Skip to main content

Regulation of Dopamine Transporter by Phosphorylation and Impact on Cocaine Action

  • Chapter
Cerebral Signal Transduction

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 163 Accesses

Abstract

The dopamine transporter (DAT) is the primary mechanism by which extracellular dopamine is cleared from the synaptic space. As such, it performs a key role in terminating synaptic transmission and in regulating the concentration of dopamine available for binding to presynaptic and postsynaptic dopamine receptors. DAT is also a major site of action for psychostimulants such as cocaine and amphetamine, and is believed to be involved with the reinforcing properties of these drugs. It has recently been found that activation of protein kinase C leads to reductions in dopamine transport and concomitant phosphorylation of DATs, suggesting that the protein undergoes functional regulation by phosphorylation. Other kinases may function similarly, providing neurons with a mechanism for fine temporal and spatial control of extracellular dopamine concentrations and subsequent neural activity. Therefore, phosphorylation of DAT has the potential to profoundly influence dopaminergic neurophysiology and may be related to mechanisms of cocaine abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Giros, B., Jaber, M., Jones, S. R., Wightman, R. M., and Caron, M. G. (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature (London) 379, 606–612.

    Article  CAS  Google Scholar 

  2. Donovan, D. M., Vandenbergh, D. J., Perry, M. P., Bird, G. S., Ingersoll, R., Nanthakumar, E., and Uhl, G. R. (1995) Human and mouse dopamine transporter genes: conservation of 5’-flanking sequence elements and gene structures. Mol. Brain Res. 30, 327–335.

    Google Scholar 

  3. Giros, B., El Mestikawy, S., Bertrand, L., and Caron, M. G. (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett. 295, 149–154.

    Article  PubMed  CAS  Google Scholar 

  4. Giros, B., Mestikawy, S. E., Godinot, N., Zheng, K., Han, H., Yang-Feng, T., and Caron, M. G. (1992) Cloning, pharmacological characterization and chromosome assignment of the human dopamine transporter. Mol. Pharmacol. 42, 383–390.

    Google Scholar 

  5. Kilty, J., Lorang, D., and Amara, S. G. (1991) Cloning and expression of a cocaine-sensitive dopamine transporter. Science 254, 578–579.

    Article  PubMed  CAS  Google Scholar 

  6. Shimada, S., Kitayama, S., Lin, C.-L., Patel, A., Nanthakumar, E., Gregor, P., Kuhar, M., and Uhl, G. (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254, 576–578.

    Article  PubMed  CAS  Google Scholar 

  7. Usdin, T. B., Mezey, E., Chen, C., Brownstein, M. J., and Hoffman, B. J. (1991) Cloning of the cocaine-sensitive bovine dopamine transporter. Proc. Natl. Acad. Sci. USA 88, 168–171.

    Google Scholar 

  8. Vandenbergh, D. J., Persico, A. M., and Uhl, G. R. (1992) A human dopamine transporter cDNA predicts reduced glycosylation, displays a novel repetitive element and provides racially-dimorphic Taq I RFLPs. Mol. Brain Res. 15, 161–166.

    Google Scholar 

  9. Berger, S. P., Martenson, R., Laing, P., Thurcauf, A., DeCosta, B., Rice, K. C., and Paul, S. M. (1991) Photoaffinity labeling of the dopamine reuptake carrier protein with 3-azido[3H]GBR-12935. Mol. Pharmacol. 39, 429–435.

    Google Scholar 

  10. Gracz, L. M. and Madras, B. K. (1995) [3H]WIN 35,428 ([3H]CFT) binds to multiple charge-states of the solubilized dopamine transport in primate striatum. J. Pharmacol. Exp. Ther. 273, 1224–1234.

    Google Scholar 

  11. Grigoriadis, D. E., Wilson, A. A., Lew, R., Sharkey, S., and Kuhar, M. J. (1989) Dopamine transport sites selectively labeled by a novel photoaffinity probe: 125I DEEP. J. Neurosci. 9, 2664–2670.

    PubMed  CAS  Google Scholar 

  12. Lew, R., Grigoriadis, D. E., Sharkey, J., and Kuhar, M. J. (1989) Dopamine transporter: solubilization from dog caudate nucleus. Synapse 3, 372–375.

    Article  PubMed  CAS  Google Scholar 

  13. Simantov, R., Vaughan, R., Lew, R., Wilson, A., and Kuhar, M. J. (1991) Dopamine transporter-cocaine receptor: characterization and purification. Adv. Biosci. 82, 151–154.

    Google Scholar 

  14. Lew, R., Grigoriadis, D., Wilson, A., Boja, J. W., Simantov, R., and Kuhar, M. J. (1991) Dopamine transporter: deglycosylation with exo-and endoglycosidases. Brain Res. 539, 239–246.

    Article  PubMed  CAS  Google Scholar 

  15. Patel, A. P. (1997) Neurotransmitter transporter proteins: posttranslational modifications, in Neurotransmitter Transporters, Structure, Function, and Regulation ( Reith, M. E. A., ed.), Humana, Totowa, NJ, pp. 241–262.

    Google Scholar 

  16. Vaughan, R. A., Brown, V. L., McCoy M. T., and Kuhar, M. J. (1996) Species and brain-region specific dopamine transporters: immnological and glycosylaion characteristics. J. Neurochem. 66, 2146–2152.

    Article  PubMed  CAS  Google Scholar 

  17. Vaughan, R. A. (1995) Photoaffinity-labeled ligand binding domains on dopamine transporters identified by peptide mapping. Mol. Pharmacol. 47, 956–964.

    Google Scholar 

  18. Vaughan, R. A. and Kuhar, M. J. (1996) Dopamine transporter ligand binding domains: structural and functional properties revealed by limited proteolysis. J. Biol. Chem. 271, 21,672–21, 680.

    Google Scholar 

  19. Hersch, S. M., Yi, H., Heilman, C. J., Edwards, R. H., and Levey, A. I. (1997) Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J. Comp. Neurol. 388, 211–227.

    Google Scholar 

  20. Nirenberg, M. J., Vaughan, R. A., Uhl, G. R., Kuhar, M. J., and Pickel, V. M. (1996) The dopamine transporter is localized to dendritic and axonal plasma membranes of nirgostriatal dopaminergic neurons. J. Neurosci. 16, 436–447.

    PubMed  CAS  Google Scholar 

  21. Miller, J. W., Kleven, D. T., Domin, B. A., and Fremeau, R. T., Jr. (1997) Cloned sodium-(and chloride-) dependent high affinity transporters for GABA, glycine, proline, betaine, taurine, and creatine, in Neurotransmitter Transporters, Structure, Function, and Regulation ( Reith, M. E. A., ed.), Humana, Totowa, NJ, pp. 101–150.

    Google Scholar 

  22. Povlock, S. L. and Amara, S. G. (1997) The structure and function of norepinephrine, dopamine, and serotonin transporters, in Neurotransmitter Transporters, Structure, Function, and Regulation ( Reith, M. E. A., ed.), Humana, Totowa, NJ, pp. 1–28.

    Google Scholar 

  23. Schuldiner, S. (1997) Vesicular neurotransmitter transporters: pharmacology, biochemistry and molecular analysis, in Neurotransmitter Transporters, Structure, Function, and Regulation ( Reith, M. E. A., ed.), Humana, Totowa, NJ, pp. 215–240.

    Google Scholar 

  24. Koob, G. F. and Bloom, F. E. (1988) Cellular and molecular mechanisms of drug dependence. Science 242, 715–723.

    Article  PubMed  CAS  Google Scholar 

  25. Bergman, J., Madras, B. K., Johnson, S. E., and Spealman, R. D. (1989) Effects of cocaine and related drugs in nonhuman primates. III. Self-administration by squirrel monkeys. J. Pharmacol. Exp. Therap. 251, 150–155.

    Google Scholar 

  26. Ritz, M. C., Lamb, R. J., Goldberg, S. R., and Kuhar, M. J. (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237, 1219–1223.

    Article  PubMed  CAS  Google Scholar 

  27. Kuhar, M. J., Ritz, M. C., and Boja, J. W. (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci. 14, 299–302.

    Article  PubMed  CAS  Google Scholar 

  28. Wise, R. A. and Bozarth, M. A. (1987) A psychomotorstimulant theory of addiction. Psychol. Rev. 94, 469–492.

    Google Scholar 

  29. Sonders, M. S., Zhu, W.-J., Zahniser, N. R., Kavanaugh, M. P., and Amara, S. G. (1997) Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J. Neurosci. 17, 960–974.

    PubMed  CAS  Google Scholar 

  30. Buck, K. and Amara, S. G. (1994) Chimeric dopamine-norepinephrine transporters delineate structural domains influencing selectivity for catecholamines and 1-methyl-4-phenylpyridinium. Proc. Natl. Acad. Sci. USA 91, 12,584–12, 588.

    Google Scholar 

  31. Giros, B., Wang, Y.-M., Suter, S., McLeskey, S. B., Pifl, C., and Caron, M. G. (1994) Delineation of discrete domains for subsrate, cocaine, and tricyclic antidepressant interactions using chimeric dopamine-norepinephrine transporters. J. Biol. Chem. 269, 15,985–15, 988.

    Google Scholar 

  32. Kitayama, S., Shimada, S., Xu, H., Markham, L., Donovan, D. M., and Uhl, G. R. (1992) Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc. Natl. Acad. Sci. USA 89, 7782–7785.

    Google Scholar 

  33. Kitayama, S., Wang, J. B., and Uhl, G. R. (1993) Dopamine transporter mutants selectively enhance MPP+ transport. Synapse 15, 58–62.

    Article  PubMed  CAS  Google Scholar 

  34. Vaughan, R. A., Agoston, G. E., Lever, J., and Newman, A. H. (1999) Differential binding of tropane-based photoaffinity ligands on the dopamine transporters. J. Neurosci. 19, 630–636.

    PubMed  CAS  Google Scholar 

  35. Edvarsen, O. and Dahl, S. G. (1994) A putative model of the dopamine transporter. Mol. Brain Res. 27, 265–274.

    Google Scholar 

  36. Batchelor, M. and Schenk, J. O. (1998) Protein kinase A activity may kinetically up-regulate the striatal transporter for dopamine. J. Neurosci. 18, 10,304–10, 309.

    Google Scholar 

  37. Kantor, L. and Gnegy, M. E. (1998) Protein kinase C inhibitors block amphetamine-mediated dopamine release in rat striatal slices. J. Pharmacol. Exp. Ther. 284, 592–598.

    Google Scholar 

  38. L’hirondel, M., Cheramy, A., Godehueu, G., and Gowinski, J. (1995) Effects of arachidonic acid on dopamine synthesis, spontaneous release, and uptake in striatal synaptosomes from the rat. J. Neurochem. 64, 1406–1409.

    Article  PubMed  Google Scholar 

  39. Pogun, S., Baumann, M. H., and Kuhar, M. J. (1994) Nitric oxide inhibits [3H] dopamine uptake. Brain Res. 641, 83–91.

    Article  PubMed  CAS  Google Scholar 

  40. Uchikawa, T., Kiuchi, Y., Akihiko, Y., Nakachim N., Yanazaki, Y., Yokomizo, C., and Oguchi, K. (1995) Cat+-dependent enhancement of [3H] dopamine uptake in rat striatum: possible involvement of calmodulin-dependent kinases. J. Neurochem. 65, 2065–2071.

    Article  PubMed  CAS  Google Scholar 

  41. Vaughan, R. A., Huff, R. A., Uhl, G. R., and Kuhar, M. J. (1997) Protein kinase C-mediated phosphorylation and functional regulation of dopamine transporters in striatal synaptosomes. J. Biol. Chem. 272, 15,541–15, 546.

    Google Scholar 

  42. Copeland, B. J., Neff, N. H., and Hadjjonstantinou, M. (1996) Protein kinase C activators decrease dopamine uptake into striatal synaptosomes. J. Pharmacol. Exp. Therap. 277, 1527–1532.

    Google Scholar 

  43. Huff, R. A., Vaughan, R. A., Kuhar, M. J., and Uhl, G. R. (1997) Phorbol esters increase dopamine transporter phosphorylation and decrease transport Vmax. J. Neurochem. 68, 225–232.

    Article  PubMed  CAS  Google Scholar 

  44. Kitayama, S., Dohi, T., and Uhl, G. (1994) Phorbol esters alter functions of the expressed dopamine transporter. Eur. J. Pharmacol. 268, 115–119.

    Google Scholar 

  45. Pristupa, Z. B., McConkey, F., Liu, F., Man, H. Y., Lee, F. J. S., Wang, Y. T., and Niznik, H. B. (1998) Protein kinase-mediated bidirectional trafficking and functional regulation of the human dopamine transporter. Synapse 30, 79–87.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang, L., Coffey, L. L., and Reith, M. E. A. (1997) Regulation of the functional activity of the human dopamine transporter by protein kinase C. Biochem. Pharmacol. 53, 677–688.

    Google Scholar 

  47. Zhang, L. and Reith, M. E. A. (1996) Regulation of the functional activity of the human dopamine transporter by the arachidonic acid pathway. Eur. J. Pharmacol. 315, 345–354.

    Google Scholar 

  48. Zhu, S.-J., Kavanaugh, M. P., Sonders, M. S., Amara, S. G., and Zahniser, N. R. (1997) Activation of protein kinase C inhibits uptake, currents and binding associated with the human dopamine transporter expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther. 282, 1358–1365.

    Google Scholar 

  49. Cohen, P. (1989) The structure and regulation of protein phosphatases. Ann. Rev. Biochem. 58, 453–508.

    Google Scholar 

  50. Tian, Y., Kapatos, G., Granneman, J. G., and Bannon, M. J. (1994) Dopamine and y-aminobutyric acid transporters: differential regulation by agents that promote phosphorylation. Neurosci. Lett. 173, 143–146.

    Google Scholar 

  51. Bredt, D. S. and Snyder, S. H. (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. USA 86, 9030–9033.

    Google Scholar 

  52. Bugnon, O., Ofori, S., and Schorderet, M. (1995) Okadaic acid modulates exocytotic and transporter-dependent release of dopamine in bovine retina in vitro. NaunynSchmiedeberg’s Arch. Pharmacol. 351, 53–59.

    Google Scholar 

  53. Giambalvo, C. T. (1992) Protein kinase C and dopamine transport-2. Effects of amphetatmine in vitro. Neuropharmacology 31, 1211–1220.

    Google Scholar 

  54. Vrindavam, N. S., Arnaud, P., Ma, J. X., Altman-Hamamdzic, S., Parratto, N. P., and Sallee, F. R. (1996) The effects of phosphorylation on the functional regulation of an expressed recombinant human dopamine transporter. Neurosci. Lett. 216, 133–136.

    Google Scholar 

  55. Corey, J., Davidson, N., Lester, H., Brecha, N., and Quick, M. (1994) Protein kinase C modulates the activity of a cloned y-aminobutyric acid transporter expressed in Xenopus oocytes via regulated subcellular redistribution of the transporter. J. Biol. Chem. 269, 14,759–14, 767.

    Google Scholar 

  56. Sato, K., Adams, R., Betz, H., and Schloss, P. (1995) Modulation of a recombinant glycine transporter (GLYT1b) by activation of protein kinase C. J. Neurochem. 654, 1967–1973.

    Google Scholar 

  57. Lee, S. H., Son, H., Chang, M. Y., Kang, S. H., Chin, H., and Lee, Y. S. (1998) Protein kinase C-mediated regulation of dopamine transporter is not achieved by direct phosphorylation on the transporter. Soc. Neurosci. Abstr. 24, 607.

    Google Scholar 

  58. Vaughan, R. A., McCoy, M. T., and Kuhar, M. J. (1992) Charge isoforms of dopamine transporters. Soc. Neurosci. Abstr. 18, 1433.

    Google Scholar 

  59. Kokoshka, J. M., Vaughan, R. A., Hanson, G. R., and Fleckenstein, A. E. (1998) Nature of methamphetamine-induced rapid and reversible changes in dopamine transporters. Eur. J. Pharmacol. 20, 269–275.

    Google Scholar 

  60. Krantz, D. E., Peter, D., Liu, Y., and Edwards, R. H. (1997) Phosphorylation of a vesicular monoamine transporter by casein kinase II. J. Biol. Chem. 272, 6752–6759.

    Google Scholar 

  61. Ramamoorthy, S., Giovanetti, E., Qian, Y., and Blakely, R. D. (1998) Phosphorylation and regulation of antidepressant-sensitive serotonin transporters. J. Biol. Chem. 273, 2458.

    Google Scholar 

  62. Apparsundaram, S., Schroeter, S., Giovanetti, E., and Blakely, R. D. (1998) Acute regulation of norepinephrine transport: II. PKC-modulated surface expression of human norepinephrine transporter proteins. J. Pharmacol. Exp. Ther. 287, 744–751.

    Google Scholar 

  63. Qian, Y., Galli, A., Ramamoorthy, S., Risso, S., DeFelice, L. J., and Blakely, R. D. (1997) Protein kinase C activation regulates human serotonin transporters in HEK293 cells via altered cell surface expression. J. Neurosci. 17, 45–57.

    PubMed  CAS  Google Scholar 

  64. Sibley, D. R. and Lefkowitz, R. J. (1987) Beta-adrenergic receptor-coupled adenylate cyclase. Biochemical mechanisms of regulation. Mol. Neurobiol. 1, 121–154.

    Google Scholar 

  65. Meiergerd, S. M., Patterson, T. A., and Schenk, J. (1993) D2 receptors may modulate the function of the striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo. J. Neurochem. 61, 764–767.

    Article  PubMed  CAS  Google Scholar 

  66. Sibley, D. R., Monsma, F. J., and Shen, Y. (1993) Molecular neurobiology of dopaminergic receptors. Int. Rev. Neurobiol. 35, 391–415.

    Google Scholar 

  67. Giambalvo, C. T. and Wagner, R. L. (1994) Activation of D1 and D2 dopamine receptors inhibits protein kinase activity in striatal synaptoneurosomes. J. Neurochem. 63, 169–176.

    Article  PubMed  CAS  Google Scholar 

  68. Freidman, E., Jin, L. Q., Cai, G. P., Hollon, T. R., Drags, J., Sibley, D. R., and Wang, H.-Y. (1997) Di-like dopaminergic activation of phosphoinositide hydrolysis is independent of DIA dopamine receptors: evidence from Dip, knockout mice. Mol. Pharmacol. 51, 6–11.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Vaughan, R.A. (2000). Regulation of Dopamine Transporter by Phosphorylation and Impact on Cocaine Action. In: Reith, M.E.A. (eds) Cerebral Signal Transduction. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-019-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-019-3_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9615-4

  • Online ISBN: 978-1-59259-019-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics