Skip to main content

Papillomaviruses in Human Cancers

  • Chapter
Infectious Causes of Cancer

Part of the book series: Infectious Disease ((ID))

Abstract

Papillomas as benign tumors were the first proliferative condition for which the causation by a viral infection has been convincingly demonstrated. Tumor virology started with the cell-free transmission of oral dog warts by M’Fadyan and Hobday in 1898 (1). These experiments preceded the frequently cited studies of a cell-free transmission of a chicken sarcoma by Peyton Rous (2) by 13 yr and those by Ellermann and Bang (3) on a viral origin of chicken leukemias by 10 yr. Also prior to these observations, in 1907 Ciuffo in Italy (4) showed the transmissibility of human warts in self-inoculation experiments. Thus, papillomas emerged as the first (though benign) tumors with a proven viral etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M’Fadyan J, Hobday F. Note on the experimental “transmission of warts in the dog ” J Comp Pathol Ther 1898; 11: 341–343.

    Article  Google Scholar 

  2. Rous P. Transmission of a malignant new growth by means of a cell-free filtrate. Am J Med Assoc 1911; 56: 198–211.

    Google Scholar 

  3. Ellermann V, Bang O. Experimentelle Leukämie bei Hühnern. Centralbl F Bakt Abt I (Orig) 1908; 46: 595–609.

    Google Scholar 

  4. Ciuffo G. Innesto positivo con filtrado di verrucae volgare. G Ital Mal Venereol 1907; 48: 12–17.

    Google Scholar 

  5. Rous P, Beard JW. Carcinomatous changes in virus-induced papillomas of the skin of the rabbit. Proc Soc Exp Biol Med 1934; 32: 578–580.

    Google Scholar 

  6. Rous P, Beard JW. The progression to carcinoma of virus-induced rabbit papilloma (Shope). J Exp Med 1935; 62: 523–548.

    Article  PubMed  CAS  Google Scholar 

  7. Rous P, Kidd JG. The carcinogenic effect of a papillomavirus on the tarred skin of rabbits. I. Description of the phenomenon. J Exp Med 1938; 67: 399–422.

    Article  PubMed  CAS  Google Scholar 

  8. Rous P, Friedewald WF. The effect of chemical carcinogens on virus-induced rabbit papillomas. J Exp Med 1944; 79: 511–537.

    Article  PubMed  CAS  Google Scholar 

  9. Lutz W. A propos de l’epidermodysplasie verruciforme. Dermatologica 1946; 92: 30–43.

    Article  PubMed  CAS  Google Scholar 

  10. Jablonska S, Millewski B. Zur Kenntnis der Epidermodysplasia verruciformis LewandowskyLutz. Dermatologica 1957; 115: 1–22.

    Article  PubMed  CAS  Google Scholar 

  11. Jablonska S, Dabrowski J, Jakubowicz K. Epidermodysplasia verruciformis as a model in studies on the role of papovaviruses in oncogenesis. Cancer Res 1972; 32: 583–589.

    PubMed  CAS  Google Scholar 

  12. Gissmann L, zur Hausen H. Human papilloma viruses: physical mapping and genetic heterogeneity. Proc Natl Acad Sci USA 1976; 73: 1310–1313.

    Article  PubMed  CAS  Google Scholar 

  13. Gissmann L, Pfister H, zur Hausen H. Human papilloma viruses (HPV): characterization of four different isolates. Virology 1977; 76: 569–580.

    Article  PubMed  CAS  Google Scholar 

  14. Orth G, Favre M, Croissant O. Characterization of a new type of human papillomavirus that causes skin warts. J Virol 1977; 24: 108–120.

    PubMed  CAS  Google Scholar 

  15. zur Hausen H, Meinhof W, Scheiber W, Bornkamm GW. Attempts to detect virus-specific DNA sequences in human tumors: I. Nucleic acid hybridizations with complementary RNA of human wart virus. Int J Cancer 1974; 13: 650–656.

    Article  PubMed  Google Scholar 

  16. zur Hausen H. Condylomata acuminata and human genital cancer. Cancer Res 1976; 36: 530.

    Google Scholar 

  17. zur Hausen H. Human papillomaviruses and their possible role in squamous cell carcinomas. Curr Top Microbiol Immunol 1977; 78: 1–30.

    Article  PubMed  Google Scholar 

  18. Orth G, Jablonska S, Favre M, Jarzabek-Chorzelska M, Rzesa G. Characterization of two new types of HPV from lesions of epidermodysplasia verruciformis. Proc Natl Acad Sci USA 1978; 75: 1537–1541.

    Article  PubMed  CAS  Google Scholar 

  19. Durst M, Gissmann L, Ikenberg H, zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 1983; 80: 3812–3815.

    Article  PubMed  CAS  Google Scholar 

  20. Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W, zur Hausen H. A new type of papillomavirus DNA, its presence in genital cancer and in cell lines derived from genital cancer. EMBO J 1984; 3: 1151–1157.

    PubMed  CAS  Google Scholar 

  21. de Villiers E-M. Heterogeneity of the human papillomavirus group. J Virol 1989; 63: 4898–4903.

    PubMed  Google Scholar 

  22. de Villiers E-M. Human pathogenic papillomaviruses: an update. In: zur Hausen H (ed). Current Topics in Microbiology and Immunology, Vol. 86. Berlin-Heidelberg: Springer-Verlag, 1994, pp. 1–12.

    Google Scholar 

  23. Howley PM. Papillomavirinae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds). Fields Virology Philadelphia: Lippincott-Raven, 1996, pp. 2045–2076.

    Google Scholar 

  24. zur Hausen H. Papillomavirus infections-a major cause of human cancers. Biochem Biophys Acta Rev Cancer 1996; 1288: F55 - F78.

    Article  Google Scholar 

  25. zur Hausen H. Genital papillomavirus infections. In: Rigby PWJ, Wilkie NM (eds). Viruses and Cancer. Cambridge: Cambridge University Press, 1986, pp. 83–90.

    Google Scholar 

  26. Amella CA, Lofgren LA, Ronn AM, Nouri M, Shikowitz MJ, Steinberg BM. Latent infection induced with cottontail rabbit papillomavirus. A model for human papillomavirus latency. Am J Pathol 1994; 144: 1167–1171.

    PubMed  CAS  Google Scholar 

  27. Schmitt A, Rochat A, Zeltner R, Borenstein L, Barrandon Y, Wetttstein FO, Iftner T. The primary target cells of the high risk cottontail rabbit papillomavirus colocalize with hair follicle stem cells. J Virol 1996; 70: 1912–1922.

    PubMed  CAS  Google Scholar 

  28. Breitburd F, Salmon J, Orth G. The rabbit viral skin papillomas and carcinomas: a model for the immunogenetics of HPV-associated carcinogenesis. Clin Dermatol 1997; 15: 237–247.

    Article  PubMed  CAS  Google Scholar 

  29. Penn I. Post-transplant kidney cancers and skin cancers (including Kaposi’s sarcoma). In: Schmähl D, Penn I (eds). Cancer in Organ Transplant Recipients. Heidelberg-Berlin: Springer-Verlag, 1991, pp. 946–953.

    Google Scholar 

  30. Boxman IL, Berkhout RJ, Mulder LH, Wolkers MC, Bouwes-Bavinck JN, Vermeer BJ, ter Schegget J. Detection of human papillomavirus DNA in plucked hairs from renal transplant recipients and healthy volunteers. J Invest Dermatol 1997; 108: 712–715.

    Article  PubMed  CAS  Google Scholar 

  31. Aston G, Lavergne D, Benton C, Höckmayr B, Egawa K, Garbe K, de Villiers E-M. Human papillomaviruses are commonly found in normal skin of immunocompetent hosts. J Invest Dermatol 1998; 110: 752–755.

    Article  Google Scholar 

  32. Stoler MH, Wolinsky SM, Whitbeck A, Broker TR, Chow LT. Differentiation-linked human papillomavirus types 6 and 11 transcription in genital condylomata revealed by in situ hybridization with message-specific RNA probes. Virology 1989; 172: 331–340.

    Article  PubMed  CAS  Google Scholar 

  33. Steinberg BM, Topp WC, Schneider PS, Abramson AL. Laryngeal papillomavirus infection during clinical remission. N Engl J Med 1983; 308: 1261–1264.

    Article  PubMed  CAS  Google Scholar 

  34. Park TW, Richart RM, Sun XW, Wright TC Jr. Association between human papillomavirus type and clonal status of cervical squamous intraepithelial lesions. J Natl Cancer Inst 1996; 88: 317–318.

    Article  Google Scholar 

  35. Enomoto T, Haba T, Fujita M, Hamada T, Yoshino K, Nakashima R, Wada H, Kurachi H, Wakasa K, Sakurai M, Murata Y, Shroyer KR. Clonal analysis of high grade squamous intraepithelial lesions of the uterine cervix. Int J Cancer 1997; 73: 339–344.

    Article  PubMed  CAS  Google Scholar 

  36. Durst M, Glitz D, Schneider A, zur Hausen H. Human papillomavirus type 16 (HPV 16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology 1992; 189: 132–140.

    Article  PubMed  CAS  Google Scholar 

  37. Stoler MH, Rhodes CR, Whitbeck A, Wolinsky SM, Chow LT, Broker TR. Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum Pathol 1992; 23: 117–128.

    Article  PubMed  CAS  Google Scholar 

  38. Orth G, Jablonska S, Jarzabek-Chorzelska M, Rzesa G, Obalek S, Favre M, Croissant O. Characteristics of the lesions and risk of malignant conversion as related to the type of the human papillomavirus involved in epidermodysplasia verruciformis. Cancer Res 1979; 39: 1074–1082.

    PubMed  CAS  Google Scholar 

  39. IARC Monograph on the Evaluation of Carcinogenic Risks to Humans, Vol. 64. Human Papillomaviruses. IARC: Lyon, 1995.

    Google Scholar 

  40. Niedobitek G, Pitteroff S, Herbst H, Shepherd P, Finn T, Anagnostopoulos I, Stein H. Detection of human papillomavirus type 16 DNA in carcinomas of the palatine tonsil. J Clin Pathol 1990; 43: 918–921.

    Article  PubMed  CAS  Google Scholar 

  41. Snijders PJ, Cromme FV, van den Brule AJ, Schrijnemakers HF, Snow GB, Meijer CJ, Wal-boomers JM. Prevalence and expression of human papillomavirus in tonsillar carcinomas, indicating a possible viral etiology. J Gen Virol 1992; 51: 845–850.

    CAS  Google Scholar 

  42. de Villiers E-M, Weidauer H, Otto H, zur Hausen H. Papillomavirus DNA in human tongue carcinomas. Int J Cancer 1985; 36: 575–578.

    Article  PubMed  Google Scholar 

  43. Kahn T, Schwarz E, zur Hausen H. Molecular cloning and characterization of the DNA of a new human papillomavirus (HPV 30) from a laryngeal carcinoma. Int J Cancer 1986; 37: 61–65.

    Article  PubMed  CAS  Google Scholar 

  44. Scheurlen W, Stremlau A, Gissmann L, Höhn D, Zenner H-P, zur Hausen H. Rearranged HPV 16 molecules in an anal carcinoma and in a laryngeal carcinoma. Int J Cancer 1986; 38: 671–676.

    Article  PubMed  CAS  Google Scholar 

  45. de Villiers E-M, Neumann C, Le JY, Weidauer H, zur Hausen H. Infection of the oral mucosa with defined types of human papillomaviruses. Med Microbiol Immunol 1986; 174: 287–294.

    Article  PubMed  Google Scholar 

  46. Wu TC, Trujillo JM, Kashima HK, Mounts P. Association of human papillomavirus with nasal neoplasia. Lancet 1993; 341: 522–524.

    Article  PubMed  CAS  Google Scholar 

  47. Stremlau A, Gissmann L, Ikenberg H, Stark E, zur Hausen H. Human papillomvirus type 16 DNA in an anaplastic carcinoma of the lung. Cancer 1985; 55: 1737–1740.

    Article  PubMed  CAS  Google Scholar 

  48. Snijders PJ, Meijer CJ, van den Brule AJ, Schrijmemakers HF, Snow GB, Walboomers JM. Human papillomavirus (HPV) type 16 and 33 E6/E7 transcripts in tonsillar carcinomas can originate from integrated and episomal HPV DNA. J Gen Virol 1992; 73: 2059–2066.

    Article  PubMed  CAS  Google Scholar 

  49. Snijders PJ, van den Brule AJ, Schrijnemakers HF, Raaphorst PM, Meijer CJ, Walboomers JM. Human papillomavirus type 33 in a tonsillar carcinoma generates its putative E7 mRNA via two E6* transcript species which are terminated at different early region poly(A)sites. J Virol 1992; 66: 3172–3178.

    PubMed  CAS  Google Scholar 

  50. Syrjänen KJ. Histological changes identical to those of condylomatous lesions found in esophageal squamous-cell carcinoma. Arch Geschwulstforsch 1982; 52: 283–292.

    PubMed  Google Scholar 

  51. Poljak M, Cerar A, Seme K. Human papillomavirus infection in esophageal carcinomas: a comparative study of 121 lesions using multiple broad-spectrum polymerase chain reactions and literature review. Hum Pathol 1998; 29: 266–271.

    Article  PubMed  CAS  Google Scholar 

  52. Lavergne D, de Villiers E-M. Papillomavirus in esophageal papillomas and carcinomas. Int J Cancer 1999; 80: 681–684.

    Article  PubMed  CAS  Google Scholar 

  53. Purdie KJ, Sexton CJ, Proby CM, Glover MT, Williams AT, Stables JN, et al. Malignant transformation of cutaneous lesions in renal allograft patients: a role for human papillomavirus. Cancer Res 1993; 53: 5328–5333.

    PubMed  CAS  Google Scholar 

  54. Shamanin V, Glover M, Rausch C, Proby C, Leigh I-M, zur Hausen H, de Villiers EM. Specific types of HPV found in benign proliferations and in carcinomas of the skin in immunosuppressed patients. Cancer Res 1994; 54: 4610–4613.

    PubMed  CAS  Google Scholar 

  55. Shamanin V, zur Hausen H, Lavergne D, Proby C, Leigh IM, Neumann C, Hamm H, Goos M, Haustein UF, Jung EG, Plewig G, Wolff H, de Villiers E-M. Human papillomavirus infections in non-melanoma skin cancers from renal transplant recipients and nonimmunosuppressed patients. J Natl Cancer Inst 1996; 88: 802–811.

    Article  PubMed  CAS  Google Scholar 

  56. Berkhout RJ, Tieben LM, Smits HL, Bavinck JMN, Vermeer BJ, ter Schegget J. Nested PCR approach for detection and typing of epidermodysplasia verruciformis-associated human papillomavirus types in cutaneous cancers from renal transplant recipients. J Clin Microbiol 1995; 33: 690–695.

    PubMed  CAS  Google Scholar 

  57. Völter C, He Y, Delius H, Roy-Burman A, Greenspan JS, Greenspan D, de Villiers E-M. Novel HPV types present in oral papillomatous lesions from patients with HIV infections. Int J Cancer 1996; 66: 453–456.

    Article  PubMed  Google Scholar 

  58. de Villiers E-M, Lavergne D, McLaren K, Benton EC. Prevailing papillomavirus types in non-melanoma carcinomas of the skin in renal allograft recipients. Int J Cancer 1997; 73: 356–361.

    Article  PubMed  Google Scholar 

  59. Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, zur Hausen H. Structure and transcription of human papillomavirus type 18 and 16 sequences in cervical carcinoma cells. Nature 1985; 314: 111–114.

    Article  PubMed  CAS  Google Scholar 

  60. Yee C, Krishnan-Hewlett Z, Baker CC, Schlegel R, Howley PM. Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. Am J Pathol 1985; 119: 361–366.

    PubMed  CAS  Google Scholar 

  61. McDougall JK Immortalization and transformation of human cells by human papillomavirus. Curr Top Microbiol Immunol 1994; 186: 101–119.

    Article  PubMed  CAS  Google Scholar 

  62. Band V, Zaychowski D, Kulesa V, Sager R. Human papillomavirus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements. Proc Natl Acad Sci USA 1990; 87: 463–467.

    Article  PubMed  CAS  Google Scholar 

  63. Band V, De Caprio JA, Delmolina L, Kulesa V, Sager R. Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J Virol 1991; 65: 6671–6676.

    PubMed  CAS  Google Scholar 

  64. Halbert CL, Demers GW, Galloway DA. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J Virol 1991; 65: 473–478.

    PubMed  CAS  Google Scholar 

  65. Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT. HPV 16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 1989; 8: 3905–3910.

    PubMed  CAS  Google Scholar 

  66. Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R. The E6 and E7 genes of human papillomavirus type 16 are necessary and sufficient for transformation of primary human keratinocytes. J Virol 1989; 63: 4417–4423.

    PubMed  CAS  Google Scholar 

  67. von Knebel Doeberitz M, Oltersdorf T, Schwarz E, Gissmann L. Correlation of modified human papillomavirus early gene expression with altered growth properties in C4–1 cervical carcinoma cells. Cancer Res 1988; 48: 3780–3786.

    Google Scholar 

  68. von Knebel Doeberitz M, Rittmüller C, zur Hausen H, Durst M. Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV E6–E7 antisense RNA. Int J Cancer 1992; 51: 831–834.

    Article  Google Scholar 

  69. von Knebel Doeberitz M, Rittmüller C, Aengeneyndt F, Jansen-Dürr P, Spitkovsky D. Reversible repression of papillomavirus oncogene expression in cervical carcinoma cells: consequences for the phenotype and E6-p53 and E7-pRB interactions. J Virol 1994; 68: 2811–2821.

    Google Scholar 

  70. Dyson N, Howley PM, Munger K, Harlow E. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989; 243: 934–937.

    Article  PubMed  CAS  Google Scholar 

  71. Huibregtse JM, Scheffner M. Mechanisms of tumor suppressor protein inactivation by the human papillomavirus E6 and E7 oncoproteins. Semi Virol 1994; 5: 357–367.

    Article  CAS  Google Scholar 

  72. Matlashewski G, Schneider J, Banks L, Jones N, Murray A, Crawford L. Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. EMBO J 1987; 6: 1741–1746.

    PubMed  CAS  Google Scholar 

  73. Durst M, Gallahan D, Jay G, Rhim JS Glucocorticoid-enhanced neoplastic transformation of human keratinocytes by human papillomavirus type 16 and an activated ras oncogene. Virology 1989; 173: 767–771.

    Article  PubMed  CAS  Google Scholar 

  74. Banks L, Edmonds C, Vousden K. Ability of HPV16 E7 protein to bind RB and induce DNA synthesis is not sufficient for efficient transforming activity in NIH3T3 cells. Oncogene 1990; 5: 1383–1389.

    PubMed  CAS  Google Scholar 

  75. Jewers RJ, Hildebrandt P, Ludlow JW, Kell B, McCance DJ. Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes. J Virol 1992; 66: 1329–1335.

    PubMed  CAS  Google Scholar 

  76. Bandara LR, Adamczewski JP, Hunt T, La Thangue NB. Cyclin A and the retinoblastoma gene product complex with a common transcription factor. Nature 1991; 352: 249–251.

    Article  PubMed  CAS  Google Scholar 

  77. Dyson N, Guida P, Munger K, Harlow E. Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol 1992; 66: 6893–6902.

    PubMed  CAS  Google Scholar 

  78. Tommasino M, Adamczewski JP, Canotti F, Barth CF, Manetti R, Contorni M, Cavalieri F, Hunt T, Crawford L. HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A. Oncogene 1993; 8: 195–202.

    PubMed  CAS  Google Scholar 

  79. Zerfass K, Schulze A, Spitkowsky D, Friedman V, Henglein B, Jansen-Dürr P. Sequential activation of cyclin E and cyclin A expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J Virol 1995; 69: 6389–6399.

    CAS  Google Scholar 

  80. Demers GW, Espling E, Harry JB, Etscheid BG, Galloway DA. Abrogation of growth arrest signals by human papillomavirus type 16 E7 is mediated by sequences required for transformation. J Virol 1996; 70: 6862–6869.

    PubMed  CAS  Google Scholar 

  81. Hickman ES, Bates S, Vousden KH. Perturbation of the p53 response by human papillomavirus type 16 E7. J Virol 1997; 71: 3710–3718.

    PubMed  CAS  Google Scholar 

  82. Slebos RJC, Lee MH, Plunkett BS, Kessis TD, Williams BO, Jacks T, Hedrick L, Kastan MB, Cho KR. p53-dependent G1 arrest involves pRb-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc Natl Acad Sci USA 1994; 91: 5320–5324.

    Article  PubMed  CAS  Google Scholar 

  83. White AE, Livanos EM, Tlsty TD. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev 1994; 8: 666–677.

    Article  PubMed  CAS  Google Scholar 

  84. Hashida T, Yasumoto S. Induction of chromosomal abnormalities in mouse and human epidermal keratinocytes by the human papillomavirus type 16 E7 oncogene. J Gen Virol 1991; 72: 1569–1577.

    Article  PubMed  CAS  Google Scholar 

  85. Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Dürr P. Inactivation of the cdk inhibitor p27KIP1 by human papillomavirus type 16 E7 oncoprotein. Oncogene 1996; 13: 2323–2330.

    PubMed  CAS  Google Scholar 

  86. Jones DL, Alani RM, Munger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip 1 -mediated inhibition of cdk2. Genes Dev 1997; 11: 2101–2111.

    Article  PubMed  CAS  Google Scholar 

  87. Funk JO, Waga S, Harry JB, Espling E, Stilman B, Galloway GA. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 protein. Genes Dev 1997; 11: 2090–2100.

    Article  PubMed  CAS  Google Scholar 

  88. Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E, Jansen-Dürr P. Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci USA 1999; 96: 1291–1296.

    Article  PubMed  CAS  Google Scholar 

  89. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 1990; 248: 76–79.

    Article  PubMed  CAS  Google Scholar 

  90. Scheffner M, Werness BA, Huibregtse JM, Levine JM, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63: 1129–1136.

    Article  PubMed  CAS  Google Scholar 

  91. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV 16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquination of p53. Cell 1993; 75: 495–505.

    Article  PubMed  CAS  Google Scholar 

  92. Vande Pol SB, Brown MC, Turner CE. Association of bovine papillomavirus type 1 E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interaction motif. Oncogene 1998; 16: 43–52.

    Article  CAS  Google Scholar 

  93. Ronco L, Karpova AY, Vidal M, Howley PM. The human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 1998; 12: 2061–2072.

    Article  PubMed  CAS  Google Scholar 

  94. Chen T-M, Pecoraro G, Defendi V. Genetic analysis of in vitro progression of human papillomavirus-transfected human cervical cells. Cancer Res 1993; 53: 1167–1171.

    PubMed  CAS  Google Scholar 

  95. Seagon S, Durst M. Genetic analysis of an in vitro model system for human papillomavirus type 16-associated tumorigenesis. Cancer Res 1994; 54: 5593–5598.

    PubMed  CAS  Google Scholar 

  96. Harris H, Miller OJ, Klein G, Worst P, Tachibana T. Suppression of malignancy by cell fusion. Nature 1969; 223: 363–368.

    Article  PubMed  CAS  Google Scholar 

  97. Cullen AP, Reid R, Campion M, Lorincz AT. Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm. J Virol 1991; 65: 606–612.

    PubMed  CAS  Google Scholar 

  98. Reuter S, Bartelmann M, Vogt M, Geisen C, Napierski I, Kahn T, Delius H, Lichter P, Weitz S, Korn B, Schwarz E. APM-1, a novel human gene, identified by aberrant co-transcription with papillomavirus oncogenes in a cervical carcinoma cell line, encodes a BTP/POZ-zinc finger protein with growth inhibitory activity. EMBO J 1998; 17: 215–222.

    Article  PubMed  CAS  Google Scholar 

  99. Durst M, Croce C, Gissmann L, Schwarz E, Huebner K. Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas. Proc Natl Acad Sci USA 1987; 84: 1070–1074.

    Article  PubMed  CAS  Google Scholar 

  100. Popescu NC, Zimonjic D, DiPaolo JA. Viral integration, fragile sites and proto-oncogenes in human neoplasia. Hum Genet 1990; 44: 58–62.

    Google Scholar 

  101. Lazzo PA, Gallego MI, Ballester S, Feduchi E. Genetic alterations by human papillomaviruses in oncogenesis. FEBS Lett 1992; 300: 109–113.

    Article  Google Scholar 

  102. Zimonjic DB, Popescu NC, DiPaolo JA. Chromosomal organization of viral integration sites in human papillomavirus-immortalized human keratinocyte cell lines Cancer Genet Cytogenet 1994; 72: 39–43.

    CAS  Google Scholar 

  103. Wilke CM, Hall BK, Hoge A, Paradee W, Smith DI, Glover TW. FRA3B extends over a broad region and contains a spontaneous HPV 16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet 1996; 5: 187–195.

    Article  PubMed  CAS  Google Scholar 

  104. Yokota J, Tsukada Y, Nakajima T, Gotoh M, Shimosato Y, Mori N, Tsunokawa Y, Sugimura T, Terada M. Loss of heterozygosity on the short arm of chromosome 3 in carcinoma of the uterine cervix. Cancer Res 1989; 49: 3598–3601.

    PubMed  CAS  Google Scholar 

  105. Kohno T, Takayama H, Hamaguchi M, Takano H, Yamaguchi N, Tsuda H, Hirohashi S, Vissing H, Shimuzu M, Oshimura M, Yokota J. Deletion mapping of chromosome 3p in human uterine cervical cancer. Oncogene 1993; 8: 1825–1832.

    PubMed  CAS  Google Scholar 

  106. Kersemaekers AM, Kenter GG, Hermans J, Fleuren GJ, van de Vijver MJ. Allelic loss and prognosis in carcinoma of the uterine cervix. Int J Cancer 1998; 79: 411–417.

    Article  PubMed  CAS  Google Scholar 

  107. Mitra AB, Murty V, Li RG, Pratap M, Luthra UK, Chaganbti RSK. Allelotype analysis of cervical carcinoma. Cancer Res 1994; 54: 4481–4487.

    PubMed  CAS  Google Scholar 

  108. Hampton GM, Penny LA, Baergen RN, Larson A, Brewer C, Liao S, Busby-Earle RMC, Williams AWR, Steel CM, Bird CC, Stanbridge EJ, Evans GA. Loss of heterozygosity in cervical carcinoma: subchromosomal localization of a putative tumor-suppressor gene to chromosome 11q22-q24. Proc Natl Acad Sci USA 1994; 91: 6953–6957.

    Article  PubMed  CAS  Google Scholar 

  109. Mulklokandov MR, Kholodilov NG, Atkin NB, Burk RD, Johnson AB, Klinger HP. Genomic alterations in cervical carcinoma: losses of chromosome heterozygosity and human papillomavirus status. Cancer Res 1996; 56: 197–205.

    Google Scholar 

  110. Fujita M, Inoue M, Tanizawa O, Iwamoto S, Enomoto T. Alterations of p53 gene in human primary cervical carcinoma with and without human papillomavirus infection. Cancer Res 1992; 52: 5323–5328.

    PubMed  CAS  Google Scholar 

  111. Hampton GM, Larson AA, Baergen RN, Sommers RL, Kren S, Cavenee WK. Simultaneous assessment of loss of heterozygosity at multiple microsatellite loci using semi-automated fluorescence based detection: subregional mapping of chromosome 4 in cervical carcinoma. Proc Natl Acad Sci USA 1996; 93: 6704–6709.

    Article  PubMed  CAS  Google Scholar 

  112. Ku J-L, Kim W-H, Park H-S, Kang S-B, Park J-G. Establishment and characterization of 12 uterine cervical carcinoma cell lines: common sequence variation in the E7 gene of HPV-16 positive cell lines. Int J Cancer 1997; 72: 313–320.

    Article  PubMed  CAS  Google Scholar 

  113. Le Beau MM. Chromosomal fragile sites and cancer-specific rearrangements. Blood 1986; 67: 849–858.

    PubMed  Google Scholar 

  114. Druck T, Berk L, Huebner K. FHITness and cancer. Oncology Res 1998; 10: 341–345.

    CAS  Google Scholar 

  115. zur Hausen H. Cell-virus gene balance hypothesis of carcinogenesis. Behring Inst Mitt 1977; 61: 23–30.

    Google Scholar 

  116. zur Hausen H. The role of viruses in human tumors. In: Klein G, Weinhouse S. (eds). Advances in Cancer Research, Vol. 33 1980; Academic Press, pp. 77–107.

    Google Scholar 

  117. zur Hausen H. Disrupted dichotomous intracellular control of human papillomavirus infection in cancer of the cervix. Lancet 1994; 343: 955–957.

    Article  PubMed  Google Scholar 

  118. Durst M, Bosch FX, Glitz D, Schneider A, zur Hausen H. Inverse relationship between human papillomvirus (HPV) type 16 early gene expression and cell differentiation in nude mouse epithelial cyysts and tumors induced by HPV positive human cell lines. J Virol 1991; 65: 796–804.

    PubMed  CAS  Google Scholar 

  119. Rösl F, Lengert M, Albrecht J, Kleine K, Zawatzky R, Schraven B, zur Hausen H. Differential regulation of the JE gene encoding the monocyte chemoattractant protein (MCP-1) in cervical carcinoma cells and derived hybrids. J Virol 1994; 68: 2142–2150.

    PubMed  Google Scholar 

  120. Rösl F, Das BC, Lengert M, Geletneky K, zur Hausen H. Antioxidant-induced changes in AP-1 composition result in a selective suppression of human papillomavirus transcription. J Virol 1997; 71: 362–370.

    PubMed  Google Scholar 

  121. Soto U, Das BC, Lengert M, Finzer P, zur Hausen H, Rösl F. Conversion of HPV 18 positive non-tumorigenic HeLa-fibroblast hybrids to invasive growth involves loss of TNF-ot mediated repression of viral transcription and modification of the AP-1 transcription complex. Oncogene 1999; 18: 3187–3198.

    Article  PubMed  CAS  Google Scholar 

  122. Villa LL, Vieira KB, Pei XF, Schlegel R. Differential effect of tumor necrosis factor on proliferation of primary human keratinocytes and cell lines containing human papillomavirus types 16 and 18. Mol Carcinogen 1992; 6: 5–9.

    Article  CAS  Google Scholar 

  123. Kyo S, Inoue M, Hayasaka N, Inoue T, Yutsudo M, Tanizawa O, Hakura A. Regulation of early gene expression of human papillomavirus type 16 by inflammatory cytokines. Virology 1994; 200: 1330–1339.

    Article  Google Scholar 

  124. Malejczyk J, Malejczyk M, Majewski S, Breifburd F, Luger TA, Jablonska S, Orth G. Increased tumorigenicity of human keratinocytes harboring human papillomavirus type 16 is associated with resistance to endogenous tumor necrosis factor-alpha-mediated growth limitation. Int J Cancer 1994; 56: 593–598.

    Article  PubMed  CAS  Google Scholar 

  125. Braun L, Durst M, Mikumo R, Grupposo P. Differential response of nontumorigenic and tumorigenic human papillomavirus type 16-positive epithelial cells to transforming growth factor beta 1. Cancer Res 1990; 50: 7324–7332.

    PubMed  CAS  Google Scholar 

  126. Woodworth CD, Notario V, DiPaolo JA. Transforming growth factors beta 1 and 2 transcriptionally regulate human papillomavirus (HPV) type 16 early gene expression in HPV-immortalized human genital epithelial cells. J Virol 1990; 64: 4767–4775.

    PubMed  CAS  Google Scholar 

  127. Merrick DT, Winberg G, McDougall JK. Re-expression of interleukin 1 in human papillomavirus 18 immortalized keratinocytes inhibits their tumorigencity in nude mice. Cell Growth Different 1996; 7: 1661–1669.

    CAS  Google Scholar 

  128. Kyo S, Inoue M, Nishio Y, Nakanishi K, Inoue H, Yutsudo M, Tanizawa O, Hakura A. NF-IL6 represses early gene expression of human papillomavirus type 16 through binding to the non-coding region. J Virol 1993; 67: 1058–1066.

    PubMed  CAS  Google Scholar 

  129. Smits PHM, Smits HL, Minnaar R, Hemmings BA, Mayer-Jaekel RE, Schuurman R, van der Noordaa J, ter Schegget J. The trans-activation of the HPV 16 long control region in human cells with a deletion in the short arm of chromosome 11 is mediated by the 55kDa regulatory subunit of protein phosphatase 2A. EMBO J 1992; 11: 4601–4606.

    PubMed  CAS  Google Scholar 

  130. Reznikoff CA, Yeager TR, Belair CD, Salevieva E, Puthenveettil JA, Stadler WM. Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not in E7, transformed human uroepithelial cells. Cancer Res 1996; 56: 2886–2890.

    PubMed  CAS  Google Scholar 

  131. Müller M, Zhou J, Reed TD, Rittmuller C, Burger A, Gabelsberger J, Braspenning J, Gissman L. Chimeric papillomavirus-like particles. Virology 1997; 234: 93–111.

    Article  PubMed  Google Scholar 

  132. Wideroff L, Schiffman MH, Hoover R, Tarone RE, Nonnenmacher B, Hubbert N, Kirnbauer R, Greer CE, Lorincz AT, Manos MM, Glass AG, Scott DR, Sherman ME, Buckland J, Lowy DR Schiller JT. Epidemiologic determinants of seroreactivity to human papillomavirus (HPV) type 16 virus-like particles in cervical HPV-16 DNA-positive and -negative women. J Infect Dis 1996; 174: 937–943.

    Article  PubMed  CAS  Google Scholar 

  133. Suzich JA, Ghim SJ, Palmer-Hill FJ, White WL, Tamura JK, Bell JA, Newsome JA, Jenson AB, Schlegel R. Systemic immunization with papillomavirus Ll protein completely prevents the development of viral mucosal papillomas. Proc Natl Acad Sci USA 1995; 92: 11553–11557.

    Article  PubMed  CAS  Google Scholar 

  134. Breitburd F, Kirnbauer R, Hubbert NL, Nonnenmacher B, Trin-Dinh Desmarquet C, Orth G, Schiller JT, Lowy DR. Immunization with virus-like particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J Virol 1995; 69: 3959–3963.

    PubMed  CAS  Google Scholar 

  135. Kirnbauer R, Chandrachud LM, O’Neil BW, Wagner ER, Grindlay GJ, Armstrong A, McGarvie GM, Schiller JT, Lowy DR, Campo MS. Virus-like particles of bovine papillomavirus type 4 in prophylactic and therapeutic vaccination. Virology 1996; 219: 37–44.

    Article  PubMed  CAS  Google Scholar 

  136. Müller M, Zhou J, Reed TD, Rittmüller C, Burger A, Gabelsberger J, Braspenning J, Gissmann L. Chimeric papillomavirus-like particles. Virology 1997; 234: 93–111.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

zur Hausen, H. (2000). Papillomaviruses in Human Cancers. In: Goedert, J.J. (eds) Infectious Causes of Cancer. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-024-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-024-7_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9621-5

  • Online ISBN: 978-1-59259-024-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics