Skip to main content

The Effect of Exercise on the Hypothalamo—Pituitary—Adrenal Axis

  • Chapter
Sports Endocrinology

Part of the book series: Contemporary Endocrinology ((COE,volume 23))

Abstract

In response to any external stimulus that is perceived as a threat to homeostasis (stress), activation of the autonomic nervous system occurs and plasma cortisol levels increase as a result of activation of the hypothalamo—pituitary—adrenal (HPA) axis. The hypothalamic hormones corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) are the major regulators of corticotropin (adrenocorticotrophic hormone; ACTH) secretion from the corticotropes of the anterior pituitary gland (1). ACTH in turn stimulates the production and release of cortisol from the zona fasciculata of the adrenal cortex at a rate of about 12–15 mg/m2/d in nonstressed adults. Approximately 90–93% of circulating cortisol is bound to a protein, cortisol binding globulin (CBG), and only the free fraction can readily diffuse through cell membranes and exert biological effects. Plasma cortisol levels peak at about the time of waking and have their nadir around midnight. Although light is the main entrainer of the cortisol rhythm, other influences, for example, physical activity, also have a significant effect on the human circadian pacemaker (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donald RA, Wittert GA. Stress and ACTH regulation. In: Kohler PO, ed. Current Opinion in Endocrinology and Diabetes. Current Science, Philadelphia, PA; 1994, pp. 93–99.

    Google Scholar 

  2. Van Reeth O, Sturis J, Byrne MM, Blackman JD, L’Hermite Baleriaux M, Leproult R, et al. Nocturnal exercise phase delays circadian rhythms of melatonin and thyrotropin secretion in normal men. Am J Physiol 1994; 266: E964–E974.

    PubMed  Google Scholar 

  3. Levin N, Shinsako J, Dallman M Cortisocsterone acts on the brain to inhibit adrenalectomy-induced adrenocorticotropin secretion. Endocrinology 1988; 122: 694–701.

    Article  PubMed  CAS  Google Scholar 

  4. DeRijk RH, Petrides J, Deuster P, Gold PW, Sternberg EM. Changes in corticosteroid sensitivity of peripheral blood lymphocytes after strenuous exercise in humans. J Clin Endocrinol Metab 1996; 81: 228–235.

    Article  PubMed  CAS  Google Scholar 

  5. Grasso G, Lodi L, Lupo C, Muscettola M. Glucocorticoid receptors in human peripheral blood mononuclear cells in relation to age and to sport activity. Life Sci 1997; 61: 301–308.

    Article  PubMed  CAS  Google Scholar 

  6. Petrides JS, Mueller GP, Kalogeras KT, Chrousos GP, Gold PW, Deuster PA Exercise-induced activation of the hypothalamic-pituitary-adrenal axis: marked differences in the sensitivity to glucocorticoid suppression. J Clin Endocrinol Metab 1994; 79: 377–383.

    Article  PubMed  CAS  Google Scholar 

  7. Kahn NH. Behavioural effects of ovine corticotropin-releasing factor administered to rhesus monkeys. Fed Proc 1985; 44: 249–253.

    Google Scholar 

  8. Koob GF, Bloom FE. Corticotropin-releasing factor and behavior. Fed Proc 1991; 44: 259–263.

    Google Scholar 

  9. Whitnall MH. Stress selectively activates the vasopressin-containing subset of corticotropin-releasing hormone neurons. Neuroendocrinology 1989; 50: 702–707.

    Article  PubMed  CAS  Google Scholar 

  10. Holmes MC, Antoni FA, Aguilera G, Catt KJ. Magnocellular axons in passage through the median eminence release vasopressin. Nature 1986; 319: 326–329.

    Article  PubMed  CAS  Google Scholar 

  11. Plotsky PM Pathways to the secretion of adrenocorticotropin: a view from the portal. J Neuroendocrinol 1991;3:1–9.

    Google Scholar 

  12. Canny BJ, Funder JW, Clarke IJ. Glucocorticoids regulate ovine hypophysial portal levels of corticotropin-releasing factor and arginine vasopressin in a stress-specific manner. Endocrinology 1989; 125: 2532–2539.

    Article  PubMed  CAS  Google Scholar 

  13. Jia LG, Canny BJ, Orth DN, Leong DA. Distinct classes of corticotropes mediate corticotropinreleasing hormone-and arginine vasopressin-stimulated adrenocorticotropin release. Endocrinology 1991; 128: 197–203.

    Article  PubMed  CAS  Google Scholar 

  14. De Goeij DC, Dijksstra S, Tilders FJH. Chronic psychosocial stress enhances vasopressin, but not corticotropin-releasing factor, in the external zone of the median eminence of males rats. Endocrinology 1991; 101: 847–853.

    Google Scholar 

  15. De Goeij DC, Binnekade R, Tilders FJ. Chronic stress enhances vasopressin but not corticotropinreleasing factor secretion during hypoglycemia. Am J Physiol 1992; 263: E394–99.

    PubMed  Google Scholar 

  16. Staessen J, Fiocchi R, Bouillon R, Fagard R, Hespel P, Lijnen P, et al. Effects of opioid antagonism on the haemodynamic and hormonal responses to exercise. Clin Sci 1988; 75: 293–300.

    PubMed  CAS  Google Scholar 

  17. Vamvakopoulos NC, Chrousos GP. Hormonal regulation of human corticotropin-releasing factor gene expression: implications for the stress response and immune/inflammatory reaction. Endocr Rev 1994; 15: 409–420.

    PubMed  CAS  Google Scholar 

  18. Frederiksen SO, Ekman R, Gottfries CG, Widerlov E, Jonsson S. Reduced concentrations of galanin, arginine vasopressin, neuropeptide Y and peptide YY in the temporal cortex but not in the hypothalamus of brains from schizophrenics. Acta Psychiatr Scand 1991; 83: 273–277.

    Article  PubMed  CAS  Google Scholar 

  19. Turner BB. Sex difference in glucocorticoid binding in rat pituitary is estrogen dependent. Life Sci 1990; 46: 1399–1406.

    Article  PubMed  CAS  Google Scholar 

  20. Gallucci WT, Baum A, Laue L, Rabin DS, Chrousos GP, Gold PW, Kling MA. Sex differences in sensitivity of the hypothalamic-pituitary-adrenal axis. Health Psychol 1993; 12: 420–425.

    Article  PubMed  CAS  Google Scholar 

  21. Smoak B, Deuster P, Rabin D, Chrousos G. Corticotropin-releasing hormone is not the sole factor mediating exercise-induced adrenocorticotropin release in humans. J Clin Endocrinol Metab 1991; 73: 302–306.

    Article  PubMed  CAS  Google Scholar 

  22. Convertino VA, Keil LC, Bemauer EM, Greenleaf JE. Plasma volume, osmolality, vasopressin and renin activity during graded exercise in man. J Appl Physiol 1981; 50: 123–128 (Abstract).

    PubMed  Google Scholar 

  23. Wade CE. Response, regulation and actions of vasopressin during exercise: a review. Med Sci Sports Exerc 1984; 16: 506–511 (Abstract).

    Article  PubMed  CAS  Google Scholar 

  24. Wittert GA, Stewart DE, Graves MP, Ellis MJ, Evans MJ, Wells JE, et al. Plasma corticotrophin releasing factor and vasopressin responses to exercise in normal man. Clin Endocrinol Oxford 1991; 35: 311–317.

    Article  CAS  Google Scholar 

  25. Alexander SL, Irvine CH, Ellis MJ, Donald RA. The effect of acute exercise on the secretion of corticotropin-releasing factor, arginine vasopressin, and adrenocorticotropin as measured in pituitary venous blood from the horse. Endocrinology 1991; 128: 65–72.

    Article  PubMed  CAS  Google Scholar 

  26. Luger A, Deuster PA, Kyle SB, Gallucci WT, Montgomery LC, Gold PW, et al. Acute hypothalamicpituitary-adrenal responses to the stress of treadmill exercise. Physiologic adaptations to physical training. N Engl J Med 1987; 316: 1309–1315.

    Article  PubMed  CAS  Google Scholar 

  27. Cannon JG, Kluger MJ. Endogenous pyrogen activity in human plasma after execise. Science 1983; 220: 617–619.

    Article  PubMed  CAS  Google Scholar 

  28. Kjaer M. Secher NH, Bach FW, Sheikh S, Galbo H. Hormonal and metabolic responses to exercise in humans• effect of sensory nervous blockade. Am J Physiol 1989; 257: E95–101.

    PubMed  CAS  Google Scholar 

  29. Kjaer M, Secher NH, Bangsbo J, Perko G, Horn A, Mohr T, et al. Hormonal and metabolic responses to electrically induced cycling during epidural anesthesia in humans. J Appl Physiol 1996; 80: 2156–2162.

    Article  PubMed  CAS  Google Scholar 

  30. Few JD. Effect of exercise on the secretion and metabolism of cortisol in man. J Endocrinol 1974; 62: 341–353.

    Article  PubMed  CAS  Google Scholar 

  31. Thuma JR, Gilders R, Verdun M, Loucks AB. Circadian rhythm of cortisol confounds cortisol responses to exercise: implications for future research. J Appl Physiol 1995; 78: 1657–1664.

    PubMed  CAS  Google Scholar 

  32. Brandenberger G, Follenius M. Influence of timing and intensity of musclar exercise on temporal patterns of plasma cortisol levels. J Clin Endocrinol Metab 1975; 40: 845–849.

    Article  PubMed  CAS  Google Scholar 

  33. Brandenberger G, Follenius M, Hietter B. Feedback from meal-related peaks determines diurnal changes in cortisol response to exercise. J Clin Endocrinol Metab 1982; 54: 592–596.

    Article  PubMed  CAS  Google Scholar 

  34. Rowbottom DG, Keast D, Garcia Webb P, Morton AR. Serum free cortisol responses to a standard exercise test among elite triathletes. Aust J Sci Med Sport 1995; 27: 103–107.

    PubMed  CAS  Google Scholar 

  35. Oleshansky MA, Zoltick JM, Herman RH, Mougey EH, Meyerhoff JL. The influence of fitness on neuroendocrine responses to exhaustive treadmill exercise. Eur J Appl Physiol 1990; 59: 405–410.

    Article  CAS  Google Scholar 

  36. Farrell PA, Garthwaite TL, Gustafson AB. Plasma adrenocorticotropin and cortisol responses to submaximal and exhaustive exercise. J Appl Physiol 1983; 55: 1441–1444.

    PubMed  CAS  Google Scholar 

  37. Buono MJ, Yeager JE, Hodgdon JA. Plasma adrenocorticotropin and cortisol responses to brief high-intensity exercise in humans. J Appl Physiol 1986; 61: 1337–1339.

    PubMed  CAS  Google Scholar 

  38. Fraioli F, Moretti C, Paolucci D, Alicicco E, Crescenzi F, Fortunio G. Physical exercise stimulates marked concomitant release of beta-endorphin and adrenocorticotropic hormone (ACTH) in peripheral blood in man. Experientia 1980; 36: 987–989.

    Article  PubMed  CAS  Google Scholar 

  39. Fournier PE, Stalder J, Mermillod B, Chantraine A. Effectsof a 110 kilometer ultra-marathon race on plasma hormone levels. Int J Sports Med 1997; 18: 252–256.

    Article  PubMed  CAS  Google Scholar 

  40. Nagel D, Seiler D, Franz H. Biochemical, hematological and endocrinological parameters during repeated intense short-term running in comparison to ultra-long-distance running. Int J Sports Med 1992; 13: 337–343.

    Article  PubMed  CAS  Google Scholar 

  41. Fellmann N, Bedu M, Boudet G, Mage M, Sagnol M, Pequignot JM, et al. Inter-relationships between pituitary-adrenal hormones and catecholamines during a 6-day Nordic ski race. Eur J Appl Physiol 1992; 64: 258–265.

    Article  CAS  Google Scholar 

  42. Voigt K, Ziegler M, Grunert Fuchs M, Bickel U, Fehm Wolfsdorf G. Hormonal responses to exhausting physical exercise: the role of predictability and controllability of the situation. Psychoneuroendocrinology 1990; 15: 173–184.

    Article  PubMed  CAS  Google Scholar 

  43. Mason JW, Hartley LH, Kotchen TA, Mougey EH, Ricketts PT, Jones LG. Plasma cortisol and norepinephrine responses in anticipation of muscular exercise. Psychosom Med 1973; 35: 406–414.

    PubMed  CAS  Google Scholar 

  44. Fukatsu A, Sato N, Shimizu H. 50-mile walking race suppresses neutrophil bactericidal function by inducing increases in cortisol and ketone bodies. Life Sci 1996; 58: 2337–2343.

    Article  PubMed  CAS  Google Scholar 

  45. Filaire E, Duche P, Lac G, Robert A. Saliva cortisol, physical exercise and training: influences of swimming and handball on cortisol concentrations in women. Eur J Appl Physiol 1996; 74: 274–278.

    Article  CAS  Google Scholar 

  46. Lutoslawska G, Obminski Z, Krogulski A, Sendecki W. Plasma cortisol and testosterone following 19-km and 42-km kayak races. J Sports Med Phys Fitness 1991; 31: 538–542.

    PubMed  CAS  Google Scholar 

  47. Bergeron MF, Maresh CM, Kraemer WJ, Abraham A, Conroy B, Gabaree C. Tennis: a physiological profile during match play. Int J Sports Med 1991; 12: 474–479.

    Article  PubMed  CAS  Google Scholar 

  48. Petraglia F, Barletta C, Facchinetti F, Spinazzola F, Monzani A, Scavo D, et al. Response of circulating adrenocorticotropin, beta-endorphin, beta-lipotropin and cortisol to athletic competition. Acta Endocrinol Copenh 1988; 118: 332–336.

    PubMed  CAS  Google Scholar 

  49. Few JD, Imms FJ, Weiner JS. Pituitary-adrenal response to static exercise in man. Clin Sci Mol Med 1975; 49: 201–206.

    PubMed  CAS  Google Scholar 

  50. Hakkinen K, Pakarinen A. Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes. J Appl Physiol 1993; 74: 882–887.

    PubMed  CAS  Google Scholar 

  51. Jurimae T, Karelson K, Smirnova T, Viru A. The effect of a single-circuit weight-training session on the blood biochemistry of untrained university students. Eur J Appl Physiol 1990; 61: 344–348.

    Article  CAS  Google Scholar 

  52. Kraemer WJ, Dziados JE, Marchitelli LJ, Gordon SE, Harman EA, Mello R, et al. Effects of different heavy-resistance exercise protocols on plasma beta-endorphin concentrations. J Appl Physiol 1993; 74: 450–459.

    PubMed  CAS  Google Scholar 

  53. Hackney AC, Premo MC, McMurray RG. Influence of aerobic versus anaerobic exercise on the relationship between reproductive hormones in men. J Sports Sci 1995; 13: 305–311.

    Article  PubMed  CAS  Google Scholar 

  54. del Corral P, Mahon AD, Duncan GE, Howe CA, Craig BW. The effect of exercise on serum and salivary cortisol in male children. Med Sci Sports Exerc 1994; 26: 1297–1301.

    PubMed  Google Scholar 

  55. Winter JS. The metabolic response to exercise and exhaustion in normal and growth-hormonedeficient children. Can J Physiol Pharmacol 1974; 52: 575–582.

    Article  PubMed  CAS  Google Scholar 

  56. Kraemer WJ, Fry AC, Warren BJ, Stone MH, Fleck SJ, Kearney JT, et al. Acute hormonal responses in elite junior weightlifters. Int J Sports Med 1992; 13: 103–109.

    Article  PubMed  CAS  Google Scholar 

  57. Hakkinen K, Pakarinen A. Acute hormonal responses to heavy resistance exercise in men and women at different ages. Int J Sports Med 1995; 16: 507–513.

    Article  PubMed  CAS  Google Scholar 

  58. Korkushko OV, Frolkis MV, Shatilo VB, Yaroschenko Yu T. Hormonal and autonomic reactions to exercise in elderly healthy subjects and patients with ischemic heart disease. Acta Clin Belg 1990; 45: 164–175.

    PubMed  CAS  Google Scholar 

  59. Silverman HG, Mazzeo RS. Hormonal responses to maximal and submaximal exercise in trained and untrained men of various ages. J Gerontol A Biol Sci Med Sci 1996; 51: B30–7.

    Article  PubMed  CAS  Google Scholar 

  60. Carroll JF, Convertino VA, Wood CE, Graves JE, Lowenthal DT, Pollock ML. Effect of training on blood volume and plasma hormone concentrations in the elderly (see comments). Med Sci Sports Exerc 1995; 27: 79–84.

    PubMed  CAS  Google Scholar 

  61. Kanaley JA, Boileau RA, Bahr JM, Misner JE, Nelson RA. Cortisol levels during prolonged exercise: the influence of menstrual phase and menstrual status. Int J Sports Med 1992; 13: 332–336.

    Article  PubMed  CAS  Google Scholar 

  62. De Souza MJ, Maguire MS, Maresh CM, Kraemer WJ, Rubin KR, Loucks AB. Adrenal activation and the prolactin response to exercise in eumenorrheic and amenorrheic runners. J Appl Physiol 1991; 70: 2378–2387.

    PubMed  Google Scholar 

  63. Kraemer RR, Blair S, Kraemer GR, Castracane VD. Effects of treadmill running on plasma beta-endorphin, corticotropin, and cortisol levels in male and female 10K runners. Eur J Appl Physiol 1989; 58: 845–851.

    Article  CAS  Google Scholar 

  64. Kraemer WJ, Fleck SJ, Dziados JE, Harman EA, Marchitelli LJ, et al. Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. J Appl Physiol 1993; 75: 594–604.

    PubMed  CAS  Google Scholar 

  65. Heitkamp HC, Huber W, Scheib K. beta-Endorphin and adrenocorticotrophin after incremental exercise and marathon running-female responses. Eur J Appl Physiol 1996; 72: 417–424.

    Article  CAS  Google Scholar 

  66. Friedmann B, Kindermann W. Energy metabolism and regulatory hormones in women and men during endurance exercise. Eur J Appl Physiol 1989; 59: 1–9.

    Article  CAS  Google Scholar 

  67. Bashir N, el Migdadi F, Hasan Z, al Hader AA, Wezermes I, Gharaibeh M. Acute effects of exercise at low altitude (350 meters below sea level) on hormones of the anterior pituitary and cortisol in athletes. Endocr Res 1996; 22: 289–298.

    Article  PubMed  CAS  Google Scholar 

  68. Vasankari TJ, Rusko H, Kujala UM, Huhtaniemi IT. The effect of ski training at altitude and racing on pituitary, adrenal and testicular function in men. Eur J Appl Physiol 1993; 66: 221–225.

    Article  CAS  Google Scholar 

  69. Marinelli M, Roi GS, Giacometti M, Bonini P, Banfi G. Cortisol, testosterone, and free testosterone in athletes performing a marathon at 4,000 m altitude. Horm Res 1994; 41: 225–229.

    Article  PubMed  CAS  Google Scholar 

  70. Hoffman JR. Maresh CM, Armstrong LE, Gabaree CL, Bergeron MF, Kenefick RW, et al. Effects of hydration state on plasma testosterone, cortisol and catecholamine concentrations before and during mild exercise at elevated temperature. Eur J Appl Physiol 1994; 69: 294–300.

    Article  CAS  Google Scholar 

  71. Hoffman JR, Falk B, Radom Isaac S, Weinstein Y, Magazanik A, Wang Y, et al. The effect of environmental temperature on testosterone and cortisol responses to high intensity, intermittent exercise in humans. Eur J Appl Physiol 1997; 75: 83–87.

    Article  CAS  Google Scholar 

  72. Tabata I, Ogita F, Miyachi M, Shibayama H. Effect of low blood glucose on plasma CRF, ACTH, and cortisol during prolonged physical exercise. J Appl Physiol 1991; 71: 1807–1812.

    PubMed  CAS  Google Scholar 

  73. Tabata I, Atomi Y, Miyashita M. Blood glucose concentration dependent ACTH and cortisol responses to prolonged exercise. Clin Physiol 1984; 4: 299–307.

    Article  PubMed  CAS  Google Scholar 

  74. Lavoie JM, Helie R, Peronnet F, Cousineau D, Provencher PJ. Effects of muscle CHO-loading manipulations on hormonal responses during prolonged exercise. Int J Sports Med 1985; 6: 95–99.

    Article  PubMed  CAS  Google Scholar 

  75. Mitchell JB, Costill DL, Houmard JA, Flynn MG, Fink WJ, Beltz JD. Influence of carbohydrate ingestion on counterregulatory hormones during prolonged exercise. Int J Sports Med 1990; 11: 33–36.

    Article  PubMed  CAS  Google Scholar 

  76. Tsintzas OK, Williams C, Wilson W, Burrin J. Influence of carbohydrate supplementation early in exercise on endurance running capacity. Med Sci Sports Exerc 1996; 28: 1373–1379.

    Article  PubMed  CAS  Google Scholar 

  77. Vasankari TJ, Kujala UM, Viljanen,TT, Huhtaniemi IT. Carbohydrate ingestion during prolonged running exercise results in an increase of serum cortisol and decrease of gonadotrophins. Acta Physiol Scand 1991; 141: 373–377.

    Article  PubMed  CAS  Google Scholar 

  78. Wasserman DH, Lavina H, Lickley A, Vranic M. Effect of hematocrit reduction on hormonal and metabolic responses to exercise. J Appl Physiol 1985; 58: 1257–1262.

    PubMed  CAS  Google Scholar 

  79. Harte JL, Eifert GH. The effects of running, environment, and attentional focus on athletes’ catecholamine and cortisol levels and mood. Psychophysiology 1995; 32: 49–54.

    Article  PubMed  CAS  Google Scholar 

  80. Heikkonen E, Ylikahri R, Roine R, Valimaki M, Harkonen M, Salaspuro M. The combined effect of alcohol and physical exercise on serum testosterone, luteinizing hormone, and cortisol in males. Alcohol Clin Exp Res 1996; 20: 711–716.

    Article  PubMed  CAS  Google Scholar 

  81. Rolandi E, Reggiani E, Franceschini R, Bavastro G, Messina V, Odaglia G, et al. Comparison of pituitary responses to physical exercise in athletes and sedentary subjects. Horm Res 1985; 21: 209–213.

    Article  PubMed  CAS  Google Scholar 

  82. Deuster,PA, Chrousos GP, Luger A, DeBolt JE, Bernier LL, Trostmann UH, et al. Hormonal and metabolic responses of untrained, moderately trained, and highly trained men to three exercise intensities. Metabolism 1989; 38: 141–148.

    Article  Google Scholar 

  83. Hickson RC, Hidaka K, Foster C, Falduto MT, Chatterton RT Jr. Successive time courses of strength development and steroid hormone responses to heavy-resistance training. J Appl Physiol 1994; 76: 663–670.

    PubMed  CAS  Google Scholar 

  84. Buono MJ, Yeager JE, Sucec AA. Effect of aerobic training on the plasma ACTH response to exercise. J Appl Physiol 1987; 63: 2499–2501.

    PubMed  CAS  Google Scholar 

  85. Botticelli G, Bacchi Modena A, Bresciani D, Villa P, Aguzzoli L, Florio P, et al. Effect of naltrexone treatment on the treadmill exercise-induced hormone release in amenorrheic women. J Endocrinol Invest 1992; 15: 839–847.

    PubMed  CAS  Google Scholar 

  86. Farrell PA, Kjaer M, Bach FW, Galbo H. Beta-endorphin and adrenocorticotropin response to supramaximal treadmill exercise in trained and untrained males. Acta Physiol Scand 1987; 130: 619–625.

    Article  PubMed  CAS  Google Scholar 

  87. Snegovskaya,V, Viru A. Steroid and pituitary hormone responses to rowing: relative significance of exercise intensity and duration and performance level. Eur J Appl Physiol 1993; 67: 59–65.

    Article  Google Scholar 

  88. Kraemer WJ, Fleck SJ, Callister R, Shealy M, Dudley GA, Maresh CM, et al. Training responses of plasma beta-endorphin, adrenocorticotropin, and cortisol. Med Sci Sports Exerc 1989; 21: 146–153.

    PubMed  CAS  Google Scholar 

  89. Duclos M, Corcuff JB, Rashedi M, Fougere V, Manier G. Trained versus untrained men: different immediate post-exercise responses of pituitary adrenal axis. A preliminary study. Eur J Appl Physiol 1997; 75: 343–350.

    Article  CAS  Google Scholar 

  90. Pestell RG, Hurley DM, Vandongen R. Biochemical and hormonal changes during a 1000 km ultramarathon. Clin Exp Pharmacol Physiol 1989; 16: 353–361.

    Article  PubMed  CAS  Google Scholar 

  91. Wittert GA, Livesey JH, Espiner EA, Donald RA. Adaptation of the hypothalamopituitary adrenal axis to chronic exercise stress in humans. Med Sci Sports Exerc 1996; 28: 1015–1019.

    Article  PubMed  CAS  Google Scholar 

  92. Ronkainen HR, Pakarinen AJ, Kauppila AJ. Adrenocortical function of female endurance runners and joggers. Med Sci Sports Exerc 1986; 18: 385–389.

    PubMed  CAS  Google Scholar 

  93. Mujika I, Chatard JC, Padilla S, Guezennec CY, Geyssant A. Hormonal responses to training and its tapering off in competitive swimmers: relationships with performance. Eur J Appl Physiol 1996; 74: 361–366.

    Article  CAS  Google Scholar 

  94. Lehmann M, Gastmann U, Petersen KG, Bachl N, Seidel A, Khalaf AN, et al. Training-overtraining: performance, and hormone levels, after a defined increase in training volume versus intensity in experienced middle-and long-distance runners. Br J Sports Med 1992; 26: 233–242.

    Article  PubMed  CAS  Google Scholar 

  95. Flynn MG, Pizza FX, Brolinson PG. Hormonal responses to excessive training: influence of cross training. Int J Sports Med 1997; 18: 191–196.

    Article  PubMed  CAS  Google Scholar 

  96. Fry AC, Kraemer WJ, Stone MH, Warren BJ, Fleck SJ, Kearney JT, et al. Endocrine responses to overreaching before and after 1 year of weightlifting. Can J Appl Physiol 1994; 19: 400–410.

    Article  PubMed  CAS  Google Scholar 

  97. Tharp GD, Buuck RI. Adrenal adaptation to chronic exercise. J Appl Physiol 1974; 37: 720–722.

    PubMed  CAS  Google Scholar 

  98. Lehmann M, Knizia K, Gastmann U, Petersen KG, Khalaf AN, Bauer S, et al. Influence of 6-week, 6 days per week, training on pituitary function in recreational athletes. Br J Sports Med 1993; 27: 186–192.

    Article  PubMed  CAS  Google Scholar 

  99. Kirwan JP, Costill DL, Flynn MG, Mitchell JB, Fink WJ, Neufer PD, et al. Physiological responses to successive days of intense training in competitive swimmers. Med Sci Sports Exerc 1988; 20: 255–259.

    Article  PubMed  CAS  Google Scholar 

  100. O’Connor PJ, Morgan WP, Raglin JS. Psychobiologic effects of 3 d of increased training in female and male swimmers. Med Sci Sports Exerc 1991; 23: 1055–1061.

    PubMed  Google Scholar 

  101. Engfred K, Kjaer M, Secher NH, Friedman DB, Hanel B, Nielsen OJ, et al. Hypoxia and training-induced adaptation of hormonal responses to exercise in humans Eur J Appl Physiol 1994; 68: 303–309.

    CAS  Google Scholar 

  102. Hakkinen K, Pakarinen A, Alen M, Kauhanen H, Komi PV. Neuromuscular and hormonal responses in elite athletes to two successive strength training sessions in one day. Eur J Appl Physiol 1988; 57: 133–139.

    Article  CAS  Google Scholar 

  103. Hakkinen K, Pakarinen A, Alen M, Kauhanen H, Komi PV. Neuromuscular and hormonal adaptations in athletes to strength training in two years. J Appl Physiol 1988; 65: 2406–2412.

    PubMed  CAS  Google Scholar 

  104. Alen M, Pakarinen A, Hakkinen K, Komi PV. Responses of serum androgenic-anabolic and catabolic hormones to prolonged strength training. Int J Sports Med 1988; 9: 229–233.

    Article  PubMed  CAS  Google Scholar 

  105. Fry AC, Kraemer WJ. Resistance exercise overtraining and overreaching. Neuroendocrine responses. Sports Med 1997; 23: 106–129.

    Google Scholar 

  106. Barron JL, Noakes TD, Levy W, Smith C, Millar RP. Hypothalamic dysfunction in overtrained athletes. J Clin Endocrinol Metab 1985; 60: 803–806.

    Article  PubMed  CAS  Google Scholar 

  107. Budgett R. Overtraining syndrome. Br J Sports Med 1990; 24: 231–236.

    Article  PubMed  CAS  Google Scholar 

  108. Fry RW, Morton AR, Keast D. Overtraining in athletes. An update. Sports Med 1991; 12: 32–65.

    Article  PubMed  CAS  Google Scholar 

  109. Fry RW, Morton AR, Garcia Webb P, Crawford GP, Keast D. Biological responses to overload training in endurance sports. Eur J Appl Physiol 1992; 64: 335–344.

    Article  CAS  Google Scholar 

  110. Lehmann MJ, Lormes W, Opitzgress A, Steinacker JM, Netzer N, Foster C, et al. Training and overtraining—an overview and experimental results in endurance sports. J Sports Med Phys Fitness 1997; 37: 7–17.

    PubMed  CAS  Google Scholar 

  111. Urhausen A, Gabriel H, Kindermann W. Blood hormones as markers of training stress and overtraining. Sports Med 1995; 20: 251–276.

    Article  PubMed  CAS  Google Scholar 

  112. Verde T, Thomas S, Shephard RJ. Potential markers of heavy training in highly trained distance runners. Br J Sports Med 1992; 26: 167–175.

    Article  PubMed  CAS  Google Scholar 

  113. Loucks AB, Horvath SM. Exercise-induced stress responses of amenorrheic and eumenorrheic runners. J Clin Endocrinol Metab 1984; 59: 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  114. Ding JH, Sheckter CB, Drinkwater BL, Soules MR, Bremner WJ. High serum cortisol levels in exercise-associated amenorrhea. Ann Intern Med 1988; 108: 530–534.

    PubMed  CAS  Google Scholar 

  115. Loucks AB, Mortola JF. Girton L, Yen SS. Alterations in the hypothalamic–pituitary–ovarian and the hypothalamic–pituitary–adrenal axes in athletic women. J Clin Endocrinol Metab 1989; 68: 402–411.

    Article  PubMed  CAS  Google Scholar 

  116. Villanueva AL, Schlosser C, Hopper B, Liu JH, Hoffman DI, Rebar RW. Increased cortisol production in women runners. J Clin Endocrinol Metab 1986; 63: 133–136.

    Article  PubMed  CAS  Google Scholar 

  117. Hohtari H, Salminen Lappalainen K, Laatikainen T. Response of plasma endorphins, corticotropin, cortisol, and luteinizing hormone in the corticotropin-releasing hormone stimulation test in eumenorrheic and amenorrheic athletes. Fertil Steril 1991; 55: 276–280.

    PubMed  CAS  Google Scholar 

  118. De Souza MJ, Luciano AA, Arce JC, Demers LM, Loucks AB. Clinical tests explain blunted cortisol responsiveness but not mild hypercortisolism in amenorrheic runners. J Appl Physiol 1994; 76: 1302–1309.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wittert, G. (2000). The Effect of Exercise on the Hypothalamo—Pituitary—Adrenal Axis. In: Warren, M.P., Constantini, N.W. (eds) Sports Endocrinology. Contemporary Endocrinology, vol 23. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-016-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-016-2_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-085-4

  • Online ISBN: 978-1-59259-016-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics