Skip to main content

Part of the book series: Infectious Disease ((ID))

  • 250 Accesses

Abstract

Drug—food interactions can be a major source of patient inconvenience and nonadherence through disruptions in a patient’s daily schedule. Unless advised to the contrary, patients often take drugs with meals as a suitable adherence reminder and to lessen gastrointestinal side effects. Lack of knowledge of potentially significant drug—food interactions can lead to poor clinical outcomes. This chapter will describe mechanisms of drug—food interactions and U.S. Food and Drug Administration (FDA) guidelines for drug—food interactions studies. Antimicrobial drug—food interactions based on drug classes and pharmacokinetics will be described, as well as the recommended dosing guidelines. In addition, anti-infectives and the disulfiram-like reaction and two case studies are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Welling PG. The influence of food on the absorption of antimicrobial agents. J Antimicrob Chemother 1982; 9: 7–27.

    PubMed  CAS  Google Scholar 

  2. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG. Drug-food interactions in clinical practice. J Fam Prac 1995; 40: 376–384.

    CAS  Google Scholar 

  3. Singh BN. Effects of food on clinical pharmacokinetics. Clin Pharmacokinet 1999; 37: 213–155.

    PubMed  CAS  Google Scholar 

  4. Krishnaswamy K. Drug metabolism and pharmacokinetics in malnourished children. Clin Pharmacokinet 1988; 14: 325–346.

    Google Scholar 

  5. Wacher VJ, Silverman JA, Zhang Y, Benet LZ. Role of P-glycoprotein P450 3A in limiting oral absorption of peptides and peptidomimetics. J Pharm Sci 1998; 87: 1322–1330.

    PubMed  CAS  Google Scholar 

  6. Cronk GA, Wheatley WB, Fellers GF, Albright H. The relationship of food intake to the absorption of potassium alpha-phenoxyethyl penicillin and potassium phenoxymethyl penicillin from the gastrointestinal tract. Am J Med Sci 1960; 240: 219–225.

    PubMed  CAS  Google Scholar 

  7. McCracken GH Jr, Ginsburg CM, Clahsen JC, Thomas ML. Pharmacologic evaluation of orally administered antibiotics in infants and children: effect of feeding on bioavailability. Pediatrics 1978; 62: 738–743.

    PubMed  Google Scholar 

  8. Watanakunakorn C. Absorption of orally administered nafcillin in normal healthy volunteers. Antimicrob Agents Chemother 1977; 11: 1007–1009.

    PubMed  CAS  Google Scholar 

  9. Welling PG, Huang H, Koch PA, Craig WA, Madsen PO. Bioavailability of ampicillin and amoxicillin in fasted and nonfasted subjects. J Pharm Sci 1977; 66: 549–552.

    PubMed  CAS  Google Scholar 

  10. Ali HM, Farouk AM. The effect of Sudanese diet on the bioavailability of ampicillin. Int J Pharm 1980; 6: 301–306.

    CAS  Google Scholar 

  11. Eshelman FN, Spyker DA. Pharmacokinetics of amoxicillin and ampicillin: crossover study of the effect of food. Antimicrob Agents Chemother 1978; 14: 539–543.

    PubMed  CAS  Google Scholar 

  12. Neu HC. Antimicrobial activity and human pharmacology of amoxicillin. J Infect Dis 1974;129: S 123—S 131.

    Google Scholar 

  13. Barbhaiya RH, Shukla UA, Gleason CR, Shyu WC, Pittman KA. Comparison of the effects of food on the pharmacokinetics of cefprozil and cefaclor. Antimicrob Agents Chemother 1990; 34: 1210–1213.

    PubMed  CAS  Google Scholar 

  14. Shukla UA, Pittman KA, Barbhaiya RH. Pharmacokinetic interactions of cefprozil with food, propantheline, metoclopramide, and probenecid in healthy volunteers. J Clin Pharmacol 1992; 32: 725–731.

    PubMed  CAS  Google Scholar 

  15. Harvengt C, Schepper PD, Famy F, Hansen J. Cephradrine absorption and excretion in fasting and nonfasting volunteers. J Clin Pharm 1973; 13: 36–40.

    CAS  Google Scholar 

  16. Roller S, Lode H, Stelzer I, Deppermann KM, Boeckh M, Koeppe P. Pharmacokinetics of loracarbef with acetylcysteine. Eur J Clin Microbiol Infect Dis 1992; 11: 851–855.

    PubMed  CAS  Google Scholar 

  17. Gower PE, Dash CH. Cephalexin: human studies of absorption and excretion of a new cephalosporin antibiotic. Br J Pharmacol 1969; 37: 738–747.

    PubMed  CAS  Google Scholar 

  18. Tetzlaff TR, McCracken GH Jr, Thomas ML. Bioavailability of cephalexin in children: relationship to drug formulations and meals. J Pediatr 1978; 92: 292–294.

    PubMed  CAS  Google Scholar 

  19. Glynne A, Goulbourn RA, Ryden R. A human pharmacology study of cefaclor. J Antimicrob Chemother 1978; 4: 343–348.

    PubMed  CAS  Google Scholar 

  20. Sourgens H, Derendorf H, Schifferer H. Pharmacokinetic profile of cefaclor. Int J Clin Pharmacol Ther 1997; 35: 374–380.

    PubMed  CAS  Google Scholar 

  21. Cefaclor package insert. Eli Lilly and Company, Indianapolis, IN, 1998.

    Google Scholar 

  22. Oguma T, Yamada H, Sawaki M, Narita N. Pharmacokinetic analysis of the effects of different foods on absorption of cefaclor. Antimicrob Agents Chemother 1991; 35: 1729–1735.

    PubMed  CAS  Google Scholar 

  23. Sommers DK, Van Wyk M, Moncrieff J, Schoeman HS. Influence of food and reduced gastric acidity on the bioavailability of bacampicillin and cefuroxime axetil. Br J Clin Pharm 1984; 18: 535–539.

    CAS  Google Scholar 

  24. Ginsburg CM, McCracken GH Jr, Petruska M, Olson K. Pharmacokinetics and bactericidal activity of cefuroxime axetil. Antimicrob Agents Chemother 1985; 28: 504–507.

    PubMed  CAS  Google Scholar 

  25. Deppermann KM, Garbe C, Hasse K, Borner K, Keippe P, Lode H. Comparative pharmacokinetics of cefotiam hexetil, cefuroxime cefixime, cephalexin, and effect of H2 blockers, standard breakfast and antacids on the bioavailability of cefuroxime hexetil [abstr 1223]. 29th ICAAC, 1989.

    Google Scholar 

  26. Fassbender M, Lode H, Schaberg T, Borner K, Koeppe P. Pharmacokinetics of new oral cephalosporins, including a new carbacephem. Clin Infect Dis 1993; 16: 646–653.

    PubMed  CAS  Google Scholar 

  27. Blouin RA, Kneer J, Ambros RJ, Stoeckel K. Influence of antacid and ranitidine on the pharmacokinetics of oral cefetamet pivoxil. Antimicrob Agents Chemother 1990; 34: 1744–1748.

    PubMed  CAS  Google Scholar 

  28. Stoeckel K, Tam YK, Kneer J, Pharmacokinetics of oral cefetamet pivoxil (Ro 15–8075) and intravenous cefetamet (Ro 15–8074) in humans: a review. Curr Med Res Opin 1989; 11: 432–441.

    PubMed  CAS  Google Scholar 

  29. Blouin RA, Stoeckel K. Cefetamet pivoxil clinical pharmacokinetics. Clin Pharmacokinetic 1993; 253: 172–188.

    Google Scholar 

  30. Tam YK, Kneer J, Dubach UC, Stoeckel K. Effect of timing of food and fluid volume on cefetamet pivoxil absorption in healthy normal volunteers. Antimicrob Agents Chemother 1990; 34: 1556–1559.

    PubMed  CAS  Google Scholar 

  31. Blouin RA, Kneer J, Stoeckel K. Pharmacokinetics of intravenous cefetamet (Ro 15–8074) and oral cefetamet pivoxil (Ro 15–8075) in young and elderly subjects. Antimicrob Agents Chemother 1989; 33: 291–296.

    PubMed  CAS  Google Scholar 

  32. Koup JR, Dubach UC, Brandt R, Wyss R, Stoeckel K. Pharmacokinetics of cefetamet (Ro 15–8074) and cefetamet pivoxil (Ro 15–8075) after intravenous and oral doses in humans. Antimicrob Agents Chemother 1988; 32: 573–579.

    PubMed  CAS  Google Scholar 

  33. Nakashima M, Uematsu T, Takiguchi Y, et al. Phase I clinical studies of 7432-S, a new oral cephalosporin: safety and pharmacokinetics. J Clin Pharmacol 1988; 28: 246–252.

    PubMed  CAS  Google Scholar 

  34. Kearns GL, Young RA. Ceftibuten pharmacokinetics and pharmacodynamics. Focus on paediatric use. Clin Pharmacokinet 1994; 26: 169–189.

    PubMed  CAS  Google Scholar 

  35. Barr WH, Lin CC, Radwanski E, Lim J, Symchowicz S, Afrime M. The pharmacokinetics of ceftibuten in humans. Diagn Microbiol Infect Dis 1991; 14: 93–100.

    PubMed  CAS  Google Scholar 

  36. Nakashima M, Uematsu T, Takiguchi Y, Kanamaru M. Phase I study of cefixime, a new oral cephalosporin. J Clin Pharmacol 1987; 27: 425–431.

    PubMed  CAS  Google Scholar 

  37. Smith JW, Dyke RW, Griffith RS. Absorption following oral administration of erythromycin. JAMA 1953; 151: 805–810.

    CAS  Google Scholar 

  38. Bechtol LD, Bessent CT, Perkal MB. The influence of food on the absorption of erythromycin esters and enteric-coated erythromycin in single-dose studies. Curr Ther Res 1979; 25: 618–625.

    CAS  Google Scholar 

  39. Hirsch HA, Finland M. Effect of food on the absorption of erythromycin propionate, erythromycin stearate and triacetyloleandomycin. Am J Med Sci 1959; 237: 693–708.

    PubMed  CAS  Google Scholar 

  40. Clapper WE, Mostyn M, Meade GH. An evaluation of erythromycin stearate and propionyl erythromycin in normal and hospitalized subjects. Antibiotic Med Clin Ther 1960; 7: 91–96.

    PubMed  CAS  Google Scholar 

  41. Welling PG, Huang G, Hewitt PF, Lyons LL. Bioavailability of erythromycin stearate: influence of food and fluid volume. J Pharm Sci 1978; 67: 764–766.

    PubMed  CAS  Google Scholar 

  42. Malmborg AS. Effect of food on absorption of erythromycin. A study of two derivatives, the stearate and the base. J Antimicrob Chemother 1979; 5: 591–599.

    PubMed  CAS  Google Scholar 

  43. Hirsch HA, Finland M. Effect of food on absorption of a new form of erythromycin stearate and triacetyloleandomycin. Am J Med Sci 1959; 239: 198–202.

    Google Scholar 

  44. Thompson PJ, Burgess KR, Marlin GE. Influence of food on absorption of erythromycin ethylsuccinate. Antimicrob Agents Chemother 1980; 18: 829–831.

    PubMed  CAS  Google Scholar 

  45. Coyne TC, Shum S, Chun ACH, Jeansonne L, Shirkey HC. Bioavailability of erythromycin ethylsuccinate in pediatric patients. J Clin Pharm 1978; 18: 192–202.

    Google Scholar 

  46. Chu S-Y, Park Y, Locke C, et al. Drug-food interaction potential of clarithromycin, a new macrolide antimicrobial. J Clin Pharmacol 1992; 32: 32–36.

    PubMed  CAS  Google Scholar 

  47. Hopkins S. Clinical toleration and safety of azithromycin. Am J Med 1991; 91 (3A): 40S - 45S.

    PubMed  CAS  Google Scholar 

  48. Foulds G, Luke DR, Teng R, Willavize SA, Friedman H, Curatolo WJ. The absence of an effect of food on the bioavailability of azithromycin administered as tablets, sachet, and suspension. J Antimicrob Chemother 1996; 37 (suppl C): 37–44.

    PubMed  CAS  Google Scholar 

  49. Thakker KM, Robarge L, Block S, Jefferson T, Broker R, Arrieta A. Pharmacokinetics of azithromycin oral suspension following 12 mg/kg/day (maximum 500 mg/day) for 5 days in fed pediatric patients [abstr A-59]. 38th ICAAC, San Diego, CA, September 24–27, 1998.

    Google Scholar 

  50. Sides GD, Cerimele BJ, Black HR, Busch U, DeSante KA. Pharmacokinetics of dirithromycin. J Antimicrob Chemother 1993; 31 (suppl C): 65–75.

    PubMed  CAS  Google Scholar 

  51. McConnell SA, Amsden GW. Review and comparison of advanced-generation macrolides clarithromycin and dirithromycin. Pharmacotherapy 1999; 19: 404–415.

    PubMed  CAS  Google Scholar 

  52. Jonas M, Cunha BA. Minocycline. Ther Drug Monit 1982; 4: 137–145.

    CAS  Google Scholar 

  53. Mattila MJ, Neuvonen PJ, Gothoni G, Hackman R. Interference of iron preparations and milk with the absorption of tetracyclines. In: Baker SB, Neuhaus GA (eds). Toxicological Problems of Drug Combinations. Amsterdam: Excerpta Medica, 1972, pp. 128–133.

    Google Scholar 

  54. von Wittenau MS. Some pharmacokinetic aspects of doxycycline metabolism in man. Chemother (Basel) (suppl) 1968; 13: 41–50.

    Google Scholar 

  55. Cunha BA, Sibley CM, Ristuccia AM. Doxycycline. Ther Drug Monit 1982; 4: 125–135.

    Google Scholar 

  56. Welling PG, Koch PA, Lau CC, Craig WA. Bioavailability of tetracycline and doxycycline in fasted and nonfasted subjects. Antimicrob Agents Chemother 1977; 11: 462–469.

    PubMed  CAS  Google Scholar 

  57. Kirby WMM, Roberts CE, Burdick RE. Comparison of two new tetracyclines with tetracycline and demethylchlortetracycline. Antimicrob Agents Chemother 1962; 1961: 286–292.

    CAS  Google Scholar 

  58. Poiger H, Schlatter C. Compensation of dietary induced reduction of tetracycline absorption by simultaneous administration of EDTA. Eur J Clin Pharm 1978; 14: 129–131.

    CAS  Google Scholar 

  59. Leyden JJ. Absorption of minocycline hydrochloride and tetracycline hydrochloride: effect of food, milk, and iron. J Am Acad Dermatol 1985; 12 (2 part 1): 308–312.

    PubMed  CAS  Google Scholar 

  60. Fabre J, Milek E, Kalfopoulos P, et al. The kinetics of tetracyclines in man. I. Digestive absorption and serum concentrations. Schweiz Med Wchr 1971; 101: 593–598.

    CAS  Google Scholar 

  61. Barr WH, Gerbracht LM, Letcher K, Plaut M, Strahl N. Assessment of the biologic availability of tetracycline products in man. Clin Pharmacol Ther 1971; 13: 97–108.

    Google Scholar 

  62. Rosenblatt JE, Barrett JE, Brodie JL, Kirby WMM. Comparison of in vitro activity and clinical pharmacology of doxycycline with other tetracyclines. Antimicrob Agents Chemother 1967; 1966: 134–141.

    Google Scholar 

  63. Allen JC. Minocycline. Ann Intern Med 1976; 85: 482–487.

    PubMed  Google Scholar 

  64. Neuvonen PJ, Penttila O. Effect of oral ferrous sulphate on the half-life of doxycycline in man. Eur J Clin Pharmacol 1974; 7: 361–363.

    PubMed  CAS  Google Scholar 

  65. Neuvonen PJ, Turakka H. Inhibitory effect of various iron salts on the absorption of tetracycline in man. Eur J Clin Pharm 1974; 7: 357–360.

    CAS  Google Scholar 

  66. Martin SJ, Meyer JM, Chuck SK, Jung R, Messick CR, Pendland SL. Levofloxacin and sparfloxacin: new quinolone antibiotics. Ann Pharmacother 1998; 32: 320–336.

    PubMed  CAS  Google Scholar 

  67. Yamaguchi T, Yokogawa M, Sekine Y, Hashimoto M. Intestinal absorption characteristics of sparfloxacin. Xenobiotic Metab Disp 1991; 6: 53–59.

    CAS  Google Scholar 

  68. Shimada J, Nogita T, Ishibashi Y. Clinical pharmacokinetics of sparfloxacin. Clin Pharmacokinet 1993; 25: 358–369.

    PubMed  CAS  Google Scholar 

  69. Heyd A, Shah A, Liu MC, Vaughan D, Heller AH. Oral bioavailability and efficacy of ciprofloxacin suspension for treatment of acute urinary tract infection. 38th ICAAC, San Diego, CA, September 24–27, 1998.

    Google Scholar 

  70. Frost RW, Carlson JD, Dietz AJ Jr, Heyd A, Lettieri JT. Ciprofloxacin pharmacokinetics after a standard or high-fat/high-calcium breakfast. J Clin Pharmacol 1989; 29: 953–955.

    PubMed  CAS  Google Scholar 

  71. Lacreta F, Kollia G, Duncan G, Behr D, Stoltz R, Grasela D. Effect of a high-fat meal in the bioavailability of gatifloxacin in healthy volunteers. 38th ICAAC, San Diego, CA, September 24–27, 1998.

    Google Scholar 

  72. Lomaestro BM, Bailie GR. Absorption interactions with fluoroquinolones. Drug Safety 1995; 12: 314–333.

    PubMed  CAS  Google Scholar 

  73. Wise R. Norfloxacin-a review of pharmacology and tissue penetration. J Antimicrob Chemother 1984; 13 (suppl B): 59–64.

    PubMed  CAS  Google Scholar 

  74. Dudley MN, Marchbanks CR, Flor SC, Beals B. The effect of food or milk on the absorption kinetics of ofloxacin. Eur J Clin Pharmacol 1991; 41: 569–571.

    PubMed  CAS  Google Scholar 

  75. Bertino JS Jr, Nafziger AN, Wong M, Stragand L, Puleo C. Effect of a fat-and calcium-rich breakfast on pharmacokinetics of fleroxacin administered in single and multiple doses. Antimicrob Agents Chemother 1994; 38: 499–503.

    PubMed  CAS  Google Scholar 

  76. Hooper WD, Dickinson RG, Eadie MJ. Effect of food on the absorption of lomefloxacin. Antimicrob Agents Chemother 1990; 34: 1797–1799.

    PubMed  CAS  Google Scholar 

  77. Hoogkamer JEW, Klenbloesem CH. The effect of milk consumption on the pharmacokinetics of fleroxacin and ciprofloxacin in healthy volunteers. Drugs 1995; 49 (suppl 2): 346–348.

    PubMed  CAS  Google Scholar 

  78. Neuvonen PJ, Kivisto KT, Lehto P. Interference of dairy products with the absorption of ciprofloxacin. Clin Pharmacol Ther 1991; 50 (5 pt 1): 498–502.

    PubMed  CAS  Google Scholar 

  79. Minami R, Inotsume N, Nakano M, Sudo Y, Higashi A, Matsuda I. Effect of milk on absorption of norfloxacin in healthy volunteers. J Clin Pharmacol 1993; 33: 1238–1240.

    PubMed  CAS  Google Scholar 

  80. Kivisto KT, Ojala-Karlsson P, Neuvonen PJ. Inhibition of norfloxacin absorption by dairy products. Antimicrob Agents Chemother 1992; 36: 489–491.

    PubMed  CAS  Google Scholar 

  81. Lehto PH, Kivisto KT. Effects of milk and food on the absorption of enoxacin. Br J Clin Pharm 1995; 39: 194–196.

    CAS  Google Scholar 

  82. Stass H, Kubitza D. Study to assess the interaction between moxifloxacin and dairy products in healthy volunteers. 2nd European Congress of Chemotherapy and 7th Biennial Conference of Antiinfective Agents and Chemotherapy, Hamburg, Germany, May 10–13, 1998.

    Google Scholar 

  83. Fuhr U, Anders EM, Mahr G, Sorgel F, Staib AH Inhibitory potency of quinolone antibacterial agents against cytochrome P4501A2 activity in vivo and in vitro. Antimicrob Agents Chemother 1992; 36: 942–948.

    PubMed  CAS  Google Scholar 

  84. Staib, AH, Stille W, Dietlein G, Shah PM, Harder S, Mieke S, Beer C. Interaction between quinolones and caffeine. Drugs 1987; 34 (suppl 1): 170–174.

    PubMed  CAS  Google Scholar 

  85. Randinitis JR, Koup G, Rausch G, Vassos AB. Effect of clinafloxacin administration on the single-dose pharmacokinetics of theophylline and caffeine [abstr A-19]. 38th ICAAC, San Diego, CA, September 24–27, 1998.

    Google Scholar 

  86. Carbo M, Segura J, De la Torre R, Badenas JM, Carni J. Effect of quinolones on caffeine disposition. Clin Pharmacol Ther 1989; 45: 234–240.

    PubMed  CAS  Google Scholar 

  87. Healy DP, Polk RE, Kanawati L, Rock DT, Mooney ML. Interaction between oral ciprofloxacin and caffeine in normal volunteers. Antimicrob Agents Chemother 1989; 33: 474–478.

    PubMed  CAS  Google Scholar 

  88. Staib AH, Harder S, Mieke S, Beer C, Stille W, Shah P. Gyrase-inhibitors impair caffeine elimination in man. Meth Find Exp Clin Pharmacol 1987; 9: 193–198.

    CAS  Google Scholar 

  89. Mueller BA, Brierton DG, Abel SR, Bowman L. Effect of enteral feeding with ensure on oral bioavailabilities of ofloxacin and ciprofloxacin. Antimicrob Agents Chemother 1994; 38: 2101–2105.

    PubMed  CAS  Google Scholar 

  90. Yuk JH, Nightingale CH, Sweeney K, et al. Relative bioavailability in healthy volunteers of ciprofloxacin administered through a nasogastric tube with and without enteral feeding. Antimicrob Agents Chemother 1989; 33: 1118–1120.

    PubMed  CAS  Google Scholar 

  91. Healy DP, Brodbeck MC, Clendening CE. Ciprofloxacin absorption is impaired in patients given enteral feedings orally and via gastrostomy and jejunostomy tubes. Antimicrob Agents Chemother 1996; 41: 6–10.

    Google Scholar 

  92. Deppermann KM, Lode H. Fluoroquinolones: interaction profile during enteral absorption. Drugs 1993; 45 (suppl 3): 65–72.

    PubMed  Google Scholar 

  93. D’Arcy PF. Nitrofurantoin. Drug Intell Clin Pharm 1985; 19: 540–547.

    PubMed  Google Scholar 

  94. Bates TR, Sequeira JA, Tembo AV. Effect of food on nitrofurantoin absorption. Clin Pharm Ther 1974; 16: 63–68.

    CAS  Google Scholar 

  95. Rosenberg HA, Bates TR. The influence of food on nitrofurantoin bioavailability. Clin Pharm Ther 1976; 20: 227–232.

    CAS  Google Scholar 

  96. Mepron package insert. Glaxo Wellcome, Research Triangle Park, NC, 1998.

    Google Scholar 

  97. Melander A, Kahlmeter G, Kamme C, Ursing B. Bioavailability of metronidazole in fasting and non-fasting healthy subjects and in patient’s with Crohn’s disease. Eur J Clin Pharm 1977; 12: 69–72.

    CAS  Google Scholar 

  98. Cleocin package insert. Pharmacia and Upjohn, Kalamazoo, MI, 1998.

    Google Scholar 

  99. McGehee RF, Smith CB, Wilcox C, Finland M. Comparative studies of antibacterial activity in vitro and absorption and excretion of lincomycin and clinimycin. Am J Med Sci 1968; 256: 279–292.

    PubMed  CAS  Google Scholar 

  100. Melander A, Danielson K, Hanson A, et al. Reduction of isoniazid bioavailability in normal men by concomitant intake of food. Acta Med Scand 1976; 200: 93–97.

    PubMed  CAS  Google Scholar 

  101. Peloquin CA, Namdar R, Dodge AA, Nix DE. Pharmacokinetics of isoniazid under fasting conditions, with food and with antacids. Int J Tuberc Lung Dis 1999; 3: 703–710.

    PubMed  CAS  Google Scholar 

  102. Siegler DI, Bryant M, Burley DM, Citron KM, Standen SM. Effect of meals on rifampicin absorption. Lancet 1974;2(7874):197,198.

    Google Scholar 

  103. Peloquin CA, Namdar R, Singleton MD, Nix DE. Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest 1999; 115: 12–18.

    PubMed  CAS  Google Scholar 

  104. Narang PK, Lewis RC, Bianchine JR. Rifabutin absorption in humans: relative bioavailability and food effect. Clin Pharmacol Ther 1992; 52: 335–341.

    PubMed  CAS  Google Scholar 

  105. Ameer B, Polk RE, Kline BJ, Grisafe JP. Effect of food on ethambutol absorption. Clin Pharm 1982; 1: 156–158.

    PubMed  CAS  Google Scholar 

  106. Peloquin CA, Bulpitt AE, Jaresko GS, Jelliffe RW, Childs JM, Nix DE. Pharmacokinetics of ethambutol under fasting conditions with food and with antacids. Antimicrob Agents Chemother 1999; 43 (3): 568–572.

    PubMed  CAS  Google Scholar 

  107. Peloquin CA, Bulpitt AE, Jaresko GS, Jelliffe RW, James GT, Nix DE. Pharmacokinetics of pyrazinamide under fasting conditions, with food, and with antacids. Pharmacotherapy 1998; 18: 1205–1211.

    PubMed  CAS  Google Scholar 

  108. Daneschmend TK, Warnock DW, Ene MD, et al. Influence of food on the pharmacokinetics of ketoconazole. Antimicrob Agent Chemother 1984; 25: 1–3.

    Google Scholar 

  109. Mannisto PT, Mantyla R, Nykanen S. Lamminsivu U, Ottoila P. Impairing effect of food on ketoconazole absorption. Antimicrob Agent Chemother 1982; 21: 730–733.

    CAS  Google Scholar 

  110. Lelawongs P, Barone JA, Colaizzi JL, et al. Effect of food and gastric acidity on absorption of orally administered ketoconazole. Clin Pharm 1988; 7: 228–235.

    PubMed  CAS  Google Scholar 

  111. Brass C, Galgiani JN, Blaschke TF, et al. Disposition of ketoconazole, an oral antifungal in humans. Antimicrob Agents Chemother 1982; 21: 151–158.

    PubMed  CAS  Google Scholar 

  112. Zimmerman T, Yeates RA, Laufen H, et al. Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole. Eur J Clin Pharmacol 1994; 46: 147–150.

    Google Scholar 

  113. Wishart JM. The influence of food on the pharmacokinetics of itraconazole in patients with superficial fungal infections. J Am Acad Dermatol 1987; 17: 220–223.

    PubMed  CAS  Google Scholar 

  114. Barone JA, Moskovitz BL, Guarnieri J, et al. Food interaction and steady-state pharmacokinetics of intraconazole oral solution in healthy volunteers. Pharmacotherapy 1998; 18: 295–301.

    PubMed  CAS  Google Scholar 

  115. Lange D, Pavao JH, Klausner M. Effect of a cola beverage on the bioavailability of H2 blockers. J Clin Pharmacol 1997; 37: 535–540.

    PubMed  CAS  Google Scholar 

  116. Jaruratanasirikul S, Kleepkaew A. Influence of an acidic beverage (Coca-Cola) on the absorption of itraconazole. Eur J Clin Pharmacol 1997; 52: 235–237.

    PubMed  CAS  Google Scholar 

  117. Bijanzadeh M, Mahmoudian M, Salehian P, et al. The bioavailability of griseofulvin from microsized and ultramicrosized tablets in non-fasting volunteers. Indian J Physiol Pharmacol 1990; 34: 157–161.

    PubMed  CAS  Google Scholar 

  118. Crounse RG. Human pharmacology of griseofulvin: the effect of fat intake on gastrointestinal absorption. J Invest Dermatol 1961; 37: 529.

    PubMed  CAS  Google Scholar 

  119. Hartman NR, Yarchoan R, Pluda JM, et al. Pharmacokinetics of 2’,3’-dideoxy-adenosine and 2’,3’-dideoxyinosine in patients with severe human immunodeficiency virus infection. Clin Pharmacol Ther 1990; 47: 647–654.

    PubMed  CAS  Google Scholar 

  120. Knupp CA, Shyu WC, Dolin R, et al. Pharmacokinetics of didanosine in patients with acquired immunodeficiency syndrome-related complex. Clin Pharmacol Ther 1991; 49: 523–535.

    PubMed  CAS  Google Scholar 

  121. McGowan JJ, Tomaszewski JE, Cradock J, et al. Overview of the preclinical development of an antiretroviral drug, 2’,3’-dideoxyinosine. Rev Infect Dis 1990; 12 (suppl 5): 5513 - S520.

    Google Scholar 

  122. Shuy WC, Knupp CA, Pittman KA, Dunkle L, Barbhaiya RH. Food-induced reduction in bioavailability of didanosine. Clin Pharmacol Ther 1991; 50: 503–507.

    Google Scholar 

  123. Knupp CA, Milbrath R, Barbhaiya RH. Effect of time of food administration on the bioavailability of didanosine from a chewable tablet formulation. J Clin Pharmacol 1993; 33: 568–573.

    PubMed  CAS  Google Scholar 

  124. Klecker RW Jr, Collins JM, Yarchoan R, et al. Plasma and cerebrospinal fluid pharmacokinetics of 3’-azido-3’deoxythymidine: a novel pyrimidine analog with potential application for the treatment of patients with AIDS and related diseases. Clin Pharmacol Ther 1987; 41: 407–412.

    PubMed  Google Scholar 

  125. Dudley MN, Graham KK, Kaul S, et al. Pharmacokinetics of stavudine in patients with AIDS or AIDS-related complex. J Infect Dis 1992; 166: 480–485.

    PubMed  CAS  Google Scholar 

  126. Unadkat JD, Collier AC, Crosby SS, Cummings D, Opheim KE, Corey L. Pharmacokinetics of oral zidovudine (azidothymidine) in patients with AIDS when administered with and without a high-fat meal. AIDS 1990; 4: 229–232.

    PubMed  CAS  Google Scholar 

  127. Sahai J, Gallicano K, Garber G, et al. The effect of a protein meal on zidovudine pharmacokinetics in HIV-infected patients. Br J Clin Pharmacol 1992; 33: 657–660.

    PubMed  CAS  Google Scholar 

  128. Lotterer E, Ruhnke M, Trautmann M, Beyer R, Bauer FE. Decreased and variable systemic availability of zidovudine in patients with AIDS if administered with a meal. Eur J Clin Pharmacol 1991; 40: 305–308.

    PubMed  CAS  Google Scholar 

  129. Angel JB, Hussey EK, Mydlow PK, et al. Pharmacokinetics of (GR 109714X) 3TC administered with and without food to HIV-infected patients [abtr PoB 3008]. Inf Conf AIDS 1992; 8 (2): B88.

    Google Scholar 

  130. Shelton MJ, O’Donnell AM, Morse GD. Zalcitabine. Ann Pharmacother 1993; 27: 480–489.

    CAS  Google Scholar 

  131. Beach JW. Chemotherapeutic agents for human immunodeficiency virus infection: mechanism of action, pharmacokinetics, metabolism, and adverse reactions. Clin Ther 1998: 20: 2–25.

    PubMed  CAS  Google Scholar 

  132. Foster RH, Faulds D. Abacavir. Drugs 1998; 55: 729–736.

    CAS  Google Scholar 

  133. Hebel SK. Drugs Facts and Comparisons. St. Louis, MO; Facts and Comparisons, 2000.

    Google Scholar 

  134. Morse GD, Fischl MA, Cox SR, Thompson L, Della-Coletta AA, Freimuth WW. Effect of food on the steady-state pharmacokinetics of delavirdine mesylate in HIV+ patients [abstr]. Program Abstracts, 35th Interscience Conference in Antimicrob Agents and Chemotherapeutics (ICAAC), San Francisco, CA, September 17–20, 1995.

    Google Scholar 

  135. Freimuth WW. Delavirdine mesylate, a potent non-nucleoside HIV-1 reverse transcriptase inhibitor. In: Mills J, Volberding PA, Corey L (eds). Antiviral Chemotherapy. Vol 4. New York: Plenum, 1996, pp. 279–389.

    Google Scholar 

  136. Sustiva package insert. DuPont Pharmaceuticals, Wilmington, DE, 1998.

    Google Scholar 

  137. Moyle G, Gazzard B. Current knowledge and future prospects for the use of HIV protease inhibitors. Drugs 1996; 51: 701–712.

    PubMed  CAS  Google Scholar 

  138. Yeh KC, Deutsch PJ, Haddix H, et al. Single-dose pharmacokinetics of indinavir and the effect of food. Antimicrob Agents Chemother 1998; 42: 332–338.

    PubMed  CAS  Google Scholar 

  139. Noble S, Faulds D. Saquinavir: a review of its pharmacology and clinical potential in the management of HIV infection. Drugs 1996; 52: 93–112.

    PubMed  CAS  Google Scholar 

  140. Muirhead GJ, Shaw T, Williams PEO, et al. Pharmacokinetics of the HIV-proteinase inhibitor, Ro 318959, after single and multiple oral doses in healthy volunteers. Br J Clin Pharmacol 1992; 34: 170 P.

    Google Scholar 

  141. Kupferschmidt HH, Fattinger KE, Ha HR, Follath F, Krahenbuhl S. Grapefruit juice enhances the bioavailability of the HIV protease inhibitor saquinavir in man. Br J Clin Pharmacol 1998; 45: 355–359.

    PubMed  CAS  Google Scholar 

  142. Shetty BV, Kosa MB, Khalil DA, Webber S. Preclinical pharmacokinetics and distribution to tissue of AG1343, an inhibitor of human immunodeficiency virus type 1 protease. Antimicrob Agents Chemother 1996; 40: 110–114.

    PubMed  CAS  Google Scholar 

  143. Perry CM, Benfield P. Nelfinavir. Drugs 1997; 54: 81–87.

    CAS  Google Scholar 

  144. Agenerase package insert. Glaxo Wellcome, Research Triangle Park, NC, 1998.

    Google Scholar 

  145. Lavelle J, Follansbee S, Trapnell CB, et al. Effect of food on the relative bioavailability of oral ganciclovir. J Clin Pharmacol 1996; 36: 238–241.

    PubMed  CAS  Google Scholar 

  146. Fowles SE, Fairless AJ, Pierce DM, et al. A further study of the effect of food on the bioavailability and pharmacokinetics of penciclovir after oral administration of famciclovir. Br J Clin Pharmacol 1991; 32: 657 P.

    Google Scholar 

  147. Fowles SE, Pierce MC, Prince WT, et al. Effect of food on the bioavailability and pharmacokinetics of penciclovir, a novel antiherpes agent, following oral administration of the prodrug, famciclovir. Br J Clin Pharmacol 1990;29: 620P, 621 P.

    Google Scholar 

  148. Acosta EP, Fletcher CV. Valacyclovir. Ann Pharmacother 1997; 31: 185–91.

    PubMed  CAS  Google Scholar 

  149. Zovirax package insert. Glaxo Wellcome, Research Triangle Park, NC, 1998.

    Google Scholar 

  150. Aoki FY, Sitar DS. Clinical pharmacokinetics of amantadine hydrochloride. Clin Pharmacokinet (DG5), 1988; 14: 35–51.

    CAS  Google Scholar 

  151. Wills RJ, Rodriguez LC, Choma N, Oakes M. Influence of a meal on the bioavailability of rimantadine HCL. J Clin Pharmacol 1987; 27: 821–823.

    PubMed  CAS  Google Scholar 

  152. Fuller RK, Roth HP. Disulfiram for the treatment of alcoholism: an evaluation in 128 men. Ann Intern Med 1979; 90: 901–904.

    PubMed  CAS  Google Scholar 

  153. Kitson TM. The disulfiram-ethanol reaction. J Stud Alcohol 1977; 38: 96–113.

    PubMed  CAS  Google Scholar 

  154. Jungnickel PW, Hunnicutt DM. Alcohol abuse. In: Young LY, Koda-Kimble MA (eds). Applied Therapeutics: The Clinical Use of Drugs. 6th ed. Vancouver, WA: Applied Therapeutics, 1995.

    Google Scholar 

  155. Stoll K, King LE. Disulfiram-alcohol skin reaction to beer-containing shampoo. JAMA 1980; 244: 2045.

    Google Scholar 

  156. Refojo MF. Disulfiram-alcohol reaction caused by contact lens wetting solution. Contact Intraocul Lens Med J 1981; 7: 172.

    PubMed  CAS  Google Scholar 

  157. Chick JD. Disulfiram reaction during sexual intercourse. Br J Psychiatry 1988; 152: 438.

    PubMed  CAS  Google Scholar 

  158. Adams WL. Interactions between alcohol and other drugs. Int J Addict 1995; 30: 1903–1923.

    PubMed  CAS  Google Scholar 

  159. Kannangara DW, Gallagher K, Lefrock JL. Disulfiram-like reactions with newer cephalosporins: cefmenoxime. Am J Med Sci 1984; 287: 45–47.

    Google Scholar 

  160. Cina SJ, Russell RA, Conrad SE. Sudden death due to metronidazole/ethanol interaction. Am J Forensic Med Pathol 1996; 17: 343–346.

    PubMed  CAS  Google Scholar 

  161. Freundt KJ, Heiler C, Schreiner E. Ferrous sulfate combined with ascorbic acid does not significantly reduce acetaldehyde accumulation in the blood of alcoholized rats treated with disulfiram or betalactam antibiotics. Alcohol 1990; 7: 295–298.

    PubMed  CAS  Google Scholar 

  162. Elenbaas RM, Ryan JL, Robinson WA, Singsank MJ, Harvey JM, Klaassen CD. On the disulfiram-like activity of moxalactam. Clin Pharmacol Ther 1982; 32: 347–355.

    PubMed  CAS  Google Scholar 

  163. Kitson TM. The effect of 5,5’-Dithiobis(1-methyltetrazole) on cytoplasmic aldehyde dehydrogenase and its implications for cephalosporin-alcohol reactions. Alcoholism: Clin Exp Res 1986; 10: 27–32.

    CAS  Google Scholar 

  164. McMahon FG. Disulfiram-like reaction to a cephalosporin. JAMA 1980; 243: 2397.

    Google Scholar 

  165. Neu HC, Prince AS. Interaction between moxalactam and alcohol. Lancet 1980; 1: 1422.

    PubMed  CAS  Google Scholar 

  166. Kitson TM. The effect of cephalosporin antibiotics on alcohol metabolism: a review. Alcohol 1987; 4: 143–148.

    PubMed  CAS  Google Scholar 

  167. Itil TI. Central effects of metronidazole. Psychiatric Research Report 24, American Psychiatric Association, March 1968.

    Google Scholar 

  168. Seixas FA. Alcohol and its drug interactions. Ann Intern Med 1975; 83: 86–92.

    PubMed  CAS  Google Scholar 

  169. Campbell B, Taylor JAT, Haslett Wl. Anti-alcohol properties of metronidazole in rats. Proc Soc Exp Biol Med 1965; 124: 191–195.

    Google Scholar 

  170. Taylor JT. Metronidazole-a new agent for combined somatic and psychic therapy of alcoholism. Los Angeles Neurol Soc Bull 1964; 29: 158.

    CAS  Google Scholar 

  171. Penick SB, Carrier RN, Sheldon JB. Metronidazole in the treatment of alcoholism. Am J Psychiatry 1969; 125: 1063–1066.

    PubMed  CAS  Google Scholar 

  172. Edwards JA, Price J. Metronidazole and human alcohol dehydrogenase. Nature 1967; 214: 190, 191.

    Google Scholar 

  173. Kalant H, LeBlanc AE, Guttman M. Metabolic and pharmacologic interaction of ethanol and metronidazole in the rat. Can J Physiol Pharmacol 1972; 50: 476–484.

    PubMed  CAS  Google Scholar 

  174. Foster TS, Raehl CL, Wilson HD. Disulfiram-like reaction associated with a parenteral cephalosporin. Am J Hosp Pharm 1980; 7: 858, 859.

    Google Scholar 

  175. Umeda S, Arai T. Disulfiram-like reaction to moxalactam after celiac plexus alcohol block. Anesth Analg 1985; 64: 377.

    PubMed  CAS  Google Scholar 

  176. Buening MK, Wold JS, Israel KS, et al. Disulfiram-like reaction to beta-lactams [letter]. JAMA 1981; 245: 2027.

    Google Scholar 

  177. Brown KR, Guglielmo BJ, Pons VG, Jacobs RA. Theophylline elixir, moxalactam, and a disulfiram reaction. Ann Intern Med 1982; 97: 621, 622.

    Google Scholar 

  178. Shimada J, Miyahara T, Otsubo S, Yoshimatsu N, Oguma T, Matsubara T. Effects of alcohol-metabolizing enzyme inhibitors and beta-lactam antibiotics on ethanol elimination in rats. Jpn J Pharmacol 1987; 45: 533–544.

    PubMed  CAS  Google Scholar 

  179. Kline SS, Mauro VF, Forney RB Jr, Freimer EH, Somani P. Cefotetan-induced disulfiram-type reactions and hypoprothrombinemia. Antimicrob Agents Chemother 1987; 31: 1328–1331.

    PubMed  CAS  Google Scholar 

  180. Lassman HB, Hubbard JW, Chen BL, Puri SK. Lack of interaction between cefpirome and alcohol. J Antimicrob Chemother 1992; 29 (suppl 1): 47–50.

    PubMed  CAS  Google Scholar 

  181. McMahon FG, Ryan JR, Jain AK, LaCorte W, Ginzler F. Absence of disulfiram-type reactions to single and multiple doses of cefonicid: a placebo-controlled study. J Antimicrob Chemother 1987; 20: 913–918.

    PubMed  CAS  Google Scholar 

  182. McMahon FG, Noveck RJ. Lack of disulfiram-like reactions with ceftizoxime. J Antimicrob Chemother 1982; 10 (suppl C): 129–133.

    PubMed  CAS  Google Scholar 

  183. Uri JV, Parks DB. Disulfiram-like reaction to certain cephalosporins. Ther Drug Monit 1983; 5: 219–224.

    PubMed  CAS  Google Scholar 

  184. Heelon MW, White M. Disulfiram-cotrimoxazole reaction. Pharmacother 1998; 18: 869, 870.

    Google Scholar 

  185. Azarnoff DL, Hurwitz A. Drug interactions. Pharmacol Physicians 1970; 4: 1–7.

    PubMed  CAS  Google Scholar 

  186. Todd RG (ed). Extra Pharmacopoeia-Martindale. 25th ed. London: Pharmaceutical Press, 1967, pp. 844, 845.

    Google Scholar 

  187. Norvir Oral Solution package insert. Abbott Laboratories, Abott Park, IL, 1998.

    Google Scholar 

  188. Staniforth DH, Lillystone RJ, Jackson D. Effect of food on the bioavailability and tolerance of clavulanic acid/amoxicillin combination. J Antimicrob Chemother 1982; 10: 131–139.

    PubMed  CAS  Google Scholar 

  189. Sourgens H, Derendorf H, Schifferer H. Pharmacokinetic profile of cefaclor. Int J Clin Pharm Ther 1997; 35: 374–380.

    CAS  Google Scholar 

  190. Lode H, Stahlmann R, Koepp P. Comparative pharmacokinetics of cephalexin, cefaclor, cefadroxil, and CGP 9000. Antimicrob Agents Chemother 1979; 16: 1–6.

    PubMed  CAS  Google Scholar 

  191. Hughes GS, Heald DL, Barker KB, et al. The effects of gastric pH and food on the pharmacokinetics of a new oral cephalosporin, cefpodoxime proxetil. Clin Pharmacol Ther 1989; 46: 674–685.

    PubMed  CAS  Google Scholar 

  192. Leroy A, Borsa F, Humbert G, et al. The pharmacokinetics of ofloxacin in healthy male volunteers. Eur J Clin Pharmacol 1987; 31: 629, 630.

    Google Scholar 

  193. Lee U, Hafkin B, Lee ID, Hoh J, Dix R. Effects of food and sulcralfate on a single dose of 500 milligrams of levofloxacin in healthy subjects. Antimicrob Agents Chemother 1997; 41: 2196–2200.

    PubMed  CAS  Google Scholar 

  194. Hoppu K, Tuomisto J, Koskimies O, Simell O. Food and guar decrease absorption of trimethoprim. Eur J Clin Pharmacol 1987; 32: 427–429.

    PubMed  CAS  Google Scholar 

  195. Moore KH, Shaw S, Laurent AL, et al. Lamivudine/zidovudine as a combined formulation tablet: bioequivalence compared with lamivudine and zidovudine administered concurrently and the effect of food on absorption. J Clin Pharmacol 1999; 39: 593–605.

    PubMed  CAS  Google Scholar 

  196. Nazareno LA, Hotazo AA, Limjuco R, et al. The effect of food on pharmacokinetics of zalcitabine in HIV positive patients. Pharm Res 1995; 12: 1462–1465.

    PubMed  CAS  Google Scholar 

  197. Kaul S, Christofalo B, Raymond RH, Stewart MB, Macleod CM. Effect of food on the bioavailability of stavudine in subjects with human immunodeficiency virus infection. Antimicrob Agents Chemother 1998; 42: 2295–2298.

    PubMed  CAS  Google Scholar 

  198. Chittick GE, Gillotin C, McDowell JA, et al. Abacavir: absolute bioavailability, bioequivalence of three oral formulations, and effect of food. Pharmacotherapy 1999; 19: 932–942.

    PubMed  CAS  Google Scholar 

  199. McEvoy GK. AHFS Drug Information. Bethesda, MD: American Society of Health System Pharmacists, 1999.

    Google Scholar 

  200. Nishiyama M, Koishi M, Fujioka M, et al. Phase I clinical trial with a novel protease inhibitor for HIV, KVX-478 in healthy male volunteers. Antiviral Res 1996; 30: A35.

    Google Scholar 

  201. Pue MA, Benet LZ. Pharmacokinetics of famciclovir in man. Antiviral Chemistry Chemother 1993; 4 (suppl 1): 47–55.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garey, K.W., Rodvold, K.A. (2001). Drug—Food Interactions. In: Piscitelli, S.C., Rodvold, K.A. (eds) Drug Interactions in Infectious Diseases. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-025-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-025-4_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5031-7

  • Online ISBN: 978-1-59259-025-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics