Skip to main content

The Role of Exercise in the Attainment of Peak Bone Mass and Bone Strength

  • Chapter
Sports Endocrinology

Part of the book series: Contemporary Endocrinology ((COE,volume 23))

  • 315 Accesses

Abstract

Peak bone mass is the maximal lifetime amount of bone tissue accrued in individual bones and the whole skeleton. Recent research has shown that peak bone mass may be a more important determinant of low bone density and risk of fracture in old age than age-related bone loss (1). Therefore, maximizing the attainment of peak bone mass is now considered to be an important component of osteoporosis prevention strategies. There is a large variation in the normal range for peak bone mass that is influenced by both genetic and environmental factors. Exercise may be the most important modifiable environmental factor that can increase peak bone mass The osteotrophic effect of exercise has been shown to depend on the time in life exposure occurs and the type of loading. Exercise may not always be beneficial however, since athletic primary and secondary amenorrhea may lead to either a failure to gain bone or bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seeman E. Osteoporosis: a public health problem. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporos. Academic, California, 1996, pp. 25–40.

    Google Scholar 

  2. Marcus R. Clinical review 76: The nature of osteoporosis. J Clin Endocinol Metab 1996; 81 (1): 1–5.

    Article  CAS  Google Scholar 

  3. Melton LJI. Hip fractures: a worldwide problem today and tomorrow. Bone 1993; 14 (Suppl): 1–8.

    Article  Google Scholar 

  4. Mosekilde L, Mosekilde L, Danielsen CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 1987; 8: 79–85.

    Article  PubMed  CAS  Google Scholar 

  5. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res 1992; 7: 137–145.

    Article  PubMed  CAS  Google Scholar 

  6. Seeman E. Growth in bone mass and size: are racial and gender differences in bone density more apparent than real? J Clin Endocrinol Metab 1998; 83: 1–6.

    Article  Google Scholar 

  7. Lu PW, Cowell CT, Lloyd-Jones SA, Broidy J, Howman-Giles R. Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab 1996; 81: 1586–1590.

    Article  PubMed  CAS  Google Scholar 

  8. Cowell CT, Lu PW, Lloyd-Jones SA, Briody JN, Allen JR, Humphries JR, et al. Volumetric bone

    Google Scholar 

  9. mineral density-a potential role in paediatrics. Acta Paediatr Suppl 1995; 411: 12–16.

    Google Scholar 

  10. Dunnill MS, Anderson JA, Whitehead R. Quantitative histological studies on age changes in bone.

    Google Scholar 

  11. J Pathol Bacteriol 1967;94:275–291.

    Google Scholar 

  12. Kroger H, Kotaniemi A, Vainio P, Alhava E. Bone densitometry of the spine and femur in children by dual-energy X-ray absorptiometry. Bone Miner 1992; 17: 75–85.

    Article  PubMed  CAS  Google Scholar 

  13. Schonau E, Wentzlik U, Dietrich M, Scheidhauer K, Klein K. Is there an increase in bone density in children? Lancet 1993;342(September 11): 689, 690.

    Google Scholar 

  14. Trotter M, Hixon BB. Sequential changes in weight, density, and percentage ash weight of human skeletons from an early fetal period through old age. Anat Rec 1974; 179: 1–8.

    Article  PubMed  CAS  Google Scholar 

  15. Baron R. Anatomy and ultrastructure of bone. In: Favus MJ, eds. Primer on Metabolic Bone Diseases and Disorders of Mineral Metabolism, American Society for Bone and Mineral Research, California, 1990, pp. 3–7.

    Google Scholar 

  16. Burr D, Schaffler M, Yang KH, Lukoschek M, Sivaneri N, Biaha JD, et al. Skeletal change in response to altered strain environments: Is woven bone a response to elevated strain? Bone 1989; 10: 223–233.

    Article  PubMed  CAS  Google Scholar 

  17. Frost HM. Perspectives: the role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J Bone Miner Res 1992; 7: 253–262.

    Article  PubMed  CAS  Google Scholar 

  18. Myers ER, Sebeny EA, Hecker AT, Corcoran TA, Hipp JA, Greenspan SL, et al. Correlations between photon absorbtion properties and failure load of the distal radius in vitro. Calcif Tissue Int 1991; 49: 292–297.

    Article  PubMed  CAS  Google Scholar 

  19. Garn S, Rohmannn C, Wagner B, Ascoli W. Continuing bone growth throughout life: a general phenomenon. Am J Phys Anthropol 1967; 26: 313–318.

    Article  PubMed  CAS  Google Scholar 

  20. Ruff C, Hayes W. Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science 1982; 217: 945–947.

    Article  PubMed  CAS  Google Scholar 

  21. Bouxsein ML, Myburgh KH, van der Meulen MCH, Lindenberger E, Marcus R. Age-related differences in cross-sectional geometry of the forearm bones in healthy women. Calcif Tissue Int 1994; 54: 113–118.

    Article  PubMed  CAS  Google Scholar 

  22. Garn SM, Wagner B. The Adolescent Growth of the Skeletal Mass and Its Implications to Mineral Requirements. Appleton-Century-Crofts, New York, 1969.

    Google Scholar 

  23. Mazess RB, Cameron JR. Skeletal growth in school children: Maturation and bone mass. Am J Phys Anthropol 1971; 35: 399–408.

    Article  Google Scholar 

  24. Blimkie CJR, Chilibeck PD, Davison KS. Bone mineralization patterns: reproductive endocrine, calcium, and physical acivity influences during the life span. In: Perspectives in Exercise Science and Sports Medicine. Bar-Or D, Lamb D, Clarkson P, eds. Cooper Publishing Group, Camel, IN, 1996; pp. 73–145.

    Google Scholar 

  25. Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E. The differing tempo of growth in size, mass and density in girls is region specific. J Clin Invest 1999; 104: 795–804.

    Article  PubMed  CAS  Google Scholar 

  26. Gordon C, Halton J, Atkinson S, Webber C. The contribution of growth and puberty to peak bone mass. Growth Dev Aging 1991; 55: 257–262.

    PubMed  CAS  Google Scholar 

  27. Faulkner RA, Bailey DA, Drinkwater DT, Wilkinson AA, Houston CS, McKay HA. Regional and total body bone mineral content, bone mineral density, and total body tissue composition in children 8–16 years of age. Calcif Tissue Int 1993; 53: 7–12.

    Article  PubMed  CAS  Google Scholar 

  28. Bonjour JP, Theinz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocriol Metab 1991; 73: 555–563.

    Article  CAS  Google Scholar 

  29. Geusens P, Cantatore F, Nijs J, Proesmans W, Emma F, Dequeker J. Heterogeneity of growth of bone in children at the spine, radius and total skeleton. Growth Dev Aging 1991; 55: 249–256.

    PubMed  CAS  Google Scholar 

  30. Gilsanz V, Gibbens DT, Carlson M, Boechat MI, Cann CE, Schulz EE. Peak trabecular vertebral density: Comparison of adolescent and adult females. Calcif Tissue Int 1988; 43: 260–262.

    Article  PubMed  CAS  Google Scholar 

  31. Theintz G, Buchs B, Rizzoli R, Sloman D, Clavien H, Sizonenko P, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: Evidence for a marked reduction after 16 years of age at the levels of the lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 1992; 75 (4): 1060–1065.

    Article  PubMed  CAS  Google Scholar 

  32. Teegarden D, Proulx WR, Martin BR, Zhao J, McCabe GP, Lyle RM, et al. Peak bone mass in young women. J Bone Miner Res 1995; 10 (5): 711–715.

    Article  PubMed  CAS  Google Scholar 

  33. Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, et al. Timing of peak bone mass in caucasian females and its implications for the prevention of osteoporosis. J Clin Invest 1994; 93: 799–808.

    Article  PubMed  CAS  Google Scholar 

  34. Mazess RB, Barden HS. Bone density in premenopausal women: effects of age, dietary intake, physical activity, smoking, and birth-control pills. Am J Clin Nutr 1991; 53: 132–142.

    PubMed  CAS  Google Scholar 

  35. Rodin A, Murby B, Smith MA, Caleffi M, Fentiman I, Chapman MC, et al. Premenopausal bone loss in the lumbar spine and neck of femur: a study of 225 Caucasian women. Bone 1990; 211: 1–5.

    Article  Google Scholar 

  36. Recker RR, Davies K, Hinders SH, Heaney RP, Stegman MR, Kimmel DB. Bone gain in young adult women. JAMA 1992; 268: 2403–2408.

    Article  PubMed  CAS  Google Scholar 

  37. Parsons TJ, Prentice A, Smith EA, Cole TJ, Compston JE. Bone mineral mass consolidation in young british adults. J Bone Miner Res 1996; 11 (2): 264–274.

    Article  PubMed  CAS  Google Scholar 

  38. Bennell KL, Malcolm SA, Khan KM, Thomas SA, Reid SJ, Brukner PD, et al. Bone mass and bone turnover in power athletes, endurance athletes, and controls: A 12-month longitudinal study. Bone 1997; 20: 477–484.

    Article  PubMed  CAS  Google Scholar 

  39. Micklesfield LK, Reyneke L, Fataar A, Myburgh KH. Long-term restoration of deficits in bone mineral density is inadequate in premenopausal women with prior menstrual irregularity. Clin J Sports Med, 1998; 8: 155–163.

    Article  CAS  Google Scholar 

  40. Szejnfeld VL, Salomao CE, Baracat EC, Atra E, De Lima GR. Age and loss of bone density in premenopausal women. Revista. Paulista de Medicina 1993; 111: 289–293.

    PubMed  CAS  Google Scholar 

  41. Peacock M. Vitamin D receptor alleles and osteoporosis: a contrasting view. J Bone Miner Res 1995; 10: 1294–1297.

    Article  PubMed  CAS  Google Scholar 

  42. Eisman JA. Vitamin D receptor gene alleles and osteoporosis: an affirmative view. J Bone Miner Res 1995; 10: 1289–1293.

    Article  PubMed  CAS  Google Scholar 

  43. Lutz J. Bone mineral, serum calcium, and dietary intakes of mother/daughter pairs. Am J Clin Nutr 1986; 44: 99–106.

    PubMed  CAS  Google Scholar 

  44. Jouanny P, Guillemin F, Kuntz C, Jeandel C, Pourel J. Environmental and genetic factors affecting bone mass. Similarity of bone density among members of healthy families. Arthritis Rheum 1995; 38 (1): 61–67.

    Article  PubMed  CAS  Google Scholar 

  45. Krall EA, Dawson-Hughes B. Heritable and life-style determinants of bone mineral density. J Bone Miner Res 1993; 8 (1): 1–9.

    Article  PubMed  CAS  Google Scholar 

  46. Seeman E. Reduced bone density in women with fractures: contribution of low peak bone density and rapid bone loss. Osteoporos Int 1994;Suppl 1: S15 - S25.

    Google Scholar 

  47. Armamento-Villareal R, Villareal DT, Aviolo LV, Civitelli R. Estrogen status and heredity are major determinants of premenopausal bone mass. J Clin Invest 1992; 90: 2464–2471.

    Article  PubMed  CAS  Google Scholar 

  48. Torgerson D, Campbell MK, Reid DM. Life-style, environmental and medical factors influencing peak bone mass in women. Br J Rheum 1995; 34: 620–624.

    Article  CAS  Google Scholar 

  49. Seeman E, Hopper JL, Bach LA, Cooper ME, Parkinson E, McKay J, et al. Reduced bone mass in daughters of women with osteoporosis. N Eng J Med 1989; 320 (9): 554–558.

    Article  CAS  Google Scholar 

  50. Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambook PN, Eberl S. Genetic determinants of bone mass in adults: A twin study. J Clin Invest 1987; 80: 706–710.

    Article  PubMed  CAS  Google Scholar 

  51. Dequerker J, Nijs J, Verstraeten A, Guesens P, Gevers G. Genetic determinants of bone mineral content at the spine and radius: A twin study. Bone 1987; 8: 207–209.

    Article  Google Scholar 

  52. Freenfield EM, Goldberg VM. Genetic determination of bone density. Lancet 1997; 350: 1263, 1264.

    Google Scholar 

  53. Gueguen R, Jouanny P, Guillemin F, Kuntz C, Pourel J, Siest G. Segregation analysis and variance components analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res 1995; 2: 2017–2022.

    Google Scholar 

  54. Lutz J, Tesar R. Mother-daughter pairs: spinal and femoral bone densities and dietary intakes. Am J Clin Nutr 1990; 52: 872–877.

    PubMed  CAS  Google Scholar 

  55. Ralston SH. The genetics of osteoporosis. Q J Med 1997; 90: 247–251.

    Article  CAS  Google Scholar 

  56. Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, et al. Prediction of bone denisty from vitamin D receptor alleles. Nature 1994; 367: 284–287.

    Article  PubMed  CAS  Google Scholar 

  57. Houston LA, Grant SFA, Reid DM, Ralston SH. Vitamin D receptor polymorphism, bone mineral density, and osteoporotic vertebral fracture: studies in a UK population. Bone 1996; 18: 249–252.

    Article  PubMed  CAS  Google Scholar 

  58. Kobayashi S, Inoue S, Hosoi T, Ouchi Y, Shiraki M, Orimo H. Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res 1996; 11: 306–311.

    Article  PubMed  CAS  Google Scholar 

  59. Lim SK, Park YS, Park JM, Song YD, Lee EJ, Kim KR, et al. Lack of association between vitamin D receptor genotypes and osteoporosis in koreans. J Clin Endocrinol Metab 1995; 80 (12): 3677–3681.

    Article  PubMed  CAS  Google Scholar 

  60. Salamone LM, Ferrell R, Black DM, Palermo L, Epstein RS, Petro N, et al. The association between vitamin D receptor gene polymorphisms and bone mineral density at the spine, hip and whole-body in premenopausal women. Osteoporosis Int 1996; 6: 63–68.

    Article  CAS  Google Scholar 

  61. Spotila LD, Caminis J, Devoto M, Shimoya K, Sereda L, Ott J, et al. Osteopenia in 37 members of seven families analysis based on a model of dominant inheritance. Mol Med 1996; 2: 313–324.

    PubMed  CAS  Google Scholar 

  62. Salamone LM, Glynne NW, Black DM, Ferrell RE, Palermo L, Epstein RS, et al. Determinants of premenopausal bone mineral density: the interplay of genetic and lifestyle factors. J Bone Miner Res 1996; 11 (10): 1557–1565.

    Article  PubMed  CAS  Google Scholar 

  63. Parfitt AM. Genetic effects on bone mass and turnover-relevance to black/white differences. J Am Coll Nutr 1997; 16 (4): 325–333.

    PubMed  CAS  Google Scholar 

  64. Seeman E, Hopper JL. Genetic and environmental components of the population variance in bone density. Osteoporosis Int 1997; 7 (Suppl 3): S10 - S16.

    Article  Google Scholar 

  65. Montoye HJ, Smith EL, Fardon DF, Howley ET. Bone mineral in senior tennis players. Scand J Sports Sci 1980; 2: 26–32.

    Google Scholar 

  66. Jones HH, Priest JD, Hayes WC, Tichenor CC, Nagel DA. Humeral hypertrophy in response to exercise. J Bone Joint Surg 1977;59-A(2 March):204–208.

    Google Scholar 

  67. Huddleston A, Rockwell D, Kulund DN, Harrison B. Bone mass in lifetime tennis athletes. JAMA 1980; 244 (10): 1107–1109.

    Article  PubMed  CAS  Google Scholar 

  68. Bouxsein ML, Marcus R. Overview of exercise and bone mass. Rheum Dis Clin North Am 1994; 20 (3, August): 787–802.

    PubMed  CAS  Google Scholar 

  69. Drinkwater BL. Exercise in the prevention of osteoporosis. Osteoporos Int 1993;(Suppl 1 ): S169 - S171.

    Google Scholar 

  70. Forwood M, Burr D. Physical activity and bone mass: exercises in futility? Bone Miner 1993; 21: 89–112.

    Article  PubMed  CAS  Google Scholar 

  71. Friedlander AL, Genant HK, Sadowsky S, Byl NN, Gluer C. A two-year program of aerobics and weight training enhances bone mineral density of young women. J Bone Miner Res 1995; 10 (4): 574–585.

    Article  PubMed  CAS  Google Scholar 

  72. Glesson PB, Protas EJ, LeBlanc AD, Schneider VS, Evans HJ. Effects of weight lifting on bone mineral density in premenopausal women. J Bone Miner Res 1990; 5 (2): 153–158.

    Article  Google Scholar 

  73. Lohman T, Going S, Pamenter R, Hall M, Boyden T, Houtkooper L, et al. Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res 1995; 10 (7): 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  74. Rockwell JC, Sorensen AM, Baker S, Leahey D, Stock JL, Michaels J, et al. Weight training decreases vertebral bone density in premenopausal women: a prospective study. J Clin Endocrinol Metab 1990; 71 (4): 988–992.

    Article  PubMed  CAS  Google Scholar 

  75. Snow-Harter C, Bouxsein JL, Lewis BT, Carter DR, Marcus R. Effects of resistance and endurance exercise on bone mineral status of young women: A randomized exercise intervention trial. J Bone Miner Res 1992; 7 (7): 761–769.

    Article  PubMed  CAS  Google Scholar 

  76. Kerr DA, Morton A, Dick I, Prince RL. Exercise effects on bone mass in postmenopausal women are site specific and load-dependent. J Bone Miner Res 1996; 11 (2): 218–225.

    Article  PubMed  CAS  Google Scholar 

  77. Bassey EJ, Ramsdale SJ. Increase in femoral bone density in young women following high-impact exercise. Osteoporosis Int 1994; 4: 72–75.

    Article  CAS  Google Scholar 

  78. Dook JE, James C, Henderson NK, Price RI. Exercie and bone mineral density in mature female athletes. Med Sci Sports Exerc 1997; 29 (3): 291–296.

    Article  PubMed  CAS  Google Scholar 

  79. Fehling PC, Alekel L, Clasey J, Rector A, Stillman RJ A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone 1995; 17 (3): 205–210.

    Article  PubMed  CAS  Google Scholar 

  80. Risser WL, Lee EJ, Leblanc A, Poindexter GBW, Risser JMH, Schneider V. Bone density in eumenorrheic female college athletes. Med Sci Sports Exerc 1990; 22 (5): 570–574.

    Article  PubMed  CAS  Google Scholar 

  81. Robinson TL, Snow-Harter C, Taaffee DR, Gills D, Shaw J, Marcus R. Gymnasts exhibit higher bone mass than runners espite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res 1995; 10 (1): 26–35.

    Article  PubMed  CAS  Google Scholar 

  82. Taaffe DR, Robinson TL, Snow CM, Marcus R. High-Impact exercise promotes bone gain in well trained female athletes. J Bone Miner Res 1997; 12 (2): 255–260.

    Article  PubMed  CAS  Google Scholar 

  83. Johnston GC, Slemenda CW, Melton LJ. Clinical use of bone densitometry. N Engl J Med 1991; 324: 1105–1109.

    Article  PubMed  Google Scholar 

  84. Cumming SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, et al. Bone density at various sites for prediction of hip fracture. The study of osteoporotic fracture research group. Lancet 1993;341(April 10): 962, 963.

    Google Scholar 

  85. Vuori I, Heinonen A, Sievanen H, Kannus P, Pasanen M, Oj a P. Effects of unilateral strength training and detraining on bone mineral density and content in young women: A study of mechanical loading and deloading on human bones. Calcif Tissue Int 1994; 55: 59–67.

    Article  PubMed  CAS  Google Scholar 

  86. Cann CE, Genant KH, Ettinger B, Gordan GS. Spinal mineral loss in oophorectomized women. JAMA 1981; 244: 2056–2059.

    Article  Google Scholar 

  87. Hergenroeder AC, O’ Brian Smith E, Shypailo R, Jones LA, Klish WJ, Ellis K Bone mineral changes in young women with hypothalamic amenorrhea treated with oral contraceptives, medroxyprogesterone, or placebo over 12 months. Am J Obstet Gynecol 1997; 176: 1017–1025.

    Article  PubMed  CAS  Google Scholar 

  88. Bachrach LK, Guido D, Katzman D, Litt IF, Marcus R. Decreased bone density in adolescent girls with anorexia nervosa. Pediatrics 1990; 86 (3): 440–447.

    PubMed  CAS  Google Scholar 

  89. Seeman E, Szmukler G, Formica C, Tsalamandris C, Mestrovic R. Osteoporosis in anorexia nervosa: The influence of peak bone density, bone loss, oral contraception use, and exercise. J Bone Miner Res 1992; 7: 1467–1474.

    Article  PubMed  CAS  Google Scholar 

  90. Cann CE, Martin MC, Jaffe RB. Duration of amenorrhea effects rate of bone loss in women runners: Implication for therapy, abstracted. Med Sci Sports Exerc 1985; 17: 214.

    Google Scholar 

  91. Drinkwater B, Nilson K, Ott S, Chestnut CH III. Bone mineral density after resumption of menses in amenorrheic athletes. JAMA 1986; 256 (July 18): 380–382.

    Article  PubMed  CAS  Google Scholar 

  92. Lindberg JS, Fears WB, Hunt MM. Exercise-induced ameorrhea and bone density. Ann Intern Med 1984; 101: 647, 648.

    Google Scholar 

  93. Marcus R, Cann C, Madvig P, Minkoff J, Goddard M, Bayer M, et al. Menstrual function and bone mass in elite women distance runners: Endocrine metabolic features. Ann Intern Med 1985; 102: 158–163.

    PubMed  CAS  Google Scholar 

  94. Rencken ML, Chestnut CH III, Drinkwater BL. Bone density at multiple skeletal sites in amenorrheic athletes. JAMA 1996; 276 (3): 238–240.

    Article  PubMed  CAS  Google Scholar 

  95. Young N, Formica C, Szmukler G, Seeman E Bone density at weight-bearing and nonweightbearing sites in ballet dancers: The effects of exercise, hypogonadism, and body weight. J Clin Endocrinol Metab 1994; 78: 449–454.

    CAS  Google Scholar 

  96. Micklesfield LK, Lambert EV, Fataar AB, Noakes TD, Myburgh KH. Bone mineral density in mature, premenopausal, ultramarathon runners. Med Sci Sports Exerc 1995; 27: 688–696.

    PubMed  CAS  Google Scholar 

  97. Rutherford OM. Spine and total body bone mineral density in amenorrheic endurance athletes. J Appl Physiol 1993; 74: 2904–2908.

    PubMed  CAS  Google Scholar 

  98. Jonnavithula S, Warren MP, Fox RP, Lazaro MI. Bone density is compromised in amenorrheic women despite return of menses: a 2-year study. Obstet Gynecol 1993; 81 (5): 669–674.

    PubMed  CAS  Google Scholar 

  99. Halioua L, Anderson JJB. Lifetime calcium intake and physical activity habits: independent and combined effects on the radial bone of healthy premenopausal Caucasian women. Am J Clin Nutr 1989; 49: 534–541.

    PubMed  CAS  Google Scholar 

  100. Warren MP, Brookes-Gunn J, Fox RP, Lancelot C, Newman D, Hamilton WG. Lack of bone accretion and amenorrhea: evidence for a relative osteopenia in weight-bearing bones. J Clin Endocrinol Metab 1991; 72: 847–853.

    Article  PubMed  CAS  Google Scholar 

  101. Cann CE, Martin MC, Genant HK, Jaffe RR. Decreased spinal mineral content in ameorrheic women. JAMA 1984; 251: 626–629.

    Article  PubMed  CAS  Google Scholar 

  102. Drinkwater B, Nilson K, Chestnut C, Bremner W, Shainholtz S, Southworth M. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med 1984; 311: 277–281.

    Article  PubMed  CAS  Google Scholar 

  103. Linnell SI, Stager JM, Blue PW. Bone mineral content and menstrual regularity in female runners. Med Sci Sports Exerc 1984; 16: 343–348.

    PubMed  CAS  Google Scholar 

  104. Otis CL. Exercise-associated amenorrhea. Clin Sports Med 1992; 11 (2): 351–361.

    PubMed  CAS  Google Scholar 

  105. Cook SD, Harding AF, Thomas KA, Morgan EL, Schnurpfeil KM, Haddad RJ. Trabecular bone density and menstrual function in women runners. Am J Sports Med 1987; 15: 503–507.

    Article  PubMed  CAS  Google Scholar 

  106. Lloyd T, Myers C, Buchanan JR, Demers LM. Collegiate women athletes with irregular menses during adolescence have decreased bone density. Obstet Gynecol 1988; 72: 639–642.

    PubMed  CAS  Google Scholar 

  107. Drinkwater BL, Bruemner B, Chestnut CH III. Menstrual history as a determinant of current bone density in young athletes. JAMA 1990; 263 (4): 545–548.

    Article  PubMed  CAS  Google Scholar 

  108. Grimston SK, Ensberg JR, Kloiber R. Menstrual, calcium, and training history: relationship to bone health in female runners. Clin Sports Med 1990; 2: 119–128.

    Google Scholar 

  109. Prior JC, Vigna YM, Schechter MT, Burgess AE. Spinal bone loss and ovulatory disturbances. N Engl J Med 1990; 323 (18): 1221–1227.

    Article  PubMed  CAS  Google Scholar 

  110. Prior JC, Vigna YM, Barr SI, Rexworthy C, Lentle BC. Cyclic medroxyprogesterone treatment increases bone density: a controlled trial in active women with menstrual cycle disturbances. Am J Med 1994; 96 (June): 52l - 530.

    Article  Google Scholar 

  111. Waller K, Fenster L, Swann S, Windham G, Marcus R. Letters to the editor: An unsuccessful attempt to relate ovulatory disturbances to changes in bone density-authors response. JCE 1996; 81 (11): 4176–4179.

    Google Scholar 

  112. De Souza MJ, Miller BE, Sequenzia LC, Luciano AA, Ulreich S, Stier S, et al. Bone health is not affected by luteal phase abnormalities and decreased ovarian progesterone production in female runners. J Clin Endocrinol Metab 1997; 82: 2867–2876.

    Article  PubMed  Google Scholar 

  113. Rippon C, Noakes TD, Nash J. Abnormal eating attitudes-the best predictor of menstrual dysfunction in lean females. Int J Eating Disord 1988; 7 (5): 617–624

    Article  Google Scholar 

  114. Frisch RE, Gotz-Welbergen AV, McArthur JW, Albright T, Witschi J, Bullen B, et al. Delayed menarche and amenorrhea of college athletes in relation to age of onset of training. JAMA 1981; 246 (14): 1559–1563.

    Article  PubMed  CAS  Google Scholar 

  115. Myburgh KH, Watkin VA, Noakes TD. Are risk factors for menstrual dysfunction cumulative? Phys Sports Med 1992; 20: 114–125.

    Google Scholar 

  116. Highet R. Athletic amenorrhea. An update on aetiology, complications and management. Sports Med 1989; 7: 82–108.

    Article  PubMed  CAS  Google Scholar 

  117. Lloyd T, Triantafyllou SJ, Baker ER, Houtes PS, Whiteside JA, Kalenak A, et al. Women athletes with menstrual irregularity have increased musculoskeletal injuries. Med Sci Sports Exerc 1986; 18: 374–379.

    PubMed  CAS  Google Scholar 

  118. Mybugh KH, Hutchins J, Fataar AB, Hough SF, Noakes TD. Low bone density is an etiologic factor for stress fractures in athletes. Ann Int Med 1990; 113: 754–759.

    Google Scholar 

  119. Wilson JH, Wolman RL. Osteoporosis and fracture complications in an amenorrheic athlete: case study. Br J Rheumatol 1994; 33: 480, 481.

    Google Scholar 

  120. Dugowson CE, Drinkwater BL, Clark JM. Nontraumatic femur fracture in an oligomenorrheic athlete. Med Sci Sports Exerc 1991; 23 (12): 1323–1325.

    PubMed  CAS  Google Scholar 

  121. Bennell KL, Malcolm SA, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, et al. Risk factors for stress fractures in track and field athletes. Am J Sports Med 1996; 24: 810–817.

    Article  PubMed  CAS  Google Scholar 

  122. Pearce G, Bass S, Young N, Formica C, Seeman E Does weight bearing exercise protect against the effects of exercise-induced oligomenorrhea on bone density? Osteoporosis Int 1996; 6: 448–452.

    CAS  Google Scholar 

  123. Slemenda C, Johnston C. High intensity activities in young women: site specific bone mass effects among female figure skaters. J Bone Miner 1993; 20: 125–132.

    Article  CAS  Google Scholar 

  124. Keen AD, Drinkwater BL. Irreversible bone loss in former amenorrheic athletes. Osteoporosis Int 1997; 7: 311–315.

    Article  CAS  Google Scholar 

  125. Cummings DC. Exercise-associated amenorrhea, low bone density, and estrogen replacement therapy. Arch Intern Med 1996; 156: 2193–2195.

    Article  Google Scholar 

  126. Haapasalo H, Kannus P, Sievanen H, Pasanen M, Uusi-Rasi K, Heinonen A, et al. Effect of long-term uniltateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 1998; 13 (2): 310–319.

    Article  PubMed  CAS  Google Scholar 

  127. Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 1995; 123 (1 July): 27–31.

    PubMed  CAS  Google Scholar 

  128. Bass S, Pearce G, Bradney M, Hendrick E, Delmas P, Harding A, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 1998; 13 (2): 500–507.

    Article  PubMed  CAS  Google Scholar 

  129. Dyson K, Blimkie CJR, Davison S, Webber CE, Adachi JD. Gymnastic training and bone density in pre-adolescent females. Med Sci Sports Exerc 1997; 29 (4): 443–450.

    Article  PubMed  CAS  Google Scholar 

  130. Cooper C, Cawley M, Bhalla A, Egger P, Ring F, Morton L, et al. Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res 1995; 10 (6): 940–947.

    Article  PubMed  CAS  Google Scholar 

  131. Grimston SK, Willows ND, Hanley DA. Mechanical loading regime and its relationship to bone mineral density in children. Med Sci Sports Exerc 1993; 25 (11): 1203–1210.

    PubMed  CAS  Google Scholar 

  132. Gunnes M, Lehman EH. Physical activity and dietary constituents as predictors of forearm cortical and trabecular bone gain in healthy children and adolescents: a prosective study. Acta Paediatr 1996; 85: 19–25.

    Article  PubMed  CAS  Google Scholar 

  133. Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston CC. Role of physical activity in the development of skeletal mass in children. J Bone Miner Res 1991; 6 (11): 1227–1333.

    Article  PubMed  CAS  Google Scholar 

  134. Slemenda CW, Reister TK, Hui SL, Miller JZ, Christian JC, Johnston CC. Influences of skeletal mineralization in children and adolescents: Evidence for varying effects of sexual maturation and physical activity. J Pediatr 1994; 125 (2): 201–207.

    Article  PubMed  CAS  Google Scholar 

  135. Valimaki JM, Karkkainen M, Lamberg-Allardt C, Laitinen K, Alhava E, Heikkinen J, et al. Exercise, smoking, and calcium intake during adolescence and early adulthood as determinants of peak bone mass. Br Med J 1994; 309: 230–235.

    Article  CAS  Google Scholar 

  136. Welten DC, Kemper HCG, Post GB, Van Mechelen W, Twisk J, Lips P, et al. Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Miner Res 1994; 9 (7): 1089–1096.

    Article  PubMed  CAS  Google Scholar 

  137. Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD. Prospective ten-month exercise intervention in premenarchel girls: positive effects on bone and lean mass. J Bone Miner Res 1997; 12 (9): 1453–1462.

    Article  PubMed  CAS  Google Scholar 

  138. Lanyon LE. Control of bone architecture by functional load bearing. J Bone Miner Res 1992; 7 (Suppl): S369 - S375.

    Article  PubMed  Google Scholar 

  139. Ruff CB, Walker A, Trinkaus E. Postcranial robusticity in Homo. III: Ontogeny. Am J Phys Anthropol 1994; 93: 35–54.

    Article  PubMed  CAS  Google Scholar 

  140. Woo SLY, Kuei SC, Amiel D, Gomez MA, Hayes WC, White FC, et al. The effect of prolonged physical training on the properties of long bone: A study of Wolff’s law. J Bone Joint Surg 1981; 63A: 780–787.

    PubMed  CAS  Google Scholar 

  141. Wronski TJ, Morey ER. Effect of spaceflight on periosteal bone formation in rats. Am J Physiol (Regul Integrative Comp Physiol 13). 1983; 244: R305–309.

    CAS  Google Scholar 

  142. Lindholm C, Hagenfeldt K, Ringertz H. Bone mineral content of young female former gymnasts. Acta Paediatr 1995; 84: 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  143. Kirchner EM, Lewis RD, O’Connor P. Effect of past gymnastics participation on adult bone mass. J Appl Physiol 1996; 80 (1): 226–232.

    Article  PubMed  CAS  Google Scholar 

  144. Duppe H, Gardsell P, Johnell O, Ornstein E. Bone mineral content in female junior, senior and former football players. Osteoporosis Int 1996; 6: 437–441.

    Article  CAS  Google Scholar 

  145. Karlsson MK, Johnell O, Obrant KJ. Is bone mineral density advantage maintained long-term in previous weight lifters. Calcif Tissue Int 1995; 57: 325–328.

    Article  PubMed  Google Scholar 

  146. Karlsson MK, Hasserius R, Obrant KJ. Bone mineral density in athletes during and after career: a comparison between loaded and unloaded skeletal regions. Calcif Tissue Int. 1996; 59: 245–248.

    Article  PubMed  CAS  Google Scholar 

  147. Karlberg J. A biologically-oriented mathematical model (ICP) for human growth. Acta Paediatr 1989; Suppl 350: 70–94.

    Google Scholar 

  148. Karlberg J. On the construction of the infancy-childhood-puberty growth standard. Acta Paediatr Scand 1989; Suppl 356: 26–37.

    CAS  Google Scholar 

  149. Wollman HA, Ranke MB. GH treatment in neonates. Acta Paediatr 1996; 85: 398–400.

    Article  Google Scholar 

  150. Bourguignon JP. Linear growth as a function of age at onset of puberty and sex steroid dosage: Therapeutic implications. Endocrinol Rev 1988; 9 (4): 467–488.

    Article  Google Scholar 

  151. Prader A. Pubertal growth. Acta Paediatr Jpn 1992; 34: 222–235.

    Article  PubMed  CAS  Google Scholar 

  152. Buckler JM. A Longitudinal Study of Adolescent Growth. Springer-Verlag, London, 1990.

    Book  Google Scholar 

  153. Tanner JM. Growth at Adolescence, 2nd ed. Blackwell Scientific Publications and Springfield Thomas, London, 1962.

    Google Scholar 

  154. Bailey DA, Faulkner RA, McKay HA. Growth, physical activity and bone mineral acquisition. In: Holloszy JO, ed. Exercise and Sports Science Review. American College of Sports Medicine Series. Williams and Wilkins, Baltimore, 1996, pp. 233–266.

    Google Scholar 

  155. Garn S. The Earlier Gain and Later Loss of Cortical Bone. Charles C. Thomas, Spingfield, IL, 1970.

    Google Scholar 

  156. Khan KM, Bennell KL, Hopper JL, Flicker L, Nowson CA, Sherwin AJ, et al. Self-report ballet classes undertaken at age 10–12 years and hip bone mineral density in later life. Osteoporosis Int 1997; 7: 4–25.

    Google Scholar 

  157. Mauras N, Rogal AD, Veldhuis JD. Specific, time-dependent actions of low-dose ethinyl estradiol administration on the episodic release of GH, FSH and LH in prepubertal girls with Turner’s syndrome. J Clin Endocrinol Metab 1989; 69: 1053–1058.

    Article  PubMed  CAS  Google Scholar 

  158. Malina RM, Bouchard C. Growth, Maturation and Physical Activity Human Kinetics, Champaign, IL, 1991.

    Google Scholar 

  159. Borer KT. Exercise-Induced Facilitation of Pulsatile Growth Hormone (GH) Secretion and Somatic Growth. Serono Symposium from Raven Press Books Ltd., New York, 1989.

    Google Scholar 

  160. Eliakim A, Brasel JA, Mohan S, Barstow TJ, Berman N, Cooper DM. Physical fitness, endurance training, and the growth hormone-insulin like growth factor I system in adolescent females. J Clin Endocrinol Metab 1996; 81 (11): 3986–3992.

    Article  PubMed  CAS  Google Scholar 

  161. Blimkie CJR, Rice S, Webber CE, Martin J, Levy D, Gordon CL. Effects of resistance training on bone mineral content and density in adolescent females. Can J Physiol Pharmacol 1996; 74: 1025–1033.

    Article  PubMed  CAS  Google Scholar 

  162. Smith EL, Gilligan C. Dose-response relationship between physical loading and mechanical competence of bone. Bone 1996; 18 (1): 45S - 50S.

    Article  Google Scholar 

  163. Ammann P, Rizzoli R, Meyer JM, Bonjour JP. Bone density and shape as determinants of bone strength in IGF-I and/or Pamidronate-treated ovariectomized rats. Osteoporosis Int 1996; 6: 219–227.

    Article  CAS  Google Scholar 

  164. Rubin CT. Suppression of the osteogenic response in the aging skeleton. Calcif Tissue Int 1992; 50: 305–313.

    Article  Google Scholar 

  165. Steinberg ME, Trueta J. Effects of activity on bone growth and development in the rat. Clin Orthopaedics Rel Res 1981; 156: 52–60.

    Google Scholar 

  166. Lanyon LE. The influence of function on the development of bone curvature. An experimental study on the rat tibia. J Zool (Lond) 1980; 192: 457–466.

    Article  Google Scholar 

  167. Margulies JY, Simkin A, Leichter I, Bivas A, Steinberg R, Giladi M, et al. Effect of intense physical activity on the bone-mineral content in the lower limbes of young adults. J Bone Jt Surg 1986;68-A (7, September): 1090–1093.

    Google Scholar 

  168. Hayes WC, Gerhart TN. Biomechanics of bone: applications for assessment of bone strength. In: Peck WA, ed. Bone and Mineral Research. Elsevier Science Publishers, B.V., 1985, pp. 259–294.

    Google Scholar 

  169. Carter DR, van der Muelen CH, Beaupre GS. Skeletal development. Mechanical consequences of growth, aging and disease. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporos. Academic, California, 1996, pp. 333–350.

    Google Scholar 

  170. Parfit M. The two faces of growth—benefits and risks to bone integrity. Osteoporosis Int 1994; 4 (6): 382–398.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bass, S.L., Myburgh, K.H. (2000). The Role of Exercise in the Attainment of Peak Bone Mass and Bone Strength. In: Warren, M.P., Constantini, N.W. (eds) Sports Endocrinology. Contemporary Endocrinology, vol 23. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-016-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-016-2_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-085-4

  • Online ISBN: 978-1-59259-016-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics