Skip to main content

Early Clinical Experience with Farnesyl Protein Transferase Inhibitors

From the Bench to the Bedside

  • Chapter
Farnesyltransferase Inhibitors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 105 Accesses

Abstract

The ability to target anticancer therapies to specific molecular components of the signal transduction cascade involved in malignant transformation represents a major therapeutic advance in the development of cytostatic antineoplastic agents. Inhibitors of Ras farnesylation are examples of such molecularly targeted therapies and are the culmination of rational drug design and dedicated high-throughput screening of natural products and libraries. Protein farnesyltransferase (FTase) inhibitors (FTIs) are now entering early phase clinical investigations alone and in combination, with encouraging preliminary safety and pharmacologic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leonard DM. Ras farnesyltransferase: a new therapeutic target. J Med Chem 1997; 40: 2971–2990.

    Article  PubMed  CAS  Google Scholar 

  2. Cox AD, Der CJ. Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? Biochem Biophys Acta 1997; 1333: 551–571.

    Google Scholar 

  3. Omer CA, Anthony NJ, Buser-Doepner CA, et al. Farnesyl-protein transferase inhibitors as agents to inhibit tumor growth. Biofactors 1997; 6: 359–366.

    Article  PubMed  CAS  Google Scholar 

  4. Gibbs JB, Oliff A. The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu Rev Pharmacol Toxicol 1997; 37: 143–166.

    Article  PubMed  CAS  Google Scholar 

  5. Yamane HK, Farnsworth CC, Xie HY, et al. Brain G protein gamma subunits contain all-transgeranylgeranylcystein methyl ester at their carboxyl terminal. Proc Natl Acad Sci USA 1990; 87: 5868–5674.

    Article  PubMed  CAS  Google Scholar 

  6. Sebti SM, Hamilton AD. New approaches to anticancer drug design based on the inhibition of farnesyltransferase. DDT 1998; 3: 26–33.

    Article  CAS  Google Scholar 

  7. Heimbrook DC, Oliff A. Therapeutic intervention and signaling. Curr Opin Cell Biol 1998; 10: 284–288.

    Article  PubMed  CAS  Google Scholar 

  8. Park HW, Boduluri SR, Moomaw JF, et al. Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution. Science 1997; 275: 1800–1804.

    Article  PubMed  CAS  Google Scholar 

  9. Gibbs JB, Pompliano DL, Mossner SD, et al. Selective inhibition of farnesyl-protein transferase blocks Ras processing in vivo. J Biol Chem 1993; 268: 7617–7620.

    PubMed  CAS  Google Scholar 

  10. Singh SB, Zink DL, Liesch JM, et al. Isolation and structure of chaetomellic acids A and B from Chaetomella acutiseta: farnestl pyrophosphate mimic inhibitors of Ras farnesyl-protein transferase. Tetrahedron 1993; 49: 5917–5926.

    Article  CAS  Google Scholar 

  11. Singh SB. Synthesis of chaetomellic acid A: a potent inhibitor of Ras farnesyl-protein transferase. Tetrahedon Lett 1993; 34: 6521–6524.

    Article  CAS  Google Scholar 

  12. Lingham RB, Silverman KC, Bills GF, et al. Chaetomella acutiseta produces chaetomellic acids A and B which are reversible inhibitors of farnesyl-protein transferase. Appl Microbiol Biotechnol 1993; 40: 370–374.

    Article  PubMed  CAS  Google Scholar 

  13. Singh SB, Liesch JM, Lingham RB, et al. Actinoplanic acid A: a macrocyclic polycarboxylic acid which is a potent inhibitor of Ras farnesyl-protein transferase. J Am Chem Soc 1994; 116: 11606–11607.

    Article  CAS  Google Scholar 

  14. Hara M, Akasaka K, Akinaga S, et al. Identification of Ras farnesyltransferase inhibitors by microbial screening. Proc Natl Acad Sci USA 1993; 90: 2281–2285

    Article  PubMed  CAS  Google Scholar 

  15. Tamanoi F. Inhibition of Ras farnesyltransferase. Trends Biochem Sci 1993; 18: 349–353.

    Article  PubMed  CAS  Google Scholar 

  16. Lowy DR, Willumsen BM. Rational cancer therapy. Nature Med 1995; 1: 792–797.

    Article  Google Scholar 

  17. Kainuma O, Asano T, Hasegawa M, et al. Inhibition of growth and invasive activity of human pancreatic cancer cells by a farnesyltransferase inhibitor, manumycin. Pancreas 1997; 15: 379–383.

    Article  PubMed  CAS  Google Scholar 

  18. Pompliano DL, Rands E, Schaber MD, Mosser SD, Anthony NJ, Gibbs JB. Steady-state kinetic mechanism of Ras farnesyl:protein transferase. Biochemistry 1992; 31: 3800–3807.

    Article  PubMed  CAS  Google Scholar 

  19. Santillo M, Mondola P, Gioielli A, Seru R, Iossa S, Annella T, et al. Inhibitors of Ras farnesylation revert the increased resistance to oxidative stress in K-Ras transfomed NIH 3T3 cells. Biochem Biophys Res Commun 1996; 229: 739–745.

    Article  PubMed  CAS  Google Scholar 

  20. Symons M. The Rac and Rho pathways as a source of drug targets for Ras-mediated malignancies. Curr Opin Biotechnol 1995; 6: 668–774.

    Article  PubMed  CAS  Google Scholar 

  21. Brown MS, Goldstein JL, Paris KJ, et al. Tetrapeptide inhibitors of protein farnesyltransferase: amino-terminal substitution in phenylalanine-containing tetrapeptides restores farnesylation. Proc Natl Acad Sci USA 1992; 89: 8313–8316.

    Article  PubMed  CAS  Google Scholar 

  22. Kohl NE, Mosser SD, de Solms SJ. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 1993; 260: 1934–1937.

    Article  PubMed  CAS  Google Scholar 

  23. Kohl NE, Mosser SD, deSolms SJ et al. Protein farnesyltransferase inhibitors block the growth of ras-dependent tumors in nude mice. Proc Natl Acad Sci USA 1994; 91: 9141–9145.

    Article  PubMed  CAS  Google Scholar 

  24. Sepp-Lorenzino L, Ma Z, Rands E, et al. A peptidomimetic inhibitor of farnesly protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res 1995; 55: 5302–5309.

    PubMed  CAS  Google Scholar 

  25. deSolms SJ, Deana AA, Giulian EA, et al. Pseudodipeptide inhibitors of protein farnesyltransferase. J Med Chem 1995; 38: 3967–3971.

    Article  PubMed  CAS  Google Scholar 

  26. Lerner EC, Qian Y, Blaskovich MA, et al. Disruption of oncogenic K-Ras4B processing and signaling by a potent geranylgeranyl transferase-I inhibitor. J Biol Chem 1995; 270: 26770–26773.

    Article  PubMed  CAS  Google Scholar 

  27. Nagasu T, Yoshimatsu K, Rowell C, et al. Inhibition of human tumor xenograft growth bytreatment with the farnesyl transferase inhibitor-B936. Cancer Res 1995; 55: 5310–5314.

    PubMed  CAS  Google Scholar 

  28. Liu M, Bryant MS, Chen J, et al. Antitumor activity of SCH66356, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human xenograft models and wap-ras transgenic mice. Cancer Res 1998; 58: 4947–4956.

    PubMed  CAS  Google Scholar 

  29. Mallams AK, Njorge FG, Doll RJ, et al. Antitumor 8-chlorobenzocycloheptapyridines: a new class of selective nonpeptidic nonsulfhydryl inhibitors of ras farnesylation. Bioorg Med Chem 1997; 5: 93–99.

    Article  PubMed  CAS  Google Scholar 

  30. Njoroge FG, Doll RJ, Vibulbhan B, et al. Discovery of novel nonpeptidic tricyclic inhibitors of Ras farnesyl protein transferase. Bioorg Med Chem Lett 1997; 5: 101–113.

    Article  CAS  Google Scholar 

  31. Bishop WR, Bond R, Petrin J, et al. Novel tricyclic inhibitor of farnesyl protein transferase: biochemical characterization and inhibition of Ras modification in transfected Cos cells. J Biol Chem 1995; 270: 30611–30618.

    Article  PubMed  CAS  Google Scholar 

  32. Leonard DM, Shuler KR, Poulter CJ, et al. Structure-activity relationships of cysteine-lacking penta-peptide derivatives that inhibit ras farnesyltransferase. J Med Chem 1997; 40: 192–200.

    Article  PubMed  CAS  Google Scholar 

  33. End D, Skrzat S, Devine A, et al. RI 15777, a novel imidazole farnesyl protein transferase (FTI): biohemical and cellular effects in H-ras and K-ras dominant systems. Proc Amer Assoc Cancer Res 1998; 39: 1847

    Google Scholar 

  34. Janssen Research Foundation. R115777 investigator brochure, 4th Ed. Janssen Research Foundation, Titusville, NJ, 1998.

    Google Scholar 

  35. Manne V, Yan N, Carboni JM, et al. Bisubstrate inhibitors of farnesyltransferase: a novel class of specific inhibitors of ras transformed cells. Oncogene 1995; 10: 1763–1779.

    PubMed  CAS  Google Scholar 

  36. Yan N, Ricca C, Fletcher J, et al. Farnesyltranferase inhibitors block the neurofibromatosis type I (NF 1) malignant phenotype. Cancer Res 1995; 55: 3569–3575.

    PubMed  CAS  Google Scholar 

  37. Basu TN, Gutmann DH, Fletcher JA, et al. Aberrant regulation of ras proteins in malignant tumor cells from type I neurofibromatosis patients. Nature 1992; 356: 713–715.

    Article  PubMed  CAS  Google Scholar 

  38. DeClue JE, Papageorge AG, Fletcher JA, et al. Abnormal regulation of mammalian p2lras contributes to malignant tumor growth in von Recklinghausen (type 10) neurofibromatosis. Cell 1992; 69: 265–273.

    Article  PubMed  CAS  Google Scholar 

  39. James GL, Goldstein JL, Brown MS, Rawson TE, Somers TC, McDowell RS, et al. Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells Science 1993; 260: 1937–1942.

    Article  PubMed  CAS  Google Scholar 

  40. Prendergast GC, Davide JP, Leboqitz PD, et al. Resistance of a variant ras-transformed cell line to phenotypic reversion by farnesyl transferase inhibitors. Cancer Res 1996; 56: 2626–2632.

    PubMed  CAS  Google Scholar 

  41. Kohl NE, Orner CA, Conner MW, et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nature Med 1995; 1: 792–797.

    Article  PubMed  CAS  Google Scholar 

  42. Zujewski J, Horak ID, Woestenborghs R, et al. Phase I trial of farnesyl-transferase inhibitor, R115777, in advanced cancer. Proc Amer Assoc Cancer Res 1998; 39: 1848

    Google Scholar 

  43. Zujewski J, Horak ID, Bol CJ, et al. A phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol 2000; 18: 927–941.

    PubMed  CAS  Google Scholar 

  44. Schellens JHM, de Klerk G, Swart M, et al. Phase I and pharmacologic study with the novel farnesyltransferase inhibitor (FTI) R115777. Proc Amer Assoc Cancer Res 1999; 39: 724.

    Google Scholar 

  45. Hudes GR, Schol J, Baab, et al. Phase I clinical and pharmacokinetic trial of the farnesyltransferase inhibitor RI 15777 on a 21-day dosing schedule. Proc Am Soc Clin Oncol 1999; 18: 601.

    Google Scholar 

  46. Soignet S, Yao S-L, Britten D, et al. Pharmacokinetics and pharmacodynamics of the farnesyl protein transferase inhibitor (L-778,123) in solid tumors. Proc Am Assoc Can Res 1998; 40: 517.

    Google Scholar 

  47. Britten CD, Rowinsky E, Yao S-L, et al. A phase I and pharmacologic study of the farnesyl protein transferase inhibitor L-778,123 in patients with solid cancers. Proc Am Soc Clin Oncol 1999; 18: 597.

    Google Scholar 

  48. Adjei AA, Erlichman C, Davis JN, et al. A phase I and pharmacologic study of the farnesyl protein transferase inhibitor SCH 66336 in patients with locally advanced or metastatic cancer. Proc Am Soc Clin Oncol 1999; 18: 598.

    Google Scholar 

  49. Hurwitz HI, Colvin OM, Petros WP, et al. A phase I and pharmacokinetic study of SCH 66336, a novel FPTI using a 2-week on, 2-week off schedule. Proc Am Soc Clin Oncol 1999; 18: 599.

    Google Scholar 

  50. Eskens F, Awada A, Verweij, et al. Phase I and pharmacologic study of continuous daily oral SCH 66336, a novel farnesyl transferase inhibitor, in patients with solid tumors. Proc Am Soc Clin Oncol 1999; 18: 600.

    Google Scholar 

  51. Rose WC, Arico MA, Burke CL, et al. Preclinical antitumor activity of BMS-214662, a novel farnesyl transferase inhibitor. Proc Am Assoc Cancer Res 2000; 41: 2835A.

    Google Scholar 

  52. Sonnichsen D, Damle B, Manning J, et al. Pharmacokinetics and pharmacodynamics of the farnesyltransferase inhibitor BMS-214662 in patients with advanced solid tumors. Proc Am Soc Clin Oncol 2000; 19: 720A.

    Google Scholar 

  53. Baselga J, Norton L, Albanell J, et al. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 1998; 58, 2825–2831.

    PubMed  CAS  Google Scholar 

  54. Goldenberg MM. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 1999; 21: 309–318.

    Article  PubMed  CAS  Google Scholar 

  55. Moasser MM, Sepp-Lorenzino L, Kohl NE, et al. Farnesyl transferase inhibitors cause enhanced mitotic sensitivity to taxol and epothilones. Proc Nall Acad Sci USA 1998; 95: 1369–1374.

    Article  CAS  Google Scholar 

  56. Skrzat SG, Bowden CR, End DW. Interaction of the farnesyl protein transferase inhibitor R115777 with cytotoxic chemotherapeutics in vitro and in vivo. Proc Am Assoc Cancer Res 1999; 40: 523.

    Google Scholar 

  57. Shi B, Gurnani M, Yaremko B, et al. Enhanced efficacy of the farnesyl protein transferase inhibitor SCH 66336 in combination with paclitaxel. Proc Am Assoc Cancer Res 1999; 40: 524.

    Google Scholar 

  58. Sharma S, Britten C, Spriggs D, et al. A phase I and PK study of farnesyl transfterase inhibitor L-778,123 administered as a seven day continuous infusion in combination with paclitaxel. Proc Am Soc Clin Oncol, 2000; 19: 719A.

    Google Scholar 

  59. Peeters M, Van Cutsem E, Marse H, et al. Phase-I Combination Trial of the Farnesyltransferase Inhibitor (FTI) R115777 with A 5FU/LV Regimen in Advanced Colorectal (CRC) or Pancreatic (PC) Cancer. Proc Am Soc Clin Oncol 1999; 18: 859.

    Google Scholar 

  60. Patnaik A, Eckhardt SG, Izbicka E, et al. A phase I and pharmacologic (PK) study of the farnesyltransfernase inhibitor, R 115777 (R11) in combination with Gemcitabine (Gem). Proc Am Soc Clin Oncol, 2000; 19: 5A.

    Google Scholar 

  61. Smets G, Xhonneux B, Cornelissen F, et al. R115777, a selective farnesyl protein transferase inhibitor (FTI), induces anti-angiogenic, apoptotic and anti-proliferative activity in CAPAN-2 and LoVo tumor xenografts. Proc Am Assoc Cancer Res 1998; 39: 2170A.

    Google Scholar 

  62. Grugel S, Finkenzeller G, Weindel K, et al. Both v-Ha-Ras and v-Faf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J Biol Chem 1995; 270: 25915–25919.

    Article  PubMed  CAS  Google Scholar 

  63. Rak J, Mitsuhashi Y, Bayko L, et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995; 55: 4575–4580.

    PubMed  CAS  Google Scholar 

  64. Bernhard EJ, McKenna WG, Hamilton AD, Sebti SM, Qian Y, Wu JM, Muschel RJ. Inhibiting Ras prenylation increases the radiosensitivity of human tumor cell lines with activating mutations of ras oncogenes. Cancer Res 1998; 58: 1754–1761.

    PubMed  CAS  Google Scholar 

  65. Bernhard EJ, Kao G, Cox AD, et al. The farnesyl transferase inhibitor FTI-277 radiosensitizes H-Ras transformed rat embryo fibroblasts. Cancer Res 1996; 56: 1727–1730.

    PubMed  CAS  Google Scholar 

  66. McKenna WG, Weiss MC, Endlich B, et al. Synergistic effects of the v-myc oncogene with H-Ras on radioresistance. Cancer Res 1990; 50: 97–102.

    PubMed  CAS  Google Scholar 

  67. Eisenhauer EA. Phase I and II trials of novel anti-cancer agents: endpoints, efficacy and existentialism. Ann Oncol 1998; 9: 1047–1052.

    Article  PubMed  CAS  Google Scholar 

  68. Von Hoff DD. There are no bad anticancer agents, only bad clinical trial designs: twenty-first Richard and Hinda Rosenthal lecture. Clin Cancer Res 1998; 4: 1079–1086.

    Google Scholar 

  69. Burris HA III, Moore MJ, Anderson J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreatic cancer: a randomized clinical trial. J Clin Oncol 1997; 15: 2403–2413.

    PubMed  CAS  Google Scholar 

  70. Sun J, Blaskovich MA, Knowles D, Qian Y, Ohkanda J, Bailey RD, Hamilton AD, Sebti SM. Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, taxol and gemcitabine. Cancer Res 1999; 59: 4919–4926.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Patnaik, A., Rowinsky, E.K. (2001). Early Clinical Experience with Farnesyl Protein Transferase Inhibitors. In: Sebti, S.M., Hamilton, A.D. (eds) Farnesyltransferase Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-013-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-013-1_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9606-2

  • Online ISBN: 978-1-59259-013-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics