 22.
    Rudman, D., Del Rio, A. E., Chawla, R. K., Houser, D. H., and Sheen, S. (1974) An antimelanotropic protein in human cerebrospinal fluid. Am. J. Physiol. 226, 693–697.PubMedGoogle Scholar
  23. 23.
    O’Donohue, T. L., Holmquist, G. E., and Jacobowitz, D. M. (1979) Effect of hypophysectomy on alpha-melanotropin in discrete regions of the rat brain. Neurosci. Lett. 14, 271–274.PubMedCrossRefGoogle Scholar
  24. 24.
    Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A. C. Y., Cohen, S. N., and Numa, S. (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-(3-lipotropin precursor. Nature 278, 423–427.PubMedCrossRefGoogle Scholar
  25. 25.
    Drouin, J. and Goodman, H. M. (1980) Most of the coding region of rat ACTH// beta-LPH precursor gene lacks intervening sequences. Nature 288, 610–613.PubMedCrossRefGoogle Scholar
  26. 26.
    Nakanishi, S., Teranishi, Y., Watanabe, Y., Notake, M., Noda, M., Kakidani, H., jingami, H., and Numa, S. (1981) Isolation and characterization of the bovine corticotropin/beta-lipotropin precursor gene. Eur. J. Biochem. 115, 429–438.PubMedCrossRefGoogle Scholar
  27. 27.
    Gee, C. E., Chen, C. L. C., Roberts, J. L., Thompson, R., and Watson, S. J. (1983) Identification of proopiomelanocortin neurons in the rat hypothalamus by in situ cDNA-mRNA hybridization. Nature 306, 374–375.PubMedCrossRefGoogle Scholar
  28. 28.
    Schwartzberg, D. G., and Nakane, P. K. (1983) ACTH-related peptide containing neurons within the medulla oblongata of the rat. Brain Res. 276, 351–356.PubMedCrossRefGoogle Scholar
  29. 29.
    Gramsch, C., Kleber, G., Hollt, V., Pasi, A., Mehraein, P., and Herz, A. (1980) Proopiocortin fragments in human and rat brain, 13-endorphin and a-MSH are the predominant peptides. Brain Res. 192, 109–119.PubMedCrossRefGoogle Scholar
  30. 30.
    Tatro, J. B. (1990) Melanotropin receptors in the brain are differentially distributed and recognize both corticotropin and a-melnocyte stimulating hormone. Brain Res. 536, 124–132.PubMedCrossRefGoogle Scholar
  31. 31.
    Tatro, J. B. and Reichlin, S. (1987) Specific receptors for alpha-MSH are widely distributed in tissues of rodents. Endocrinology 121, 1900–1907.PubMedCrossRefGoogle Scholar
  32. 32.
    Chhajlani, V., Muceniece, R., and Wikberg, J. E. S. (1993) Molecular cloning of a novel human melanocortin receptor. Biochem. Biophys. Res. Commun. 195, 866–873.PubMedCrossRefGoogle Scholar
  33. 33.
    Low, M. J., Simerley, R. B., and Cone, R. D. (1994) Receptors for the melanocortin peptides in the central nervous system. Curr. Opin. Endocrinol. Biab. 1, 79–88.CrossRefGoogle Scholar
  34. 34.
    Chhajlani, V., and Wikberg, J. E. S. (1992) Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett. 309, 417–420.PubMedCrossRefGoogle Scholar
  35. 35.
    Gantz, I., Konda, T., Tashiro, T., Shimoto, Y., Miwa, H., Munzert, G., Watson, S. J., DelValle, J., and Yamada, T. (1993) Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 268, 8246–8250.PubMedGoogle Scholar
  36. 36.
    Gantz, I., Miwa, H., Konda, Y., Shimoto, Y., Tashiro, T., Watson, S. J., DelValle, J., and Yamada, T. (1993) Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 268, 15174–15179.PubMedGoogle Scholar
  37. 37.
    Rehfuss-Roselli, L., Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., Low, M. J., Tatro, J. B., Entwistle, M. L., Simerly, R. B., and Cone, R. D. (1993) Identification of a receptor for melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl. Acad. Sci. U. S. A. 90, 8856–8860.Google Scholar
  38. 38.
    Mountjoy, K. G., Mortrud, M. T., Low, M. J., Simerley, R. B., and Cone, R. D. (1994) Cloning and functional characterization of a melanocortin receptor (MC4R) localized in neuroendocrine and autonomic circuitry in the brain. Mol. Endocrinol. 8, 1298–1308.PubMedCrossRefGoogle Scholar
  39. 39.
    Barrett, P., MacDonald, A., Helliwell, R., Davidson, G., and Morgan, P. (1994) Cloning and expression of a new member of the melanocyte-stimulating hormone receptor family. J. Mol. Endocrinol. 12, 203–213.PubMedCrossRefGoogle Scholar
  40. 40.
    Beckwith, B. E., and Sandman, C. A. (1982) Central nervous system and peripheral effects of ACTH, MSH, and related neuropeptides. Peptides 3, 411–420.PubMedCrossRefGoogle Scholar
  41. 41.
    De Wied, D. (1993) Melanotropins as neuropeptides. Ann. N. Y. Acad. Sci. 680, 21–28.CrossRefGoogle Scholar
  42. 42.
    De Wied, D., and Wolterink, G. (1988) Structure—activity studies on the neuroactive and neurotropic effects of neuropeptides related to ACTH. Ann. N. Y. Acad. Sci. 525, 130–140.PubMedCrossRefGoogle Scholar
  43. 43.
    Gispen, W. H., Wiegant, V. M., Greven, H. M., and De Wied, D. (1975) The induction of excessive grooming in the rat by intraventricular application of peptides derived from ACTH, structure—activity studies. Life Sci. 17, 645–652.PubMedCrossRefGoogle Scholar
  44. 44.
    Colbern, D. L. and Twombly, D. A. (1988) ACTH—induced grooming behaviors and body temperature: temporal effects of neurotensin, naloxone, and haloperidol. Ann. N. Y. Acad. Sci. 525, 180–200.PubMedCrossRefGoogle Scholar
  45. 45.
    Gispen, W. H. and Isaacson, R. L. (1986) Excessive grooming in response to ACTH. in Neuropeptides and Behavior, Vol. I. ( De Wied, D., Gispen, W. H., and Van Wimersma Greidanus, T. B., eds.) Pergamon, Oxford, pp. 273–312.Google Scholar
  46. 46.
    Spruijt, B. M., Van Hooff, J. A. R. A. M., and Gispen, W. H. (1992) Ethology and neurobiology of grooming behavior. Physiol. Rev. 72, 825–852.PubMedGoogle Scholar
  47. 47.
    Spruijt, B. M., De Graan, P. N. E., Eberle, A. N., and Gispen, W. H. (1985) Comparison of structural requirements of aMSH and ACTH for inducing excessive grooming and pigment dispersion. Peptides 6, 1185–1189.PubMedCrossRefGoogle Scholar
  48. 48.
    Hirsch, M. D., O’Donohue, T. L., Wilson, R., Sawyer, T. K., Hruby, V. J., Hadley, M. E., Cody, W. L., Knittel, J. J., and Crawley, J. N. (1984) Structural and conformational modifications of aMSH/ACTH4–10 provide melanotrpin analogues with high potent behavioral activities. Peptides 5, 1197–1201.PubMedCrossRefGoogle Scholar
  49. 49.
    Alvaro, J. S., Tatro, J. B., Quillan, J. M., Fogliano, M., Eisenhard, M., Lerner, M. R., Nestler, E. J., and Duman, R. S. (1996) Morphine down—regulates melanocortin4 receptor expression in brain regions that mediate opiate addiction. Mol. Pharmacol. 50, 583–591.PubMedGoogle Scholar
  50. 50.
    Huang, Q. H., Entwistle, M. L., Alvaro, J. D., Duman, R. S., Hruby, V. J., and Tatro, J. B. (1997) Antipyretic role of endogenous melanocortins mediated by central melanocortin receptors during endotoxin-induced fever. J. Neurosci. 17, 3343–3351.PubMedGoogle Scholar
  51. 51.
    Adan, R. A. and Gispen, W. H. (1997) Brain melanocortin receptors, from cloning to function. Peptides 18, 1279–1287.PubMedCrossRefGoogle Scholar
  52. 52.
    Adan, R. A. H., Cone, R. D., Burbach, J. P. H., and Gispen, W. H. (1994) Differential effects of melanocortin peptides on neural melanocortin receptors. Mol. Pharmacol. 46, 1182–1190.PubMedGoogle Scholar
  53. 53.
    Sawyer, T. K., Sanfilippo, P. J., Hruby, V. J., Engel, M. H., Heward, C. B., Burnett, J. B., and Hadley, M. E. (1980) 4-Norleucine,7-o-phenylalanine-a-melanocytestimulating hormone, a highly potent a—melanotropin with ultralong biological activity. Proc. Natl. Acad. Sci. U. S. A. 77, 5754–5758.Google Scholar
  54. 54.
    Adan, R. A. H., Oosterom, J., Ludvigsdottir, G., Brakkee, J H., Burbach, J. P. H., and Gispen, W. H. (1994) Identification of antagonists for MC3, MC4 and MC5 receptors. Eur. J. Pharmacol. 269, 331–337.PubMedCrossRefGoogle Scholar
  55. 55.
    Hruby, V. J., Lu, D., Sharma, S. D., Castrucci, A. L., Kesterson, R. A., Al-Obeidi, F. A., Hadley, M. E., and Cone, R. D. (1995) Cyclic lactam alfa-melanotropin analogues of Ac-N1e4-cyclo(AspS,D-Phe7,Lys10)alfa-melanocyte stimulating hormone-(4–10)-NH2 with bulkyaromatic amino acids at position 7 show high potency and selectivity at specific melanocortin receptors. J. Med. Chem. 38, 3454–3460.PubMedCrossRefGoogle Scholar
  56. 56.
    Bressers, W. M. A., Kruk, M. R., Van Erp, H. H. M., Willekens-Bramer, D. C., Haccou, P., and Meelis, E. (1995) A time-structured analysis of hypothalamically induced increases in self-grooming and activity in the rat. Behay. Neurosci. 109, 1158–1171.CrossRefGoogle Scholar
  57. 57.
    Spruijt, B. M. and Gispen, W. H. (1984) The neural substrate involved in ACTH 1–24 excessive grooming. Neurosci. Lett. Suppl. 18, 362.Google Scholar
  58. 58.
    Spruijt, B. M., Cools, A. R., and Gispen, W. H. (1986) The periaquaductal gray, a prerequisite for ACTH-induced excessive grooming. Behay. Brain. Res. 20, 19–25.CrossRefGoogle Scholar
  59. 59.
    Dunn, A. J., Green, E. J., and Isaacson, R. L. (1979) Intracerebral adreno-corticotrope hormone mediates novelty-induced grooming in the rat. Science 203, 281–283.PubMedCrossRefGoogle Scholar
  60. 60.
    Spampinato, S., Canossa, M., Carboni, L., Campana, G., Leanza, G., and Ferri, S. (1994) Inhibition of proopiomelanocortin expression by an oligonucleotide complementary to beta-endorphin mRNA. Proc. Natl. Acad. Sci. U. S. A. 91, 8072–8076.PubMedCrossRefGoogle Scholar
  61. 60a.
    Von Frijtag, J. C., Croiset G., Gispen, W. H., Adan, R. A., and Wiegant, V. M. (1998) The role of central melanocortin receptors in the activation of the hypothalamus-pituitary-adrenal-axis and the induction of excessive grooming. Br. J. Pharmacol. 123 (8), 1503–1508.CrossRefGoogle Scholar
  62. 61.
    Motta, M., Mangili, G., and Martini, L. (1965) A “short” feedback loop in the control of ACTH secretion. Endocrinology 77, 392–395.PubMedCrossRefGoogle Scholar
  63. 62.
    Suda, T., Yajima, F., Tomori, N., Sumitomo, T., Nakagami, Y., Ushiyama, T., Demura, H., and Shizume, K. (1986) Inhibitory effect of adrenocorticotropin on corticotropin-releasing factor release from rat hypothalamus in vitro. Endocrinology 118, 459–461.PubMedCrossRefGoogle Scholar
  64. 63.
    Catania, A. and Lipton, J. M. (1993) a-Melanocyte stimulating hormone in the modulation of host reactions. Endocr. Rev. 14, 564–576.Google Scholar
  65. 64.
    Watanabe, T., Hiltz, M. E., Catania, A., and Lipton, J. M. (1993) Inhibition of Il1-induced peripheral inflammation by peripheral and cetral administration of analogs of the neuropeptide alpha—MSH. Brain Res. Bull 32, 311–314.PubMedCrossRefGoogle Scholar
  66. 65.
    Ceriani, G., Macaluso, A., Catania, A., and Lipton, J. M. (1994) Central neurogenic antiinflammatory action of alpha-MSH. Neuroendocrinology 59, 138–143.PubMedCrossRefGoogle Scholar
  67. 66.
    Lipton, J. M. and Catania, A. (1997) Anti-inflammatory actions of the neuroimmunomodulator a-MSH. Immunol. Today 18, 140–145.PubMedCrossRefGoogle Scholar
  68. 67.
    Robertson, B., Dostal, K., and Daynes, R. A. (1988) Neuropeptide regulation of inflammatory and immunologic responses. J. Immunol. 140, 4300–4307.PubMedGoogle Scholar
  69. 68.
    Martin, L. W., Catania, A., Hiltz, M. E., and Lipton, J. M. (1991) Neuropeptide alpha-MSH antagonizes IL-6- and TNF-induced fever. Peptides 12, 297–299.PubMedCrossRefGoogle Scholar
  70. 69.
    Hiltz, M. E., Catania, A., and Lipton, J. M. (1992) Alpha-MSH peptides inhibit acute inflammation induced in mice by rIL-1 beta, rIL-6, rTNF-alpha and endogenous pyrogen but not that caused by LTB4, PAF and rIL-8. Cytokine 4, 320–328.PubMedCrossRefGoogle Scholar
  71. 70.
    Rajora, N., Boccoli, G., Burns, D., Sharma, S., Catania, A. P., and Lipton, J. M. (1997) alpha-MSH modulates local and circulating tumor necrosis factor-alpha in experimental brain inflammation. J. Neurosci. 17, 2181–2186.Google Scholar
  72. 71.
    Opp, M. R., Obal, F. Jr., and Krueger, J. M. (1988) Effects of alpha-MSH on sleep, behavior, and brain temperature, interactions with IL 1. Am. J. Physiol. 255, R914–922.PubMedGoogle Scholar
  73. 72.
    Deeter, L. B., Martin, L. W., and Lipton, J. M. (1988) Antipyretic properties of centrally administered alpha-MSH fragments in the rabbit. Peptides 9, 1285–1288.PubMedCrossRefGoogle Scholar
  74. 73.
    Holdeman, M, and Lipton, J. M. (1985) Antipyretic activity of a potent alpha-MSH analog. Peptides 6, 273–275.PubMedCrossRefGoogle Scholar
  75. 74.
    Samson, W. K., Lipton, J. M., Zimmer, J. A., and Glyn, J. R. (1981) The effect of fever on central alpha-MSH concentrations in the rabbit. Peptides 2, 419–423.PubMedCrossRefGoogle Scholar
  76. 75.
    Bell, R. C. and Lipton, J. M. (1987) Pulsatile release of antipyretic neuropeptide alpha-MSH from septum of rabbit during fever. Am. J. Physiol. 252, R1152–1157.PubMedGoogle Scholar
  77. 76.
    Holdeman, M., Khorram, O., Samson, W. K., Lipton, J. M. (1985) Fever-specific changes in central MSH and CRF concentrations. Am. J. Physiol. 248, R125–129.PubMedGoogle Scholar
  78. 77.
    Shih, S. T., Khorram, O., Lipton, J. M., and McCann, S. M. (1986) Central administration of alfa-MSH antiserum augments fever in the rabbit. Am. J. Physiol. 250, r803 - r806.PubMedGoogle Scholar
  79. 78.
    Macaluso, A., McCoy, D., Ceriani, G., Watanabe, T., Biltz, J., Catania, A., and Lipton, J. M. (1994) Antiinflammatory influences of alpha-MSH molecules, central neurogenic and peripheral actions. J. Neurosci. 14, 2377–2382.PubMedGoogle Scholar
  80. 79.
    Mountjoy, K. G., and Wong, J. (1997) Obesity, diabetes and functions for proopiomelanocortin-derived peptides. Mol. Cell. Endocrinol. 128, 171–177.PubMedCrossRefGoogle Scholar
  81. 80.
    Coderre, T. J., Basbaum, A. I., and Levine, J. D. (1989) Neural control of vascular permeability, interactions between primary afferents, mast cells, and sympathetic efferents. J. Neurophysiol. 62, 48–58.PubMedGoogle Scholar
  82. 81.
    Besson, J. M. and Chaouch, A. (1987) Peripheral and spinal mechanisms of nociception. Physiol. Rev. 67, 167–186.Google Scholar
  83. 82.
    Contreras, P. C. and Takemori, A. E. (1984) Antagonism of morphine-induced analgesia, tolerance and dependence by alpha-melanocyte-stimulating hormone. J. Pharmacol. Exp. Ther. 229, 21–26.PubMedGoogle Scholar
  84. 83.
    Williams, D. W. Jr., Lipton, J. M., and Giesecke, A. H. Jr. (1986) Influence of centrally administered peptides on ear withdrawal from heat in the rabbit. Peptides 7, 1095–1100.PubMedCrossRefGoogle Scholar
  85. 84.
    Gispen, W. H., Buitelaar, J., Wiegant, V.M., Terenius, L., and De Wied, D. (1976) Interaction between ACTH fragments, brain opiate receptors and morphine—induced analgesia. Eur. J. Pharmacol. 39, 393–397.PubMedCrossRefGoogle Scholar
  86. 85.
    Sandman, C. A. and Kastin, A. J. (1981) Intraventricular administration of MSH induces hyperalgesia in rats. Peptides 2, 231–233.PubMedCrossRefGoogle Scholar
  87. 86.
    Bertolini, A., Poggioli, R., and Fratta, W. (1981) Withdrawal symptoms in morphine-dependent rats intracerebroventricularly injected with ACTH 1–24 and with beta-MSH. Life Sci. 29, 249–252.PubMedCrossRefGoogle Scholar
  88. 87.
    Szekely, J. I., Miglecz, E., Dunai-Kovacs, Z., Tarnawa, I., Ronai, A. Z., Graf, L., and Bajusz, S. (1979) Attenuation of morphine tolerance and dependence by alphamelanocyte stimulating hormone(alpha-MSH). Life Sci. 24, 1931–1938.PubMedCrossRefGoogle Scholar
  89. 88.
    Wiegant, V. M., Gispen, W. H., Terenius, L., and De Wied, D. (1977) ACTH-like peptides and morphine, interaction at the level of the CNS. Psychoneuroendocrinology 2, 63–70.PubMedCrossRefGoogle Scholar
  90. 89.
    Van Ree, J. M., Bohus, B., Csontos, K. M., Gispen, W. H., Greven, H. M., Nijkamp, F. P., Opmeer, F. A., de Rotte, G. A., van Wimersma Greidanus T. B., Witter, A., and De Wied, D. (19810 Behavioral profile of gamma-MSH, relationship with ACTH and beta-endorphin action. Life Sci. 28, 2875–2878.Google Scholar
  91. 90.
    Jacquet, Y. F. (1978) Opiate effects after adrenocorticotropin or beta-endorphin injection in the periaqueductal gray matter of rats. Science 201, 1032–1034.PubMedCrossRefGoogle Scholar
  92. 91.
    Aloyo, V. J., Spruyt, B., Zwiers, H., and Gispen, W. H. (1983) Peptide induced excessive grooming behavior, the role of opiate receptors. Peptides 4, 833–836.PubMedCrossRefGoogle Scholar
  93. 92.
    Gispen, W. H. and Wiegant, V. M. (1976) Opiate antagonists suppress ACTH124 induced excessive grooming in the rat. Neurosci. Lett. 2, 159–164.PubMedCrossRefGoogle Scholar
  94. 93.
    De Wied, D. (1966) Inhibitory effects of ACTH and related peptides on extinction of conditioned avoidance behavior in rats. Proc. Soc. Exp. Biol. Med. 122, 28–32.PubMedGoogle Scholar
  95. 94.
    Beckwith, B. E. and Sandman, C. A. (1978) Behavioral influences of the neuropeptides ACTH and MSH, A methodological review. Neurosci. Biobehay. Rev. 2, 311–338.CrossRefGoogle Scholar
  96. 95.
    Stratton, L. O. and Kastin, A. J. (1974) Avoidance learning at two levels of shock in rats receiving MSH1, Horm. Behay. 5, 149–155.CrossRefGoogle Scholar
  97. 96.
    Van Nispen, J. W. and Greven, H. M. (1986) Structure-activity relationships of peptides derived from ACTH, ß-LPH and MSH with regard to avoidance behavior in rats in Neuropeptides and Behavior, vol. 1. ( De Wied, D., Gispen, W. H., Van Wimersma Greidanus, T. B., eds.) Pergamon, Oxford, pp. 349–384.Google Scholar
  98. 97.
    Flood, J. F., Jarvik, M. E., Bennett, E. L., and Orme, A. E. (1976) Effects of ACTH peptide fragments on memory formation. Pharmacol. Biochem. Behay. 5, 41–51.CrossRefGoogle Scholar
  99. 98.
    Fekete. M., Bohus, B., and De Wied, D. (1983) Comparative effects of ACTH-related peptides on acquisition of shuttle-box avoidance behavior of hypophysectomized rats. Neuroendocrinology 36, 112–118.PubMedCrossRefGoogle Scholar
  100. 99.
    Hruby, V. J., Sharma, S.D., Toth, K., Jaw, J. Y., Al-Obeidi, F., Sawyer, T. K., and Hadley, M. E. (1993) Design, synthesis, and conformation of superpotent and prolonged acting melanotropins. Ann. N. Y. Acad. Sci. 680, 51–63.PubMedCrossRefGoogle Scholar
  101. 100.
    van Wimersma Greidanus, T. B., Bohus, B., and De Wied, D. (1974) The parafasicular area as the site of action of ACTH analogs on avoidance behavior. Prog. Brain Res. 41, 429–432.CrossRefGoogle Scholar
  102. 101.
    Gruber, K. A. and Callahan, M. F. (1989) ACTH (4–10) through gamma-MSH, evidence for a new class of central autonomic nervous system-regulating peptides. Am. J. Physiol. 257, r681 - r694.PubMedGoogle Scholar
  103. 102.
    Klein, M. C., Hutchins, P. M., Lymangrover, J. R., and Gruber, K. A. (1985) Pressor and cardioaccelerator effects of gamma MSH and related peptides. Life Sci. 36, 769–775.PubMedCrossRefGoogle Scholar
  104. 103.
    Gruber, K. A., Klein, M. C., Hutchins, P. M., Buckalew, V. M. Jr., and Lymangrover, J. R. (1984) Natriuretic and hypertensive activities reside in a fragment of ACTH. Hypertension 6, 468–474.PubMedCrossRefGoogle Scholar
  105. 104.
    Van Bergen, P., Janssen, P. M., Hoogerhout, P., De Wildt, D. J., and Versteeg, D. H. (1995) Cardiovascular effects of gamma-MSH/ACTH-like peptides, structure—activity relationship. Eur. J. Pharmacol. 294, 795–803.PubMedCrossRefGoogle Scholar
  106. 105.
    De Wildt, D. J., Krugers, H., Kasbergen, C..M., De Lang, H., and Versteeg, D. H. G. (1993) The hemodynamic effects of gamma2-melanocyte-stimulating hormone and related melanotropins depend on the arousal potential of the rat. Eur. J. Pharmacol. 233, 157–164.PubMedCrossRefGoogle Scholar
  107. 106.
    Van Bergen, P., Kleijne, J. A., De Wildt, D. J., and Versteeg, D.H. (1997) Different cardiovascular profiles of three melanocortins in conscious rats; evidence for antagonism between gamma 2—MSH and ACTH—(1–24) In Process Citation]. Br. J. Pharmacol. 120, 1561–1567.PubMedCrossRefGoogle Scholar
  108. 107.
    Versteeg, D. H., Krugers, H., Meichow, C., De Lang, H., and De Wildt, D. J. (1993) Effect of ACTH-(4–10) and gamma 2-MSH on blood pressure after intracerebroventricular and intracisternal administration. J. Cardiovasc. Pharmacol. 21, 907–911.PubMedCrossRefGoogle Scholar
  109. 108.
    Kunos, G., Li, S., Varga, K., Archer, P., Kesterson, R. A., Cone, R. D., Hruby, V. J., and Sharma, S. D. (1997) Novel neural pathways of cardiovascular control by alpha-and gamma-MSH. Fund. Clin. Pharmacol. 11, 44s - 48s.CrossRefGoogle Scholar
  110. 109.
    Callahan, M. F., Cunningham, J. T., Kirby, R. F., Johnson, A. K., and Gruber, K. A. (1988) Role of the anteroventral third ventricle (AV3V) region of the rat brain in the pressor response to gamma 2-melanocyte-stimulating hormone (gamma 2-MSH). Brain Res. 444, 177–180.PubMedCrossRefGoogle Scholar
  111. 110.
    Callahan, M. F., Kirby, R. F., Wolff, D. W., Strandhoy, J. W., Lymangrover, J. R., Johnson, A. K., and Gruber, K. A. (1985) Sympathetic nervous system mediation of acute cardiovascular actions of gamma 2-melanocyte-stimulating hormone. Hypertension 7, 1145–1150.CrossRefGoogle Scholar
  112. 111.
    Callahan, M. F., Kirby, R. F., Johnson, A. K., and Gruber, K. A. (1988) Sympathetic terminal mediation of the acute cardiovascular response of gamma 2-MSH. J. Auton. Nerv. Syst. 24, 179–182.PubMedCrossRefGoogle Scholar
  113. 112.
    Gruber, K. A. and Eskridge, S. L. (1986) Central vasopressin system mediation of acute pressor effect of gamma-MSH. Am. J. Physiol. 251, E134 - E137.PubMedGoogle Scholar
  114. 113.
    De Wildt, D. J., Van Der Ven, J. C., Van Bergen, P., De Lang, H., and Versteeg, D. H.G. (1994) A hypotensive and bradycardic action of gamma2-MSH microinjected into the nucleus tractus solitarii of the rat. Arch. Pharmacol. 349, 50–56.CrossRefGoogle Scholar
  115. 114.
    Li, S. J., Varga, K., Archer, P., Hruby, V. J., Sharma, S.D., Kesterson, R. A., Cone, R. D., and Kunos, G. (1996) Melanocortin antagonists define two distinct pathways of cardiovascular control by alpha-and gamma-melanocyte-stimulating hormones. J. Neurosci. 16, 5182–5188.PubMedGoogle Scholar
  116. 115.
    Li, S. J., Varga, K., Cone, R. D., Hruby, V. J., and Kunos, G. (1995) Melanocortin4 receptors (MC4-R) in the dorsal vagal complex (DVC) mediate hypotensive and bradycardic effects of alpha-MSH. Soc. Neurosci. Abstr. 21, 889.Google Scholar
  117. 116.
    Mastrianni, L. A., Palkovits, M., and Kunos, G. (1989) Activation of brainstem endorphinergic neurons causes cardiovascular depression and facilitates baroreflex bradycardia. Neuroscience 33, 559–566.PubMedCrossRefGoogle Scholar
  118. 117.
    Mues, G., Fuchs, I., Wei, E. T., Weber, E., Evans, C. E., Barchas, J. D., and Chang, J. K. (1982) Blood pressure elevation in rats by peripheral administration of Tyr-Gly-Gly-Phe-Met-Arg-Phe and the invertebrate neuropeptide, Phe-Met-Arg-PheNH2. Life Sci. 31, 2555–2561.PubMedCrossRefGoogle Scholar
  119. 118.
    De Wildt, D. J., Kasbergen, C. M., and Versteeg, D. H. G. (1995) Effect of gammamelanocyte stimulating hormone on cerebral blood flow in rats. J. Cardiovasc. Pharmacol. 25, 898–905.PubMedCrossRefGoogle Scholar
  120. 119.
    Herz, R. C., De Wildt, D. J., and Versteeg, D. H. (1996) The effects of gamma 2melanocyte-stimulating hormone and nimodipine on cortical blood flow and infarction volume in two rat models of middle cerebral artery occlusion. Eur. J. Pharmacol. 306, 113–121.PubMedCrossRefGoogle Scholar
  121. 120.
    Van Bergen, P., Van Der Vaart, J. G., Kasbergen, C. M., Versteeg, D. H., and De Wildt, D. J. (1996) Structure-activity analysis for the effects of gamma-MSH/ ACTH-like peptides on cerebral hemodynamics in rats. Eur. J. Pharmacol. 318, 357–368.PubMedCrossRefGoogle Scholar
  122. 121.
    Thody, A. J., and Shuster, S. (1975) Control of sebaceous gland function in the rat by alpha-melanocyte-stimulating hormone. J. Endocrinol. 64, 503–510.PubMedCrossRefGoogle Scholar
  123. 122.
    Donohoe, S. M., Thody, A. J., and Shuster, S. (1981) Effect of alpha-melanocytestimulating hormone and ovarian steroids on preputial gland function in the female rat. J. Endocrinol. 90, 53–58.PubMedCrossRefGoogle Scholar
  124. 123.
    Krahenbuhl, C., and Desaulles, P. A. (1969) Interaction between alpha-MSH and sex steroids on the preputial glands of female rats. Experientia 25, 1193–1195.PubMedCrossRefGoogle Scholar
  125. 124.
    Chen, W., Kelly, M. A., Opitz-Araya, X., Thomas, R. E., Low, M. J., and Cone, R. D. (1997) Exocrine gland dysfunction in MC5-R-deficient mice, evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell 91, 789–798.PubMedCrossRefGoogle Scholar
  126. 125.
    Thody, A. J., Donohoe, S. M., and Shuster, S. (1981) alpha-Melanocyte stimulating hormone and the release of sex attractant odors in the female rat. Peptides 2, 125–129.Google Scholar
  127. 126.
    Bertolini, A., Gessa, G. L., Vergoni, W., and Ferrari, W. (1968) Induction of sexual excitement with intraventricular ACTH; permissive role of testosterone in the male rabbit. Life Sci. 7, 1203–1206.PubMedCrossRefGoogle Scholar
  128. 127.
    Bertolini, A., Vergoni, W., Gessa, G. L., and Ferrari, W. (1969) Induction of sexual excitement by the action of adrenocorticotrophic hormone in brain. Nature 221, 667–669.PubMedCrossRefGoogle Scholar
  129. 128.
    Thody, A. J. and Wilson, C. A. (1983) Melanocyte stimulating hormone and the inhibition of sexual behaviour in the female rat. Physiol. Behay. 31, 67–72.CrossRefGoogle Scholar
  130. 129.
    Haun, C. K. and Haltmeyer, G. C. (1975) Effects of an intraventricular injection of synthetic ACTH on plasma testosterone, progesterone and LH levels and on sexual behavior in male and female rabbits. Neuroendocrinology 19, 201–213.PubMedCrossRefGoogle Scholar
  131. 130.
    Spruijt, B. M., Hoglund, U., Gispen, W. H., and Meyerson, B.J. (1985) Effects of ACTH1–24 on male rat behavior in an exploratory, copulatory and socio-sexual approach test. Psychoneuroendocrinology 10, 431–438.PubMedCrossRefGoogle Scholar
  132. 131.
    Gonzalez, M. I., Vaziri, S., and Wilson, C. A. (1996) Behavioral effects of alphaMSH and MCH after central administration in the female rat. Peptides 17, 171–177.PubMedCrossRefGoogle Scholar
  133. 132.
    Clarke, A. and File, S. E. (1983) Social and exploratory behaviour in the rat after septal administration of ORG 2766 and ACTH4–10. Psychoneuroendocrinology 8, 343–350.PubMedCrossRefGoogle Scholar
  134. 133.
    Niesink, R. J., and Van Ree, J. M. (1984) Neuropeptides and social behavior of rats tested in dyadic encounters. Neuropeptides 4, 483–496.PubMedCrossRefGoogle Scholar
  135. 134.
    File, S. E. and Clarke, A. (1980) Intraventricular ACTH reduces social interaction in male rats. Pharmacol. Biochem. Behay. 12, 711–715.CrossRefGoogle Scholar
  136. 135.
    File, S. E. (1981) Contrasting effects of Org 2766 and alpha-MSH on social and exploratory behavior in the rat. Peptides 2, 255–260.PubMedCrossRefGoogle Scholar
  137. 136.
    van Rijzingen, I. M., Gispen, W. H., and Spruijt, B. M. (1996) The ACTH(4–9) analog ORG 2766 and recovery after brain damage in animal models-a review. Behay. Brain. Res. 74, 1–15.CrossRefGoogle Scholar
  138. 137.
    Xia, Y. and Wikberg, J. E. (1997) Postnatal expression of melanocortin-3 receptor in rat diencephalon and mesencephalon In Process Citation]. Neuropharmacology 36, 217–224.PubMedCrossRefGoogle Scholar
  139. 138.
    Snead, O. C. (1995) Other antiepileptic drugs: adrenocorticotrophic hormone (ACTH) in Antiepileptic Drugs. vol. 4. (Levy, R. H., Mattson, R. H., and Meldrum, B. S., eds.) Raven Press, New York, pp. 941–947.Google Scholar
  140. 139.
    Crossley, C. J., Richman, R. A., and Thorpy, M. J. (1980) Evidence for cortisol-independent anticonvulsant activity of adrenocorticotropichormone in infantile spasms. Ann. Neurol. 8, 220.Google Scholar
  141. 140.
    Farwell, J., Milstein, J., Opheim, K., Smith, E., and Glass, S. (1984) Adrenocorticotropic hormone controls infantile spasms independently of cortisol stimulation. Epilepsia 25, 605–608.PubMedCrossRefGoogle Scholar
  142. 141.
    Konishi, Y., Hayakawa, K., Kuriyama, M., Saito, M., Fujii, Y., and Sudo, M. (1995) Effects of ACTH on brain midline structures in infants with infantile spasms. Pediatr. Neurol. 13, 134–136.PubMedCrossRefGoogle Scholar
  143. 142.
    Holmes, G. L. and Weber, D. A. (1986) Effects of ACTH on seizure susceptibility in the developing brain. Ann. Neurol. 20, 82–88.PubMedCrossRefGoogle Scholar
  144. 143.
    Croiset, G. and De Wied, D. (1992) ACTH, a structure-activity study on pilocarpine-induced epilepsy. Eur. J. Pharmacol. 229, 211–216.PubMedCrossRefGoogle Scholar
  145. 144.
    Cottrell, G. A., Nyakas, C., Bohus, B., and De Wied, D. (1983) ACTH and MSH reduce the after-discharge and behavioral depression following kindling. in Integrative Neurohumoral Mechanisms. ( Endröczi, E., De Wied, D., Angelucci, L., and Scapagnini, U., eds.) Elsevier Biomedical, Amsterdam, pp. 91–97.Google Scholar
  146. 145.
    van der Helm-Hylkema, H. and De Wied, D. (1976) Effect of neonatally injected ACTH and ACTH analogues on eye-opening of the rat. Life Sci. 18, 1099–1104.PubMedCrossRefGoogle Scholar
  147. 146.
    Strand, F. L., Williams, K. A., Alves, S. E., Antonawich, F. J., Lee, T. S., Lee, S. J., Kume, J., and Zuccarelli, L. A. (1994) Melanocortins as factors in somatic neuromuscular growth and regrowth. Pharmacol. Ther. 62, 1–27.PubMedCrossRefGoogle Scholar
  148. 147.
    Gispen, W. H., De Koning, P., Kuiters, R. P. F., Van Der Zee, C. E. E. M., and Verhaagen, J. (1987) On the neurotrophic action of melanocortins. Prog. Brain Res. 72, 319–331.PubMedCrossRefGoogle Scholar
  149. 148.
    Hol, E. M., Gispen, W. H., and Bar, P. R. (1995) ACTH-related peptides, receptors and signal transduction systems involved in their neurotrophic and neuroprotective actions. Peptides 16, 979–993.PubMedCrossRefGoogle Scholar
  150. 149.
    Strand, F. L., Rose, K. J., Zuccarelli, L. A., Kume, J., Alves, S. E., Antonawich, F. J., and Garrett, L. Y. (1991) Neuropeptide hormones as neurotrophic factors. Physiol. Rev. 71, 1017–1046.PubMedGoogle Scholar
  151. 150.
    Gispen, W. H., Verhaagen, J., and Bar, D. (1994) ACTH/MSH-derived peptides and peripheral nerve plasticity, neuropathies, neuroprotection and repair. Pro g. Brain. Res. 100, 223–229.CrossRefGoogle Scholar
  152. 151.
    Strand, F. L. and Kung, T. T. (1980) ACTH accelerates recovery of neuromuscular function following crushing of peripheral nerve. Peptides 1, 135–138.PubMedCrossRefGoogle Scholar
  153. 152.
    Edwards, P. M., Kuiters, R. R. F., Boer, G. J., and Gispen, W. H. (1986) Recovery from peripheral nerve transection is accelerated by local application of aMSH by means of microporous Accurel polypropylene tubes. J. Neurol. Sci. 74, 171–176.PubMedCrossRefGoogle Scholar
  154. 153.
    Van Der Zee, C. E. E. M., Brakkee, J. H., and Gispen, W. H. (1988) aMSH and Org2766 in peripheral nerve regeneration, different routes of delivery. Eur. J. Pharmacol. 147, 351–357.Google Scholar
  155. 154.
    Verhaagen, J., Edwards, P. M., Jennekens, F. G. I., and Gispen, W. H. (1987) Pharmacological aspects of the influence of melanocortins on the formation of regenerative peripheral nerve sprouts. Peptides 8, 581–584.PubMedCrossRefGoogle Scholar
  156. 155.
    Bijlsma, W. A., Schotman, P., Jennekens, F. G. I., Gispen, W. H., and De Wied, D. (1983) The enhanced recovery of sensorimotor fuction in rats is related to the melanotropic moiety of ACTH/MSH neuropeptides. Eur. J. Pharmacol. 92, 231–236.PubMedCrossRefGoogle Scholar
  157. 156.
    Dyer, J. K., Philipsen, H. L., Tonnaer, J. A., Hermkens, P. H., and Haynes, L. W. (1995) Melanocortin analogue Org2766 binds to rat Schwann cells, upregulates NGF low-affinity receptor p75, and releases neurotrophic activity. Peptides 16, 515–522.PubMedCrossRefGoogle Scholar
  158. 157.
    Lichtensteiger, W., Hanimann, B., Siegrist, W., and Eberle, A.N. (1996) Region-and stage-specific patterns of melanocortin receptor ontogeny in rat central nervous system, cranial nerve ganglia and sympathetic ganglia. Brain Res. Dey. Brain Res. 91, 93–110.CrossRefGoogle Scholar
  159. 158.
    Hol, E. M., Verhage, M., Gispen, W. H., and Bar, P. R. (1994) The role of calcium and cAMP in the mechanism of action of two melanocortins, aMSH and the ACTH 4–9 analogue Org 2766. Brain Res. 662, 109–116.PubMedCrossRefGoogle Scholar
  160. 159.
    Konda, Y., Gantz, I., DelValle, J., Shimoto, Y., Miwa, H., and Yamada, T. (1994) Interaction of dual intracellular signaling pathways activated by the melanocortin3 receptor. J. Biol. Chem. 269, 13,162–13, 166.Google Scholar
  161. 160.
    Adan, R. A. H., Kraan van der, M., Doornbos, R. P., Bar, P. R., Burbach, J. P. H., and Gispen, W. H. (1996) Melanocortin receptors mediate a-MSH-induced stimulation of neurite outgrowth in Neuro 2a cells. Mol. Brain. Res. 36, 37–44.PubMedCrossRefGoogle Scholar
  162. 161.
    Hol, E. M., Hermens, W. T. J. M. C., Verhaagen, J., Gispen, W. H., and Bär, P. R. (1993) aMSH but not ORG 2788 induces expression of c-fos in cultured rat spinal cord cells. Neuroreport 4, 651–654.Google Scholar
  163. 162.
    Hughes, S. and Smith, M. E. (1994) Upregulation of the pro-opiomelanocortin gene in motoneurones after nerve section in mice. Mol. Brain. Res. 25, 41–49.PubMedCrossRefGoogle Scholar
  164. 163.
    Smith, M. E. and Hughes, S. (1993) Pro-opiomelanocortin neuropeptide receptors on developing and dystrophic muscle fibers. Mol. Chem. Neuropathol. 19, 137–145.PubMedCrossRefGoogle Scholar
  165. 164.
    Smith, M. E., Hughes, S., Simpson, M. G., and Allen, S. L. (1994) Upregulation of the POMC gene in rats by a neurotoxicant which targets motoneurons. Neurotoxicology 15, 769–772.PubMedGoogle Scholar
  166. 165.
    Hughes, S. and Smith, M. E. (1993) 13- Endorphin and ACTH receptors in skeletal muscles in diabetes mellitus. Ann. N. Y. Acad. Sci. 680, 542–544.Google Scholar
  167. 166.
    Labbe, O., Desarnaud, F., Eggerickx, D., Vassart, G., and Parmentier, M. (1994) Molecular cloning of a mouse melanocortin 5 receptor gene widely expressed in peripheral tissues. Biochemistry 33, 4543–4549.PubMedCrossRefGoogle Scholar
  168. 167.
    Gantz, I., Shimoto, Y., Konda, Y., Miwa, H., Dickinson, C. J., and Yamada, T. (1994) Molecular cloning, expression, and characterization of a fifth melanocortin receptor. Biochem. Biophys. Res. Commun. 200, 1214–1220.PubMedCrossRefGoogle Scholar
  169. 168.
    Edwards, P. M, Van Der Zee, C. E. E. M., Verhaagen, J., Schotman, P., Jennekens, F. G. I., and Gispen, W. H. (1984) Evidence that the neurotrophic action of aMSH may derive from its ability to mimick the actions of a peptide formed in degenerating nerve stumps. J. Neurol. Sci. 64, 333–340.PubMedCrossRefGoogle Scholar
  170. 169.
    Verhaagen, J., Edwards, P. M., Schotman, P., Jennekens, F. G. I., and Gispen, W. H. (1986) Characterization of epitopes shared by a-melanocyte-stimulating hormone (aMSH) and the 150-kD neurofilament protein (NF150), relationship to neurotrophic sequences. J. Neurosci. Res. 16, 589–600.PubMedCrossRefGoogle Scholar
  171. 170.
    Plantinga, L. C., Verhaagen, J., Edwards, P. M., Schrama, L. H., Burbach, J. P.H., and Gispen, W. H. (1992) Expression of the pro-opiomelanocortin gene in dorsal root ganglia, spinal cord and sciatic nerve after sciatic nerve crush in the rat. Mol. Brain Res. 16, 135–142.PubMedCrossRefGoogle Scholar
  172. 171.
    Plantinga, L. C., Verhaagen, J., Edwards, P. M., Hali, M., Brakkee, J. H., and Gispen, W. H. (1995) Pharmacological evidence for the involvement of endogenous a—MSH-like peptides in peripheral nerve regeneration. Peptides 16, 319–324.PubMedCrossRefGoogle Scholar
  173. 172.
    Antonawich, F. J., Azmitia, E. C., Kramer, H. K., and Strand, F. L. (1994) Specificity versus redundancy of melanocortins in nerve regeneration. Ann. N. Y. Acad. Sci. 739, 60–73.PubMedCrossRefGoogle Scholar
  174. 173.
    Wolterink, G., Van Zanten, E., and Van Ree, J. M. (1990) Functional recovery after destruction of dopamine systems in the nucleus accumbens of rats. IV. Delay by intra-accumbal treatment with Org2766- or a a-MSH-antiserum. Brain Res. 507, 115–120.PubMedCrossRefGoogle Scholar
  175. 174.
    Van de Meent, H., Hamers, F. P., Lankhorst, A. J., Joosten, E. A., and Gispen, W. H. (1997) Beneficial effects of the melanocortin alpha-melanocyte-stimulating hormone on clinical and neurophysiological recovery after experimental spinal cord injury. Neurosurgery 40, 122–30; discussion 130–1.Google Scholar
  176. 175.
    De Rotte, A. A., Bouman, H. J., and van Wimersma Greidanus, T. B. (1980) Relationships between alpha-MSH levels in blood and in cerebrospinal fluid. Brain Res. Bull. 5, 375–381.PubMedCrossRefGoogle Scholar
  177. 176.
    Thiessen, D. D. (1988) Body temperature and grooming in the mongolian gerbil. Ann. N. Y. Acad. Sci. 525, 27–39.PubMedCrossRefGoogle Scholar
  178. 177.
    Greven, H. M. and De Wied, D. (1980) Structure and behavioural activity of peptides related to corticotrophin and lipotrophin, in Hormones and the Brain. ( De Wied, D. and Van Keep, P. A., eds.) MTP Press MA, Lancaster, 115–127.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Roger A. H. Adan

There are no affiliations available

Personalised recommendations