Skip to main content

The Biochemistry of Farnesyltransferase and Geranylgeranyltransferase I

  • Chapter
Farnesyltransferase Inhibitors in Cancer Therapy

Abstract

Protein prenylation refers to a type of covalent posttranslational modification by lipids at cysteine residues near the C-terminus of a protein; either a 15-carbon farnesyl or a 20-carbon geranylgeranyl isoprenoid is attached to the protein via a thioether linkage (1–3) (Fig. 1). Protein prenylation is ubiquitous in the eukaryotic world, and most prenylated proteins are membrane-associated for at least part of their lifetime. The majority of prenylated proteins are involved in cellular signaling and/or regulatory events that occur at or near the cytoplasmic surfaces of cellular membranes (4,5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 1996; 65: 241–269.

    Article  PubMed  CAS  Google Scholar 

  2. Glomset JA, Gelb MH, Farnsworth CC. Prenyl proteins in eukaryotic cells: a new type of membrane anchor. Trends Biochem Sci 1990; 15: 139–142.

    Article  PubMed  CAS  Google Scholar 

  3. Schafer WR, Rine J. Protein prenylation: genes, enzymes, targets and functions. Annu Rev Genetics 1992; 25: 209–238.

    Article  Google Scholar 

  4. Casey PJ. Protein lipidation in cell signaling. Science 1995; 268: 221–225.

    Article  PubMed  CAS  Google Scholar 

  5. Glomset JA, Farnsworth CC. Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu Rev Cell Biol 1994; 10: 181–205.

    Article  PubMed  CAS  Google Scholar 

  6. Kamiya Y, Sakurai A, Tamura S, Takahashi N. Structure of rhodotorucine A, a novel lipopeptide, inducing mating tube formation in Rhodosporidium toruloides. Biochem Biophys Res Commun 1978; 83: 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  7. Ishibashi Y, Sakagami Y, Isogai A, Suzuki A. Structures of tremerogens A-9291-I and A-9291-VII: peptidyl sex hormones of Tremella brasiliensis. Biochemistry 1984; 23: 1399–1404.

    Article  CAS  Google Scholar 

  8. Brown MS, Goldstein JL. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res 1980; 21: 505–517.

    PubMed  CAS  Google Scholar 

  9. Maltese WA, Sheridan KM. Isoprenylated proteins in cultured cells: subcellular distribution and changes related to altered morphology and growth arrest induced by mevalonate deprivation. J Cell Physiol 1987; 133: 471–481.

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt RA, Schneider CJ, Glomset JA. Evidence for post-translational incorporation of a product of mevalonic acid into Swiss 3T3 cell proteins. J Biol Chem 1984; 259:10, 175–10, 180.

    Google Scholar 

  11. Faust J, Krieger M. Expression of specific high capacity mevalonate transport in a Chinese hamster ovary cell variant. J Biol Chem 1987; 262: 1996–2004.

    PubMed  CAS  Google Scholar 

  12. Wolda SL, Glomset JA. Evidence for modification of lamin B by a product of mevalonic acid. J Biol Chem 1988; 263: 5997–6000.

    PubMed  CAS  Google Scholar 

  13. Beck LA, Hosick TJ, Sinensky M. Incorporation of a product of mevalonic acid metabolism into proteins of Chinese hamster ovary cell nuclei. J Cell Biol 1988; 107: 1307–1316.

    Article  PubMed  CAS  Google Scholar 

  14. Anderegg RJ, Betz R, Carr SA, Crabb JW, Duntze W. Structure of Saccharomyces cerevisiae mating hormone a-factor. J Biol Chem 1988; 263:18, 236–18, 240.

    Google Scholar 

  15. Hancock JF, Magee AI, Childs JE, Marshall CJ. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 1989; 57: 1167–1177.

    Article  PubMed  CAS  Google Scholar 

  16. Casey PJ, Solski PA, Der CJ, Buss JE. p2lras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci USA 1989; 86: 8323–8327.

    Article  PubMed  CAS  Google Scholar 

  17. Schafer WR, Kim R, Sterne R, Thorner J, Kim S-H, Rine J. Genetic and pharmacological suppression of oncogenic mutations in RAS genes of yeast and humans. Science 1989; 245: 379–385.

    Article  PubMed  CAS  Google Scholar 

  18. Cox AD, Der CJ. Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? Biochim Biophys Acta 1997; 1333: F51 - F71.

    PubMed  CAS  Google Scholar 

  19. Farnsworth CC, Gelb MH, Glomset JA. Identification of geranylgeranyl-modified proteins in HeLa cells. Science 1990; 247: 320–322.

    Article  PubMed  CAS  Google Scholar 

  20. Rilling HC, Breunger E, Epstein WW, Crain PF. Prenylated proteins: the structure of the isoprenoid group. Science 1990; 247: 318–320.

    Article  PubMed  CAS  Google Scholar 

  21. Clarke S. Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Anna Rev Biochem 1992; 61: 355–386.

    Article  CAS  Google Scholar 

  22. Ashby MN. CaaX converting enzymes. Curr Opinion Lipidol 1998; 9: 99–102.

    Article  CAS  Google Scholar 

  23. Seabra MC. Membrane association and targeting of prenylated ras-like GTPases. Cell Signal 1998; 10: 167–172.

    Article  PubMed  CAS  Google Scholar 

  24. Barbacid M. ras Genes. Ann Rev Biochem 1987; 56: 779–827.

    Google Scholar 

  25. Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature 1993; 366: 643–654.

    Article  PubMed  CAS  Google Scholar 

  26. Macara IG, Lounsbury KM, Richards SA, McKeirnan C, Bar-Sagi D. The Ras superfamily of GTPases. FASEB J 1996; 10: 625–630.

    PubMed  CAS  Google Scholar 

  27. Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, et al. K-ras is an essential gene in the mouse with partial function overlap with N-ras. Genes Dev 1997; 11: 2468–2481.

    Article  PubMed  CAS  Google Scholar 

  28. Gibbs JB, Oliff A, Kohl NE. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell 1994; 77: 175–178.

    Article  PubMed  CAS  Google Scholar 

  29. Lerner EC, Hamilton AD, Sebti SM. Inhibition of Ras prenylation: a signaling target for novel anticancer drug design. Anti-Cancer Drug Design 1997; 12: 229–238.

    PubMed  CAS  Google Scholar 

  30. Gibbs JB, Oliff A. The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu Rev Pharmacol Toxicol 1997; 37: 143–166.

    Article  PubMed  CAS  Google Scholar 

  31. Reiss Y, Goldstein JL, Seabra MC, Casey Pi, Brown MS. Inhibition of purified p2lras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell 1990; 62: 81–88.

    Article  PubMed  CAS  Google Scholar 

  32. Mumby SM, Casey PJ, Gilman AG, Gutowski S, Sternweis PC. G protein gamma subunits contain a 20-carbon isoprenoid. Proc Natl Acad Sci USA 1990; 87: 5873–5877.

    Article  PubMed  CAS  Google Scholar 

  33. Yamane HK, Farnsworth CC, Xie H, Howald W, Fung BK-K, Clarke S, et al. Brain G protein gamma subunits contain an all-trans-geranylgeranyl-cysteine methyl ester at their carboxyl termini. Proc Natl Acad Sci USA 1990; 87: 5868–5872.

    Article  PubMed  CAS  Google Scholar 

  34. Yamane HK, Farnsworth CC, Xie H, Evans T, Howald WN, Gelb MH, et al. Membrane-binding domain of the small G protein G25K contains an S-(all-trans-geranylgeranyl) cysteine methyl ester at its carboxyl terminus. Proc Natl Acad Sci USA 1991; 88: 286–290.

    Article  PubMed  CAS  Google Scholar 

  35. Casey PJ, Thissen JA, Moomaw JF. Enzymatic modification of proteins with a geranylgeranyl isoprenoid. Proc Natl Acad Sci USA 1991; 88: 8631–8635.

    Article  PubMed  CAS  Google Scholar 

  36. Yokoyama K, Goodwin GW, Ghomashchi F, Glomset JA, Gelb MH. A protein geranylgeranyltransferase from bovine brain: implications for protein prenylation specificity. Proc Natl Acad Sci USA 1991; 88: 5302–5306.

    Article  PubMed  CAS  Google Scholar 

  37. Casey PJ, Seabra MC. Protein prenyltransferases. J Biol Chem 1996; 271: 5289–5292.

    Article  PubMed  CAS  Google Scholar 

  38. Seabra MC, Reiss Y, Casey PJ, Brown MS, Goldstein JL. Protein farnesyltransferase and geranylgeranyltransferase share a common alpha subunit. Cell 1991; 65: 429–434.

    Article  PubMed  CAS  Google Scholar 

  39. Moomaw JF, Casey PJ. Mammalian protein geranylgeranyltransferase: subunit composition and metal requirements. J Biol Chem 1992; 267:17, 438–17, 443.

    Google Scholar 

  40. Chen W-J, Andres DA, Goldstein JL, Russell DW, Brown MS. cDNA cloning and expression of the peptide binding beta subunit of rat p2lras farnesyltransferase, the counterpart of yeast RAMI/DPRI. Cell 1991; 66: 327–334.

    Article  CAS  Google Scholar 

  41. Kohl NE, Diehl RE, Schaber MD, Rands E, Soderman DD, He B, et al. Structural homology among mammalian and Saccharomyces cerevisiae isoprenyl-protein transferases. J Biol Chem 1991; 266: 18, 884–18, 888.

    Google Scholar 

  42. Zhang FL, Diehl RE, Kohl NE, Gibbs JB, Giros B, Casey PJ, Omer CA. cDNA cloning and expression of rat and human protein geranylgeranyltransferase Type-I. J Biol Chem 1994; 269: 3175–3180.

    PubMed  CAS  Google Scholar 

  43. Park H-W, Boduluri SR, Moomaw JF, Casey PJ, Beese LS. Crystal structure of protein farnesyltransferase at 2.25 A resolution. Science 1997; 275: 1800–1804.

    Article  PubMed  CAS  Google Scholar 

  44. Boguski MS, Murray AW, Powers S. Novel repetitive sequence motifs in the alpha and beta-subunits of prenyl-protein transferases and homology of the alpha subunits to the MAD2 gene product of yeast. New Biologist 1992; 4: 408–411.

    PubMed  CAS  Google Scholar 

  45. Dunten P, Kammlott U, Crowther R, Weber D, Palermo R, Birktoft J. Protein farnesyltransferase: structure and implications for substrate binding. Biochemistry 1998; 37: 7907–7912.

    Article  PubMed  CAS  Google Scholar 

  46. Long SB, Casey PJ, Beese LS. Co-crystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate. Biochemistry 1998; 37: 9612–9618.

    Article  PubMed  CAS  Google Scholar 

  47. Furfine ES, Leban JJ, Landavazo A, Moomaw JF, Casey PJ. Protein farnesyltransferase: kinetics of farnesyl pyrophosphate binding and product release. Biochemistry 1995; 34: 6857–6862.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang FL, Casey PJ. Influence of metals on substrate binding and catalytic activity of mammalian protein geranylgeranyltransferase type-I. Biochem J 1996; 320: 925–932.

    PubMed  CAS  Google Scholar 

  49. Yokoyama K, Zimmerman K, Scholten J, Gelb MH. Differential prenyl pyrophosphate binding to mammalian protein geranylgeranyltransferase-I and protein farnesyltransferase and its consequences on the specificity of protein prenylation. J Biol Chem 1997; 272: 3944–3952.

    Article  PubMed  CAS  Google Scholar 

  50. Reiss Y, Seabra MC, Armstrong SA, Slaughter CA, Goldstein JL, Brown MS. Nonidentical subunits of p21 H-ras farnesyltransferase: peptide binding and farnesyl pyrophosphate carrier functions. J Biol Chem 1991; 266: 10672–10677.

    PubMed  CAS  Google Scholar 

  51. Yokoyama K, Gelb MH. Purification of a mammalian protein geranylgeranyltransferase: formation and catalytic properties of an enzyme-geranylgeranyl diphosphate complex. J Biol Chem 1993; 268: 4055–4060.

    PubMed  CAS  Google Scholar 

  52. Omer CA, Kral AM, Diehl RE, Prendergast GC, Powers S, Allen CM, et al. Characterization of recombinant human farnesyl-protein transferse: cloning, expression, farnesyl diphosphate binding, and functional homology with yeast prenyl-protein transferses. Biochemistry 1993; 32: 5167–5176.

    Article  PubMed  CAS  Google Scholar 

  53. Yokoyama K, McGeady P, Gelb MH. Mammalian protein geranylgeranyltransferase-1: substrate specificity, kinetic mechanism, metal requirements, and affinity labeling. Biochemistry 1995; 34: 1344–1354.

    Article  PubMed  CAS  Google Scholar 

  54. Bukhtiyarov YE, Omer CA, Allen CM. Photoreactive analogues of prenyl diphosphates as inhibitors and probes of human protein farnesyltransferase and geranylgeranyltransferase type I. J Biol Chem 1995; 270: 19035–19040.

    Article  PubMed  CAS  Google Scholar 

  55. Gibbs JB, Pompliano DL, Mosser SD, Rands E, Lingham RB, Singh SB, et al. Selective inhibition of farnesyl-protein transferase blocks ras processing in vivo. J Biol Chem 1993; 268 (1 1): 7617–7620.

    PubMed  CAS  Google Scholar 

  56. Patel DV, Schmidt RJ, Biller SA, Gordon EM, Robinson SS, Manne V. Farnesyl diphosphate-based inhibitors of Ras farnesyl protein transferase. J Med Chem 1995; 38: 2906–2921.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang FL, Moomaw JF, Casey PJ. Properties and kinetic mechanism of recombinant mammalian protein geranylgeranyltransferase type I. J Biol Chem 1994; 269: 23465–23470.

    PubMed  CAS  Google Scholar 

  58. Macchia M, Jannitti N, Gervasi G, Danesi R. Geranylgeranyl diphosphate-based inhibitors of post-translational geranylgeranylation of cellular proteins. J Med Chem 1996; 39: 1352–1356.

    Article  PubMed  CAS  Google Scholar 

  59. Inglese J, Glickman JF, Lorenz, W, Caron M, Lefkowitz, RJ. Isoprenylation of a protein kinase: requirement of farnesylation/alpha-carboxyl methylation for full enzymatic activity of rhodopsin kinase. J Biol Chem 1992; 267: 1422–1425.

    PubMed  CAS  Google Scholar 

  60. Cox AD, Der CJ. The ras/cholesterol connection: implications for ras oncogenicity. Crit Rev Oncog 1992; 3: 365–400.

    PubMed  CAS  Google Scholar 

  61. James GL, Goldstein JL, Pathak RL, Anderson RGW, Brown MS. PxF, a prenylated protein of peroxisomes. J Biol Chem 1994; 269: 14182–14190.

    PubMed  CAS  Google Scholar 

  62. Heilmeyer LMG, Serwe M, Weber C, Metzger J, Hoffmann-Posorske E, Meyer HE. Farnesylcysteine, a constituent of the alpha and beta subunits of rabbit skeletal muscle phosphorylase kinase: localization by conversion to S-ethylcysteine and by tandem mass spectrometry. Proc Natl Acad Sci USA 1992; 89: 9554–9558.

    Article  PubMed  CAS  Google Scholar 

  63. Smed FD, Boom A, Pesesse X, Schiffmann SN, Erneux C. Post-translational modification of human brain type I inositol-1,4,5-triphosphate 5-phosphatase by farnesylation. JBiol Chem 1996; 271:10, 419–10, 424.

    Google Scholar 

  64. Reiss Y, Stradley SJ, Gierasch LM, Brown MS, Goldstein JL. Sequence requirements for peptide recognition by rat brain p21 ras farnesyl:protein transferase. Proc Natl Acad Sci USA 1991; 88: 732–736.

    Article  PubMed  CAS  Google Scholar 

  65. Moores SL, Schaber MD, Mosser SD, Rands E, O’Hara MB, Garsky VM, et al. Sequence dependence of protein isoprenylation. J Biol Chem 1991; 266:14, 603–14, 610.

    Google Scholar 

  66. Goldstein JL, Brown MS, Stradley SJ, Reiss Y, Gierasch LM. Nonfarnesylated tetrapeptide inhibitors of protein farnesyltransferase. J Biol Chem 1991; 266:15, 575–15, 578.

    Google Scholar 

  67. Garcia AM, Rowell C, Ackermann K, Kowalczyk JJ, Lewis MD. Peptidomimetic inhibitors of ras farnesylation and function in whole cells. J Biol Chem 1993; 268:18, 415–18, 418.

    Google Scholar 

  68. Kohl NE, Mosser SD, deSolms SJ, Giuliani EA, Pompliano DL, Graham SL, et al. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 1993; 260: 1934–1937.

    Article  PubMed  CAS  Google Scholar 

  69. Nigam M, Seong C-M, Qian Y, Hamilton AD, Sebti SM. Potent inhibition of human tumor p2 Iras farnesyltransferase by A1A2-lacking p2lras CA1A2X peptidomimetics. J Biol Chem 1993; 268: 20, 695–20, 698.

    Google Scholar 

  70. Stradley SJ, Rizo J, Gierasch LM. Conformation of a heptapeptide substrate bound to protein farnesyltransferase. Biochemistry 1993; 32: 12586–12590.

    Article  PubMed  CAS  Google Scholar 

  71. Koblan KS, Culberson JC, deSolms SJ, Giuliani EA, Mosser SD, Orner CA, et al. NMR studies of novel inhibitors bound to farnesyl-protein transferase. Prot Science 1995; 4: 681–688.

    Article  CAS  Google Scholar 

  72. Hightower KE, Huang C-C, Casey PJ, Fierke CA. H-Ras peptide and protein substrates bind protein farnesyltransferase as an ionized thiolate. Biochemistry 1998; 37:15, 555–15, 562.

    Google Scholar 

  73. Reiss Y, Brown MS, Goldstein JL. Divalent cation and prenyl pyrophosphate specificities of the protein farnesyltransferase from rat brain, a zinc metalloenzyme. J Biol Chem 1992; 267: 6403–6408.

    PubMed  CAS  Google Scholar 

  74. Huang C-C, Casey PJ, Fierke CA. Evidence for a catalytic role of zinc in protein farnesyltransferase: spectroscopy of Coe+-FTase indicates metal coordination of the substrate thiolate. J Biol Chem 1997; 272: 20–23.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang FL, Fu HW, Casey PJ, Bishop WR. Substitution of cadmium for zinc in farnesyl:protein transferase alters its substrate specificity. Biochemistry 1996; 35: 8166–8171.

    Article  PubMed  CAS  Google Scholar 

  76. Ying W, Sepp-Lorenzino L, Cai K, Aloise P, Coleman PS. Photoaffinity-labeling peptide substrates for farnesyl-protein transferase and the intersubunit location of the active site. J Biol Chem 1994; 269: 470–477.

    PubMed  CAS  Google Scholar 

  77. Powers S, Michaelis S, Broek D, Santa-Ana AS, Field J, Herskowitz I, Wigler M. RAM, a gene of yeast required for a functional modification of RAS proteins and for production of mating pheromone a-factor. Cell 1986; 47: 413–422.

    Article  PubMed  CAS  Google Scholar 

  78. Trueblood CE, Ohya Y, Rine J. Genetic evidence for in vivo cross-specificity of the CaaX-Box protein prenyltransferases farnesyltransferase and geranylgeranyltransferase-I in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13: 4260–4275.

    PubMed  CAS  Google Scholar 

  79. James GL, Goldstein JL, Brown MS. Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J Biol Chem 1995; 270: 6221–6226.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang FL, Kirschmeier P, Can D, James L, Bond RW, Wang L, et al. Characterization of Ha-Ras, N-Ras, Ki-Ras4A, Ki-Ras4B as in vitro substrates for farnesyl protein transferase and geranylgeranyl protein transferase type I. J Biol Chem 1997; 272:10, 232–10, 239.

    Google Scholar 

  81. Rowell CA, Kowalczyk JJ, Lewis MD, Garcia AM. Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J Biol Chem 1997; 272: 14093–14097.

    Article  PubMed  CAS  Google Scholar 

  82. Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. JBiol Cheni 1997; 272: 14459–14464.

    Article  CAS  Google Scholar 

  83. Carboni JM, Yan N, Cox AD, Bustelo X, Graham SM, Lynch MJ, et al. Farnesyltransferase inhibitors are inhibitors of Ras but not R-Ras2/TC21, transformation. Oncogene 1995; 10: 1905–1913.

    PubMed  CAS  Google Scholar 

  84. Adamson P, Marshall CJ, Hall A, Tilbrook PA. Post-translational modifications of p2lrho proteins. J Biol Chem 1992; 267: 20033–20038.

    PubMed  CAS  Google Scholar 

  85. Armstrong SA, Hannah VC, Goldstein JL, Brown MS. Caax geranylgeranyl transferase transfers farnesyl as efficiently as geranylgeranyl to RhoB. J Biol Cheni 1995; 270: 7864–7868.

    Article  CAS  Google Scholar 

  86. Lebowitz, PF, Casey PJ, Prendergast GC, Thissen JA. Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. J Biol Chem 1997; 272: 15591–15594.

    Article  PubMed  CAS  Google Scholar 

  87. Pompliano DL, Rands E, Schaber MD, Mosser SD, Anthony NJ, Gibbs JB. Steady-state kinetic mechanism of ras farnesyl:protein transferase. Biochemistry 1992; 31: 3800–3807.

    Article  PubMed  CAS  Google Scholar 

  88. Tschantz WR, Furfine ES, Casey PJ. Substrate binding is required for release of product from mammalian protein farnesyltransferase. J Biol Chem 1997; 272: 9989–9993.

    Article  PubMed  CAS  Google Scholar 

  89. Dolence JM, Cassidy PB, Mathis JR, Poulter CD. Yeast protein farnesyltransferase: steady-state kinetic studies of substrate binding. Biochemistry 1995; 34: 16687–16694.

    Article  PubMed  CAS  Google Scholar 

  90. Mathis JR, Poulter CD. Yeast protein farnesyltransferase: a pre-steady-state kinetic analysis. Biochemistry 1997; 36: 6367–6376.

    Article  PubMed  CAS  Google Scholar 

  91. Stirtan WG, Poulter CD. Yeast protein geranylgeranyltransferase Type-I: steady-state kinetics and substrate binding. Biochemistry 1997; 36: 4552–4557.

    Article  PubMed  CAS  Google Scholar 

  92. Vallee BL, Auld DS. Functional zinc-binding motifs in enzymes and DNA-binding proteins. Faraday Discuss 1992; 93: 47–65.

    Article  PubMed  CAS  Google Scholar 

  93. Williams RJP. The biochemistry of zinc. Polyhedron 1987; 6: 61–69.

    Article  CAS  Google Scholar 

  94. Vallee BL, Auld DS. New perspective on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. Biochemistry 1993; 32: 6493–6500.

    Article  PubMed  CAS  Google Scholar 

  95. Pearson RG. Hard and soft acids and bases. J Am Chem Soc 1963; 85: 3533–3539.

    Article  CAS  Google Scholar 

  96. Vallee BL, Auld DS. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 1990; 29: 5647–5659.

    Article  PubMed  CAS  Google Scholar 

  97. Fu H-W, Moomaw JF, Moomaw CR, Casey PJ. Identification of a cysteine residue essential for activity of protein farnesyltransferase: Cys299 is exposed only upon removal of zinc from the enzyme. J Biol Chem 1996; 271: 28541–28548.

    Article  PubMed  CAS  Google Scholar 

  98. Matthews RG, Goulding CW. Enzyme-catalyzed methyl transfers to thiols: the role of zinc. Current Opinion Chem Biol 1998; 1: 332–339.

    Article  Google Scholar 

  99. Myers LC, Terranova MP, Ferentz, AE, Wagner G, Verdine GL. Repair of DNA methylphosphotriesters through a metalloactivated cysteine nucleophile. Science 1993; 261: 1164–1167.

    Article  PubMed  CAS  Google Scholar 

  100. Gonzalez, JC, Peariso K, Penner-Hahn JE, Matthews RG. Cobalamin-independent methionine synthase from escherichia coli: a zinc metalloenzyme. Biochemistry 1996; 35:12, 228–12, 234.

    Google Scholar 

  101. LeClerc GM, Grahame DA. Methylcobamide:coenzyme M methyltransferaseisozymes from methanosarcina barkeri. J Biol Chem 1996; 271:18, 725–18, 731.

    Google Scholar 

  102. Hooley R, Yu C-Y, Symons M, Barber DL. Ga13 stimulates Na+-H+exchange through distinct Cdc42dependent and RhoA-dependent pathways. J Biol Chem 1996; 271: 6152–6158.

    Article  PubMed  CAS  Google Scholar 

  103. Goulding CW, Matthews RG. Cobalamin-dependent methionine synthase from escherichia coli: involvement of zinc in homocysteine activation. Biochemistry 1997; 36: 15749–15757.

    Article  PubMed  CAS  Google Scholar 

  104. Dolence JM, Poulter CD. A mechanism for posttranslational modifications of proteins by yeast protein farnesyltransferase. Proc Natl Acad Sci USA 1995; 92: 5008–5011.

    Article  PubMed  CAS  Google Scholar 

  105. Gebler JC, Woodside AB, Poulter CD. Dimethylallytryptophan synthase. An enzyme-catalyzed electrophilic aromatic substitution. J Am Chem Soc 1992; 114: 7354–7360.

    Article  CAS  Google Scholar 

  106. Chen A, Kroon PA, Poulter CD. Isoprenyl disphosphate synthases: protein sequence comparisons, a phylogenetic tree, and predictions of secondary structure. Prot Science 1994; 3: 600–607.

    Article  CAS  Google Scholar 

  107. Lesburg CA, Zhai G, Cane DE, Christianson DW. Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 1997; 277: 1820–1824.

    Article  PubMed  CAS  Google Scholar 

  108. Mu Y, Omer CA, Gibbs RA. On the stereochemical course of human protein-farnesyl transferase. J Am Chem Soc 1996; 118: 1817–1823.

    Article  CAS  Google Scholar 

  109. Edelstein RL, Weller VA, Distefano MD. Stereochemical analysis of the reaction catalyzed by yeast protein farnesyltransferase. J Org Chem 1998; 63: 5298–5299.

    Article  CAS  Google Scholar 

  110. Huang C-C, Hightower KE, Fierke CA. Mechanistic studies of rat protein farnesyltransferase indicate an associative transition state. Biochemistry 2000; 39: 2593–2602.

    Article  PubMed  CAS  Google Scholar 

  111. Li NC, Manning RA. Some metal complexes of sulfur-containing amino acids. JAm Chem Soc 1955; 77: 5225–5228.

    Article  CAS  Google Scholar 

  112. Poulter CD, Wiggins PL, Le AT. Farnesylpyrophosphate synthetase. A new stepwise mechanism for the l’-4 condensation reaction. J Am Chem Soc 1981; 103: 3926–3927.

    Article  CAS  Google Scholar 

  113. Richard JP, Jencks WP. Concerted bimolecular substitution reactions of 1-phenylethyl derivatives. J Am Chem Soc 1984; 106: 1383–1396.

    Article  CAS  Google Scholar 

  114. Jencks WP. When is an intermediate not an intermediate? Enforced mechanisms of general acid-base catalyzed, carbocation, carbanion, and liquid exchange reactions. Acc Chem Res 1980; 13: 161–169.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huang, CC., Fierke, C.A., Casey, P.J. (2001). The Biochemistry of Farnesyltransferase and Geranylgeranyltransferase I. In: Sebti, S.M., Hamilton, A.D. (eds) Farnesyltransferase Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-013-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-013-1_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9606-2

  • Online ISBN: 978-1-59259-013-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics