Skip to main content

The Effects of Altitude on the Hormonal Responses to Exercise

  • Chapter
Sports Endocrinology

Part of the book series: Contemporary Endocrinology ((COE,volume 23))

  • 314 Accesses

Abstract

Changes in plasma concentration of hormones with physical activity have been thoroughly examined during the last 30 years and have been shown to play a key role in ventilatory, circulatory, and metabolic adaptations to the increase in metabolism with exercise (1,2).Plasma concentration of hormones reflects a balance among synthesis, release, and clearance of the substance, and only for very few hormones have turnover studies been performed. A variety of factors, including environmental conditions, have been found to be susceptible to influence the hormonal response to exercise (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Galbo H (ed.) Hormonal and Metabolic Adaptation to Exercise. Georg Thieme Verlag, New York, NY, 1983.

    Google Scholar 

  2. Kjær M. Regulation of hormonal and metabolic responses during exercise in humans. Exerc Sport Sci Rev 1992; 20: 161–84.

    PubMed  Google Scholar 

  3. Hartley LH, Mason JW, Hogan RP, Jones LG, Kotchen TA, Mougey EH, et al. Multiple hormonal responses to graded exercise in relation to physical training. J Appl Physiol 1972; 33: 602–606.

    PubMed  CAS  Google Scholar 

  4. Hartley LH, Mason JW, Hogan RP, Jones LG, Kotchen TA, Mougey EH, et al. Multiple hormonal responses to prolonged exercise in relation to physical training. J Appl Physiol 1972; 33: 607–610.

    PubMed  CAS  Google Scholar 

  5. Bert P (ed.) La Pression Barométrique, recherches de physiologie expérimentale. Centre National de la Recherche Scientifique, Paris, 1979.

    Google Scholar 

  6. Rose MS, Houston CS, Fulco CS, Coates G, Sutton JR, Cymerman A. Operation Everest. II: Nutrition and body composition. J Appl Physiol 1988; 65: 2545–2551.

    PubMed  CAS  Google Scholar 

  7. Tenney SM, Jones RM. Water balance and lung fluids in rats at high altitude. Respir Physiol 1992; 87: 397–406.

    Article  PubMed  CAS  Google Scholar 

  8. Gonzalez-Alonso J, Mora-Rodriguez R, Below PR, Coyle EF. Dehydration reduces cardiac output and increases systemic and cutaneous vascular resistance during exercise. J Appl Physiol 1995; 79: 1487–1496.

    PubMed  CAS  Google Scholar 

  9. Turlejska E, Falecka-Wieczorek I, Titow-Stupnicka E, Uscilko HK. Hypohydration increases the plasma catecholamine response to moderate exercise in the dog (Canis). Comp Biochem Physiol C 1993; 106: 463–465.

    Article  PubMed  CAS  Google Scholar 

  10. Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev 1990; 70: 963–985.

    PubMed  CAS  Google Scholar 

  11. Banister EW, Griffiths J. Blood levels of adrenergic amines during exercise. J Appl Physiol 1972; 33: 674–676.

    PubMed  CAS  Google Scholar 

  12. Davies CT, Few J, Foster KG, Sargeant AJ. Plasma catecholamine concentration during dynamic exercise involving different muscle groups. Eur J Appl Physiol 1974; 32: 195–206.

    Article  CAS  Google Scholar 

  13. Rostrup M. Catecholamines, hypoxia and high altitude. Acta Physiol Scand 1998; 162: 389–399.

    Article  Google Scholar 

  14. Raff H. Endocrine adaptation to hypoxia. In: Fregly MJ, Blatteis CM, eds. Handbook of Physiology: Environmental Physiology. Oxford University Press, New York, NY, 1996, pp. 1259–1275.

    Google Scholar 

  15. Bouissou P, Peronnet F, Brisson G, Helie R, Ledoux M. Metabolic and endocrine responses to graded exercise under acute hypoxia. Eur J Appl Physiol 1986; 55: 290–294.

    Article  CAS  Google Scholar 

  16. Bubb WJ, Howley ET, Cox RH. Effects of various levels of hypoxia on plasma catecholamines at rest and during exercise. Aviat Space Environ Med 1983; 54: 637–640.

    PubMed  CAS  Google Scholar 

  17. Escourrou P, Johnson DG, Rowell LB. Hypoxemia increases plasma catecholamine concentrations in exercising humans. J Appl Physiol 1984; 57: 1507–1511.

    PubMed  CAS  Google Scholar 

  18. Kjær M, Bangsbo J, Lortie G, Galbo H. Hormonal response to exercise in humans• influence of hypoxia and physical training. Am J Physiol 1988; 254: R197–R203.

    PubMed  Google Scholar 

  19. Mazzeo RS, Bender PR, Brooks GA, Butterfield GE, Groves BM, Sutton JR, et al. Arterial catecholamine responses during exercise with acute and chronic high-altitude exposure. Am J Physiol 1991; 261: E419–E424.

    PubMed  CAS  Google Scholar 

  20. Pequignot JM, Pepin L, Favier R, Flandrois R. Adrenergic response to intense muscular activity in sedentary subjects as a function of emotivity and training. Eur J Appl Physiol 1979; 40: 117–135.

    Article  CAS  Google Scholar 

  21. Ferretti G. On maximal oxygen consumption in hypoxic humans Experientia 1990; 46: 1188–1194.

    CAS  Google Scholar 

  22. Brooks GA, Wolfel EE, Butterfield GE, Cymerman A, Roberts AC, Mazzeo RS, et al. Poor relationship between arterial [lactate] and leg net release during exercise at 4,300 m altitude. Am J Physiol 1998; 275: R1192–R1201.

    PubMed  CAS  Google Scholar 

  23. Mazzeo RS, Brooks GA, Butterfield GE, Cymerman A, Roberts AC, Selland M, et al. Beta-adrenergic blockade does not prevent the lactate response to exercise after acclimatization to high altitude. J Appl Physiol 1994; 76: 610–615.

    PubMed  CAS  Google Scholar 

  24. Mazzeo RS, Wolfel EE, Butterfield GE, Reeves JT. Sympathetic response during 21 days at high altitude (4300 m) as determined by urinary and arterial catecholamines. Metabolism 1994; 43: 1226–1232.

    Article  PubMed  CAS  Google Scholar 

  25. Mazzeo RS. Pattern of sympathoadrenal activation at altitude. In: Sutton JR, Houston CS, Coates G, eds. Hypoxia and Molecular Medicine. Queen City Printers, Burlington, VT, 1993, pp. 53–61.

    Google Scholar 

  26. Wolfel EE, Selland MA, Mazzeo RS, Reeves JT. Systemic hypertension at 4,300 m is related to sympathoadrenal activity. J Appl Physiol 1994; 76: 1643–1650.

    PubMed  CAS  Google Scholar 

  27. Wallin BG, Sundlof G, Eriksson BM, Dominiak P, Grobecker H, Lindblad LE. Plasma noradrenaline correlates to sympathetic muscle nerve activity in normotensive man. Acta Physiol Scand 1981; 111: 69–73.

    Article  PubMed  CAS  Google Scholar 

  28. Seals DR, Victor RG, Mark AL. Plasma norepinephrine and muscle sympathetic discharge during rhythmic exercise in humans J Appl Physiol 1988; 65: 940–944.

    CAS  Google Scholar 

  29. Rowell LB, Johnson DG, Chase PB, Comess KA, Seals DR. Hypoxemia raises muscle sympathetic activity but not norepinephrine in resting humans. J Appl Physiol 1989; 66: 1736–1743.

    PubMed  CAS  Google Scholar 

  30. Seals DR, Johnson DG, Fregosi RF. Hypoxia potentiates exercise-induced sympathetic neural activation in humans. J Appl Physiol 1991; 71: 1032–1040.

    PubMed  CAS  Google Scholar 

  31. Saito M, Mano T, Iwase S, Koga K, Abe H, Yamazaki Y. Responses in muscle sympathetic activity to acute hypoxia in humans J Appl Physiol 1988; 65: 1548–1552.

    CAS  Google Scholar 

  32. Manhem P, Lecerof H, Hokfelt B. Plasma catecholamine levels in the coronary sinus, the left renal vein and peripheral vessels in healthy males at rest and during exercise. Acta Physiol Scand 1978; 104: 364–369.

    Article  PubMed  CAS  Google Scholar 

  33. Favier RJ, Desplanches D, Pequignot JM, Peyrin L, Flandrois R. Effects of hypoxia on catecholamine and cardiorespiratory responses in exercising dogs. Respir Physiol 1985; 61: 167–177.

    Article  PubMed  CAS  Google Scholar 

  34. Pequignot JM, Favier R, Desplanches D, Peyrin L, Flandrois R. Free dopamine in dog plasma: lack of relationship with sympathoadrenal activity. J Appl Physiol 1985; 58: 763–769.

    Article  PubMed  CAS  Google Scholar 

  35. Peronnet F, Nadeau RA, de Champlain J, Magrassi P, Chatrand C. Exercise plasma catecholamines in dogs: role of adrenals and cardiac nerve endings. Am J Physiol 1981; 241: H243–H247.

    PubMed  CAS  Google Scholar 

  36. Henley W, Bellush L. Time-dependent changes in catecholamine turnover in spontaneously hypertensive rats exposed to hypoxia. Proc Soc Exp Biol Med 1995; 208: 413–421.

    PubMed  CAS  Google Scholar 

  37. Braunwald E, Harrison, DC, Chidsey CA. The heart as an endocrine organ. Am J Med 1964; 36: 1–4.

    Article  PubMed  CAS  Google Scholar 

  38. Johansson M, Rundqvist B, Eisenhofer G, Friberg P. Cardiorenal epinephrine kinetics: evidence for neuronal release in the human heart. Am J Physiol 1997; 273: H2178–H2185.

    PubMed  CAS  Google Scholar 

  39. Hesse B, Kanstrup IL, Christensen NJ, Ingemann-Hansen T, Hansen J.F, HalKjar-Kristensen J, et al. Reduced norepinephrine response to dynamic exercise in human subjects during 02 breathing. J Appl Physiol 1981; 51: 176–178.

    PubMed  CAS  Google Scholar 

  40. Seals DR, Johnson DG, Fregosi RF. Hyperoxia lowers sympathetic activity at rest but not during exercise in humans. Am J Physiol 1991; 260: R873–R878.

    PubMed  CAS  Google Scholar 

  41. Seals DR. Influence of muscle mass on sympathetic neural activation during isometric exercise. J Appl Physiol 1989; 67: 1801–1806.

    PubMed  CAS  Google Scholar 

  42. Claybaugh JR, Brooks DP, Cymerman A. Hormonal control of fluid and electrolyte balance at high altitude in normal subjects. In: Sutton JR, Coates G, Houston CS, eds. Hypoxia and Mountain Medicine, Queen City Printers, Burlington, VT, 1992, pp. 61–72.

    Google Scholar 

  43. Claybaugh JR, Wade CE, Cucinell SA. Fluid and electrolyte balance and hormonal response to the hypoxic environment. In: Claybaugh JR, Wade CE, eds. Hormonal Regulation of Fluid and Electrolytes, Environmental Effects. Plenum, New York, NY, 1989, pp. 187–214.

    Chapter  Google Scholar 

  44. Walker JEC, Wells RE Jr. Heat and water exchange in the respiratory tract. Am J Med 1961; 30: 259–267.

    Article  PubMed  CAS  Google Scholar 

  45. Hoyt RW, Honig A. Body fluid and energy metabolism at high altitude. In: Fregly MJ, Blatteis CM, eds. Handbook of Physiology: Environmental Physiology. Oxford University Press, New York, NY, 1996, pp. 1277–1289.

    Google Scholar 

  46. Gisolfi CV, Lamb DR, Fluid Homeostasis During Exercise. In: Perspectives in Exercise Science and Sports Medicine, vol. 3. Cooper Publishing Group, Carmel, IN, 1990.

    Google Scholar 

  47. Francesconi RP, Sawka MN, Hubbard RW, Pandolf KB. Hormonal regulation of fluid and electrolytes: effects of heat exposure and exercise in the heart. In: Claybaugh JR, Wade CE, eds. Hormonal Regulation of Fluid and Electrolytes: Environmental Effects. Plenum, New York, NY, 1989, pp. 45–85.

    Chapter  Google Scholar 

  48. Bouissou P, Guezennec CY, Galen FX, Defer G, Fiet J, Pesquies PC. Dissociated response of aldosterone from plasma renin activity during prolonged exercise under hypoxia. Horm Metab Res 1988; 20: 517–521.

    Article  PubMed  CAS  Google Scholar 

  49. Bouissou P, Peronnet F, Brisson G, Helie R, Ledoux M. Fluid-electrolyte shift and renin-aldosterone responses to exercise under hypoxia. Horm Metab Res 1987; 19: 331–334.

    Article  PubMed  CAS  Google Scholar 

  50. Rock PB, Kraemer WJ, Fulco CS, Trad LA, Malconian MK, Rose MS, et al. Effects of altitude acclimatization on fluid regulatory hormone response to submaximal exercise. J Appl Physiol 1993; 75: 1208–1215.

    PubMed  CAS  Google Scholar 

  51. Butterfield GE, Gates J, Fleming S, Brooks GA, Sutton JR, Reeves JT. Increased energy intake minimizes weight loss in men at high altitude. J Appl Physiol 1992; 72: 1741–1748.

    PubMed  CAS  Google Scholar 

  52. Gloster J, Heath D, Harris P. The influence of diet on the effects of a reduced atmospheric pressure in the rat. Environ Physiol Biochem 1972; 2: 117–124.

    Google Scholar 

  53. Hilderman T, McKnight K, Dhalla KS, Rupp H, Dhalla NS. Effects of long-term dietary restriction on cardiovascular function and plasma catecholamines in the rat. Cardiovasc Drugs Ther 1996;10 Suppl 1: 247–250.

    Google Scholar 

  54. Weiner N. Norepinephrine, epinephrine and the sympathomimetic amines. In: Goodman Gilman A, Goodman LS, Gilman A, eds. The Pharmacological Basis of Therapeutics. MacMillan, New York, NY, 1980, pp. 138–175.

    Google Scholar 

  55. Grover RF, Weil JV, Reeves JT. Cardiovascular adaptation to exercise at high altitude. Exerc Sport Sci Rev 1986; 14: 269–302.

    Article  PubMed  CAS  Google Scholar 

  56. Vogel JA, Hartley LH, Cruz JC, Hogan R.P. Cardiac output during exercise in sea-level residents at sea level and high altitude. J Appl Physiol 1974; 36: 169–172.

    PubMed  CAS  Google Scholar 

  57. Kontos HA, Levasseur JE, Richardson DW, Mauck HP Jr, Patterson JL Jr. Comparative circulatory responses to systemic hypoxia in man and in unanesthetized dog. J Appl Physiol 1967; 23: 381–386.

    PubMed  CAS  Google Scholar 

  58. Wolfel EE, Selland MA, Cymerman A, Brooks GA, Butterfield GE, Mazzeo RS, 02 extraction maintains 02 uptake during submaximal exercise with beta-adrenergic blockade at 4300 m. J Appl Physiol 1998; 85: 1092–1102.

    PubMed  CAS  Google Scholar 

  59. Ward MP, Milledge JS, West JB. High Altitude Medicine and Physiology. University Press. Cambridge, 1989.

    Google Scholar 

  60. Fishman AP. Hypoxia on the pulmonary circulation. How and where it acts. Circ Res 1976; 38: 221–231.

    Article  PubMed  CAS  Google Scholar 

  61. Eldridge MW, Podolsky A, Richardson RS, Johnson DH, Knight DR, Johnson EC, et al. Pulmonary hemodynamic response to exercise in subjects with prior high-altitude pulmonary edema. J Appl Physiol 1996; 81: 911–921.

    PubMed  CAS  Google Scholar 

  62. Favier RJ, Desplanches D, Pagliari R, Sempore B, Mayet MH, Simi B, et al. Effect of almitrine administration on pulmonary arterial pressure in resting and exercising dogs. Respir Physiol 1990; 82: 75–87.

    Article  PubMed  CAS  Google Scholar 

  63. Brooks GA, Butterfield GE, Wolfe RR, Groves BM, Mazzeo RS, Sutton JR, et al. Increased dependence on blood glucose after acclimatization to 4300 m. J Appl Physiol 1991; 70: 919–927.

    Article  PubMed  CAS  Google Scholar 

  64. Roberts AC, Reeves JT, Butterfield GE, Mazzeo RS, Sutton JR, Wolfel EE, et al. Altitude and beta-blockade augment glucose utilization during submaximal exercise. J Appl Physiol 1996; 80: 605–615.

    PubMed  CAS  Google Scholar 

  65. Sutton JR. Effect of acute hypoxia on the hormonal response to exercise. J Appl Physiol 1977; 42: 587–592.

    PubMed  CAS  Google Scholar 

  66. Bloom SR, Johnson RH, Park DM, Rennie MJ, Sulaima WR. Differences in the metabolic and hormonal response to exercise between racing cyclists and untrained individuals. J Physiol (Lond), 1976; 258: 1–18.

    CAS  Google Scholar 

  67. Karlsson S, Ahren B. Insulin and glucagon secretion in swimming mice: effects of autonomic receptor antagonism. Metabolism 1990; 39: 724–732.

    Article  PubMed  CAS  Google Scholar 

  68. Larsen JJ, Hansen JM, Olsen NV, Galbo H, Dela F. The effect of altitude hypoxia on glucose homeostasis in men. J Physiol (Lond), 1997; 504: 241–249.

    Article  CAS  Google Scholar 

  69. Ahlborg G, Felig P. Influence of glucose ingestion on fuel-hormone response during prolonged exercise. J Appl Physiol 1976; 41: 683–688.

    PubMed  CAS  Google Scholar 

  70. Raff H, Brickner RC, Jankowski B. The renin-angiotensin-aldosterone system during hypoxia: is the adrenal an oxygen sensor? In: Sutton JR, Coates G, Houston CS, eds. Hypoxia and Mountain Medicine. Queen City Printers, Burlington, VT, 1992, pp. 42–49.

    Google Scholar 

  71. Lawrence DL, Shenker Y. Effect of hypoxic exercise on atrial natriuretic factor and aldosterone regulation. Am J Hypertens 1991; 4: 341–347.

    PubMed  CAS  Google Scholar 

  72. Vuolteenaho O, Koistinen P, Martikkala V, Takala T, Leppaluoto J. Effect of physical exercise in hypobaric conditions on atrial natriuretic peptide secretion. Am J Physiol 1992; 263: R647–R652.

    PubMed  CAS  Google Scholar 

  73. Wade CE, Freund BJ, Claybaugh JR. Fluid and electrolyte homeostasis during and following exercise: hormonal and non-hormonal factors. In: Claybaugh JR, Wade CE, eds. Hormonal Regulation of Fluid and Electrolytes: Environmental Effects. Plenum, New York, NY, 1989, pp. 1–44.

    Chapter  Google Scholar 

  74. Maresh CM, Wang BC, Goetz KL. Plasma vasopressin, renin activity, and aldosterone responses to maximal exercise in active college females. Eur J Appl Physiol 1985; 54: 398–403.

    Article  CAS  Google Scholar 

  75. Claybaugh JR, Hansen JE, Wozniak DB. Response of antidiuretic hormone to acute exposure to mild and severe hypoxia in man. J Endocrinol 1978; 77: 157–160.

    Article  PubMed  CAS  Google Scholar 

  76. Griffen SC, Raff H. Vasopressin responses to hypoxia in conscious rats: interaction with water restriction. J Endocrinol 1990; 125: 61–66.

    Article  PubMed  CAS  Google Scholar 

  77. Meehan RT. Renin, aldosterone, and vasopressin responses to hypoxia during 6 hours of mild exercise. Aviat Space Environ Med 1986; 57: 960–965.

    PubMed  CAS  Google Scholar 

  78. Hornbein TF. Adrenal cortical response to chronic hypoxia. J Appl Physiol 1962; 17: 246–248.

    PubMed  CAS  Google Scholar 

  79. Bouissou P, Fiet J, Guezennec CY, Pesquies PC. Plasma adrenocorticotrophin and cortisol responses to acute hypoxia at rest and during exercise. Eur J Appl Physiol 1988; 57: 110–113.

    Article  CAS  Google Scholar 

  80. Raynaud J, Drouet L, Martineaud JP, Bordachar J, Coudert J, Durand J. Time course of plasma growth hormone during exercise in humans at altitude. J Appl Physiol 1981; 50: 229–233.

    PubMed  CAS  Google Scholar 

  81. VanHelder WP, Casey K, Radomski MW. Regulation of growth hormone during exercise by oxygen demand and availability. Eur J Appl Physiol 1987; 56: 628–632.

    Article  Google Scholar 

  82. Gawel Mi, Park DM, Alaghband-Zadeh J, Rose FC. Exercise and hormonal secretion. Postgrad Med J 1979; 55: 373–376.

    Article  Google Scholar 

  83. Struder HK, Hohmann W, Donike M, Platen P, Weber K. Effect of 02 availability on neuroendocrine variables at rest and during exercise: 02 breathing increases plasma prolactin. Eur J Appl Physiol 1996; 74: 443–449.

    Article  CAS  Google Scholar 

  84. Bouissou P, Brisson GR, Peronnet F, Helie R, Ledoux M. Inhibition of exercise-induced blood prolactin response by acute hypoxia. Can J Sport Sci 1987; 12: 49–50.

    PubMed  CAS  Google Scholar 

  85. Cunningham WL, Becker EJ, Kreuzer F. Catecholamines in plasma and urine at high altitude. J Appl Physiol 1965; 20: 607–610.

    PubMed  CAS  Google Scholar 

  86. Young PM, Sutton JR, Green HJ, Reeves JT, Rock PB, Houston CS, et al. Operation Everest II: metabolic and hormonal responses to incremental exercise to exhaustion. J Appl Physiol 1992; 73: 2574–2579.

    PubMed  CAS  Google Scholar 

  87. Sharma SC, Hoon RS, Balasubramanian V, Chadha KS. Urinary catecholamine excretion in temporary residents of high altitude. J Appl Physiol 1978; 44: 725–727.

    PubMed  CAS  Google Scholar 

  88. Favier R, Desplanches D, Hoppeler H, Caceres E, Grunenfelder A, Koubi H, et al. Hormonal and metabolic adjustments during exercise in hypoxia or normoxia in highland natives. J Appl Physiol 1996; 80: 632–637.

    PubMed  CAS  Google Scholar 

  89. Sawka MN, Young AJ, Rock PB, Lyons TP, Boushel R, Freund BJ, et al. Altitude acclimatization and blood volume: effects of exogenous erythrocyte volume expansion. J Appl Physiol 1996; 81: 636–642.

    PubMed  CAS  Google Scholar 

  90. Mazzeo RS, Brooks GA, Butterfield GE, Podolin DA, Wolfel EE, Reeves JT. Acclimatization to high altitude increase muscle sympathetic activity both at rest and during exercise. Am J Physiol 1995; 269: R201–R207.

    PubMed  CAS  Google Scholar 

  91. Schmitt P, Garcia C, Soulier V, Pujol JF, Pequignot JM. Influence of long-term hypoxia on tyrosine hydroxylase in the rat carotid body and adrenal gland. J Auton Nerv Syst 1992; 40: 13–19.

    Article  PubMed  CAS  Google Scholar 

  92. Schmitt P, Soulier V, Pequignot JM, Pujol JF, Denavit-Saubie M. Ventilatory acclimatization to chronic hypoxia: relationship to noradrenaline metabolism in the rat solitary complex. J Physiol (Lond), 1994; 477: 331–337.

    CAS  Google Scholar 

  93. Olson EB Jr, Vidruk EH, Dempsey JA. Carotid body excision significantly changes ventilatory control in awake rats. J Appl Physiol 1988; 64: 666–671.

    Article  PubMed  Google Scholar 

  94. Wolfel EE, Groves BM, Brooks GA, Butterfield GE, Mazzeo RS, Moore LG, et al. Oxygen transport during steady-state submaximal exercise in chronic hypoxia. J Appl Physiol 1991; 70: 1129–1136.

    PubMed  CAS  Google Scholar 

  95. Bender PR, Groves BM, McCullough RE, McCullough RG, Huang SY, Hamilton AJ, et al. Oxygen transport to exercising leg in chronic hypoxia. J Appl Physiol 1988; 65: 2592–2597.

    PubMed  CAS  Google Scholar 

  96. Kacimi R, Richalet JP, Corsin A, Abousahl I, Crozatier B. Hypoxia-induced downregulation of beta-adrenergic receptors in rat heart. J Appl Physiol 1992; 73: 1377–1382.

    PubMed  CAS  Google Scholar 

  97. Richalet JP, Mehdioui H, Rathat C, Vignon P, Keromes A, Herry JP, et al. Acute hypoxia decreases cardiac response to catecholamines in exercising humans Int J Sports Med 1988; 9: 157–162.

    CAS  Google Scholar 

  98. Bouissou P, Richalet JP, Galen FX, Lartigue M, Larmignat P, Devaux F, et al. Effect of betaadrenoceptor blockade on renin-aldosterone and alpha-ANF during exercise at altitude. J Appl Physiol 1989; 67: 141–146.

    PubMed  CAS  Google Scholar 

  99. Savard GK, Areskog NH, Saltin B. Cardiovascular response to exercise in humans following acclimatization to extreme altitude. Acta Physiol Scand 1995; 154: 499–509.

    Article  PubMed  CAS  Google Scholar 

  100. Richalet JP. The heart and adrenergic system in hypoxia. In: Sutton JR, Coates G, Remmers, JE, eds. Hypoxia: The Adaptations. Decker BC, Philadelphia, PA, 1990, pp. 231–240.

    Google Scholar 

  101. Sawhney RC, Malhotra AS, Singh T. Glucoregulatory hormones in man at high altitude. Eur J Appl Physiol 1991; 62: 286–291.

    Article  CAS  Google Scholar 

  102. Santiago JV, Clarke WL, Shah SD, Cryer PE. Epinephrine, norepinephrine, glucagon, and growth hormone release in association with physiological decrements in the plasma glucose concentration in normal and diabetic man. J Clin Endocrinol Metab 1980; 51: 877–883.

    Article  PubMed  CAS  Google Scholar 

  103. Maher JT, Jones LG, Hartley LH, Williams GH, Rose LI. Aldosterone dynamics during graded exercise at sea level and high altitude. J Appl Physiol 1975; 39: 18–22.

    PubMed  CAS  Google Scholar 

  104. Milledge JS, Catley DM, Ward MP, Williams ES, Clarke CR. Renin-aldosterone and angiotensinconverting enzyme during prolonged altitude exposure. J Appl Physiol 1983; 55: 699–702.

    PubMed  CAS  Google Scholar 

  105. Martin IH, Baulan D, Basso N, Taquini AC. The renin-angiotensin-aldosterone system in rats of both sexes subjected to chronic hypobaric hypoxia. Arch Int Physiol Biochim 1982; 90: 129–133.

    Article  PubMed  CAS  Google Scholar 

  106. Martin IH, Basso N, Sarchi MI, Taquini AC. Changes in the renin-angiotensin-aldosterone system in rats of both sexes submitted to chronic hypobaric hypoxia. Arch Int Physiol Biochim 1987; 95: 255–262.

    PubMed  CAS  Google Scholar 

  107. Bärtsch P, Maggiorini M, Schobersberger W, Shaw S, Rascher W, Girard J, Weidmann P, et al. Enhanced exercise-induced rise of aldosterone and vasopressin preceding mountain sickness. J Appl Physiol 1991; 71, 136–143.

    PubMed  Google Scholar 

  108. Ou LC, Tenney SM. Adrenocortical function in rats chronically exposed to high altitude. J Appl Physiol 1979; 47: 1185–1187.

    PubMed  CAS  Google Scholar 

  109. Maresh CM, Noble BJ, Robertson KL, Harvey JS Jr. Aldosterone, cortisol, and electrolyte responses to hypobaric hypoxia in moderate-altitude natives. Aviat Space Environ Med 1985; 56: 1078–1084.

    PubMed  CAS  Google Scholar 

  110. Maresh CM, Noble BJ, Robertson KL, Seip RL. Adrenocortical responses to maximal exercise in moderate-altitude natives at 447 Torr. J Appl Physiol 1984; 56: 482–488.

    PubMed  CAS  Google Scholar 

  111. Nelson ML, Cons JM. Pituitary hormones and growth retardation in rats raised at simulated high altitude (3800 m). Environ Physiol Biochem 1975; 5: 273–282.

    PubMed  CAS  Google Scholar 

  112. Basu M, Pal K, Prasad R, Malhotra AS, Rao KS, Sawhney RC. Pituitary, gonadal and adrenal hormones after prolonged residence at extreme altitude in man. Int J Androl 1997; 20: 153–158.

    Article  PubMed  CAS  Google Scholar 

  113. Knudtzon J, Bogsnes A, Norman N. Changes in prolactin and growth hormone levels during hypoxia and exercise. Horm Metab Res 1989; 21: 453, 454.

    Google Scholar 

  114. Gonzales GF, Carrillo CE. Low serum prolactin levels in native women at high altitude. Int J Gynaecol Obstet 1993; 43: 169–175.

    Article  PubMed  CAS  Google Scholar 

  115. Basu M, Pal K, Malhotra AS, Prasad R, Sawhney RC. Free and total thyroid hormones in humans at extreme altitude. Int J Biometeorol 1995; 39: 17–21.

    Article  PubMed  CAS  Google Scholar 

  116. Stock MJ, Chapman C, Stirling JL, Campbell IT. Effects of exercise, altitude, and food on blood hormone and metabolite levels. J Appl Physiol 41978; 5: 350–354.

    Google Scholar 

  117. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev 1992; 72: 449–489.

    PubMed  CAS  Google Scholar 

  118. Eckardt KU, Dittmer J, Neumann R, Bauer C, Kurtz A. Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am J Physiol 1990; 258: F1432–F1437.

    PubMed  CAS  Google Scholar 

  119. De Paoli Vitali E, Guglielmini C, Casoni I, Vedovato M, Gilli P, Farinelli A, et al. Serum erythropoietin in cross-country skiers. Int J Sports Med 1988; 9: 99–101.

    Article  Google Scholar 

  120. Schmidt W, Eckardt KU, Hilgendorf A, Strauch S, Bauer C. Effects of maximal and submaximal exercise under normoxic and hypoxic conditions on serum erythropoietin level. Int J Sports Med 1991; 12: 457–461.

    Article  PubMed  CAS  Google Scholar 

  121. Banfi G, Marinelli M, Roi GS, Colombini A, Pontillo M, Giacometti M, et al. Growth hormone and insulin-like growth factor I in athletes performing a marathon at 4000 m of altitude. Growth Regul 1994; 4: 82–86.

    PubMed  CAS  Google Scholar 

  122. Schmidt W, Spielvogel H, Eckardt KU, Quintela A, Penaloza R. Effects of chronic hypoxia and exercise on plasma erythropoietin in high-altitude residents. J Appl Physiol 1993; 74: 1874–1878.

    Article  PubMed  CAS  Google Scholar 

  123. Favier R, Spielvogel H, Desplanches D, Ferretti G, Kayser B, Hoppeler H. Maximal exercise performance in chronic hypoxia and acute normoxia in high-altitude natives. J Appl Physiol 1995; 78: 1868–1874.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Favier, R.J.M. (2000). The Effects of Altitude on the Hormonal Responses to Exercise. In: Warren, M.P., Constantini, N.W. (eds) Sports Endocrinology. Contemporary Endocrinology, vol 23. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-016-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-016-2_21

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-085-4

  • Online ISBN: 978-1-59259-016-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics