Skip to main content

Prenyltransferase Inhibitors as Radiosensitizers

  • Chapter
Farnesyltransferase Inhibitors in Cancer Therapy

Abstract

Radiation therapy is frequently used in the treatment of a number of different tumors. However, the effectiveness of radiotherapy is limited by the ability of normal tissues adjacent to tumors to tolerate radiation in the doses required to kill or sterilize tumor cells. This limitation is compounded by the presence in tumors of radiation-resistant cells that may arise as a result of environmental factors, such as hypoxic regions in tumors, the expression of growth factors that can reduce radiation sensitivity, or tumor cell intrinsic radiation resistance that may be imparted through the activation of certain oncogenes. Ras oncogenes in particular may contribute to radiation resistance, because they have been shown to increase radiation resistance in many experimental systems, and are mutated in an estimated 30% of all human tumors. Basic fibroblast growth factor (bFGF) has also been implicated in increased radiation resistance and is over-expressed in certain tumors, particularly glioblastomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FitzGerald TJ, Daugherty C, Kase K, Rothstein LA, McKenna M, Greenberger JS. Activated human N-Ras oncogene enhances x-irradiation repair of mammalian cells in vitro less effectively at low dose rate. Am J Clin Oncol 1985; 8: 517–522.

    Article  PubMed  CAS  Google Scholar 

  2. Sklar MD. Increased resistance to cis-diamminedichloroplatinum(II) in NIH 3T3 cells transformed by Ras oncogenes. Cancer Res 1988; 48: 793–797.

    PubMed  CAS  Google Scholar 

  3. Pirollo K, Tong Y, Villegas Z, Chen Y, Chang E. Oncogene-transformed NIH 3T3 cells display radiation resistance levels indicative of a signal transduction pathway leading to the radiation-resistant phenotype. Radiat Res 1993; 135: 234–243.

    Article  PubMed  CAS  Google Scholar 

  4. Samid D, Miller AC, Rimoldi D, Gafner J, Clark EP. Increased radiation resistance in transformed and nontransformed cells with elevated Ras proto-oncogene expression. Radiat Res 1991; 126: 244–250.

    Article  PubMed  CAS  Google Scholar 

  5. McKenna WG, Weiss MA, Bakanauskas VJ, Sandler H, Kelsten M, Biaglow J, et al. The role of the Hras oncogene in radiation resistance and metastasis. Intl J Rad One Biol Phys 1990; 18: 849–860.

    Article  CAS  Google Scholar 

  6. Ling CC, Endlich B. Radioresistance induced by oncogenic transformation. Radiat Res 1989; 120: 267–279.

    Article  PubMed  CAS  Google Scholar 

  7. Hermens A, Bentvelzen P. Influence of the H-Ras oncogene on radiation responses of a rat rhabdomyosarcoma cell line. Cancer Res 1992; 52: 3073–3082.

    PubMed  CAS  Google Scholar 

  8. Miller AC, Kariko K, Myers CE, Clark EP, Samid D. Increased radioresistance of EJras-transformed human osteosarcoma cells and its modulation by lovastatin, an inhibitor of p21ras isoprenylation. Intl J Cancer 1993; 53: 302–307.

    Article  CAS  Google Scholar 

  9. Miller AC, Gafner J, Clark EP, Samid D. Differences in radiation-induced micronuclei yields of human cells: influence of Ras gene expression and protein localization. Intl J Radiat Biol 1993; 64: 547–554.

    Article  PubMed  CAS  Google Scholar 

  10. Bruyneel EA, Storme GA, Schallier DC, Van den Berge DL, Hilgard P, Mareel MM. Evidence for abrogation of oncogene-induced radioresistance of mammary cancer cells by hexadecylphosphocholine in vitro. Eur J Cancer 1993; 29A: 1958–1963.

    Article  Google Scholar 

  11. Harris JF, Chambers AF, Tam ASK, Some Ras-transformed cells have increased radiosensitivity and decreased repair of sublethal readiation damage. Somat Cell Mol Genet 1990; 16: 39–48.

    Article  PubMed  CAS  Google Scholar 

  12. Alapetite C, Baroche C, Remvikos Y, Goubin G, Moustacchi E. Studies on the influence of the presence of an activated Ras oncogene on the in vitro radiosensitivity of human mammary epithelial cells. Intl J Radiat Biol 1991; 59: 385–396.

    Article  PubMed  CAS  Google Scholar 

  13. Su L-N, Little JB. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen. Intl J Radiat Biol 1992; 62: 201–210.

    Article  PubMed  CAS  Google Scholar 

  14. Mendonca MS, Boukamp P, Stanbridge EJ, Redpath JL. The radiosensitivity of human keratinocytes: influence of activated c-H-Ras oncogene expression and tumorigenicity. Intl J Radiat Biol 1991; 59: 1195–1206.

    Article  PubMed  CAS  Google Scholar 

  15. Farrell CL, Bready JV, Rex KL, Chen JN, DiPalma CR, Whitcomb KL, et al. Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 1998; 58: 933–939.

    PubMed  CAS  Google Scholar 

  16. Fuks Z, Persaud RS, Alfieri A, McLoughlin M, Ehleiter D, Schwartz JL, et al. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res 1994; 54: 2582–2590.

    PubMed  CAS  Google Scholar 

  17. Haimovitz-Friedman A, Vlodaysky I, Chaudhuri A, Witte L, Fuks Z. Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells. Cancer Res 1991; 51: 2552–2558.

    PubMed  CAS  Google Scholar 

  18. Khan WB, Shui C, Ning S, Knox SJ. Enhancement of murine intestinal stem cell survival after irradiation by keratinocyte growth factor. Radiat Res 1997; 148: 248–253.

    Article  PubMed  CAS  Google Scholar 

  19. Yi ES, Williams ST, Lee H, Malicki DM, Chin EM, Yin S, et al. Keratinocyte growth factor ameliorates radiation-and bleomycin-induced lung injury and mortality. Am J Pathol 1996; 149: 1963–1970.

    PubMed  CAS  Google Scholar 

  20. Schmidt-Ullrich RK, Mikkelsen RB, Dent P, Todd DG, Valerie K, Kavanagh BD, et al. Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 1997; 15: 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  21. Kavanagh BD, Dent P, Schmidt-Ullrich RK, Chen P, Mikkelsen RB. Calcium-dependent stimulation of mitogen-activated protein kinase activity in A431 cells by low doses of ionizing radiation. Radiat Res 1998; 149: 579–587.

    Article  PubMed  CAS  Google Scholar 

  22. Vojtek AB, Der CJ. Increasing complexity of the Ras signaling pathway. J Biol Chem 1998; 273: 19925–19928.

    Article  PubMed  CAS  Google Scholar 

  23. Marais R, Light Y, Paterson HF, Marshall CJ. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 1995; 14: 3136–3145.

    PubMed  CAS  Google Scholar 

  24. Kasid U, Suy S, Dent P, Ray S, Whiteside TL, Sturgill TW. Activation of Raf by ionizing radiation. Nature 1996; 382: 813–816.

    Article  PubMed  CAS  Google Scholar 

  25. Galaktionov K, Jessus C, Beach D. Raf 1 interaction with cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation. Genes Devel 1995; 9: 1046–1058.

    Article  PubMed  CAS  Google Scholar 

  26. Kasid U, Pfeifer A, Brennan T, Beckett M, Weichselbaum RR, Dritschilo A, Mark GE. Effect of anti-sense c-Raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma. Science 1989; 243: 1354–1356.

    Article  PubMed  CAS  Google Scholar 

  27. Suzuki K, Watanabe M, Miyoshi J. Differences in effects of oncogenes on resistance of gamma rays, ultraviolet light, and heat shock. Radiat Res 1992; 129: 157–162.

    Article  PubMed  CAS  Google Scholar 

  28. Lebowitz PF, Du W, Prendergast GC. Prenylation of RhoB is required for its cell transforming function but not its ability to activate serum response element-dependent transcription. J Biol Chem 1997; 272: 16093–16095.

    Article  PubMed  CAS  Google Scholar 

  29. Olson MF, Ashworth A, Hall A. An essential role for rho, rac and cdc42 GTPases in cell cycle progression through Gl. Science 1995; 269: 1270–1272.

    Article  PubMed  CAS  Google Scholar 

  30. Joneson T, White MA, Wigler MH, Bar-Sagi D. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 1996; 271: 810–812.

    Article  PubMed  CAS  Google Scholar 

  31. Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis R, et al. Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 1994; 266: 1719–1723.

    Article  PubMed  CAS  Google Scholar 

  32. Lim L, Manser E, Leung T, Hall C. Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signalling pathways. Eur J Biochem 1996; 242: 171–185.

    Article  PubMed  CAS  Google Scholar 

  33. Alberts AW. Biochemistry and biology of lovastatin. Am J Cardiol 1988; 62: 10J - 15J.

    Article  PubMed  CAS  Google Scholar 

  34. Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc Natl Acad Sci USA 1992; 89: 6403–6407.

    Article  PubMed  CAS  Google Scholar 

  35. Sebti S, Hamilton A. Inhibition of Ras prenylation: a novel approach to cancer chemotherapy. Phartnacol Ther 1997; 74: 103–114.

    Article  CAS  Google Scholar 

  36. McKenna WG, Weiss MC, Endlich B, Ling CC, Bakanauskas VJ, Kelsten ML, Muschel RJ. Synergistic effect of the v-myc oncogene with Hras on radioresistance. Cancer Res 1990; 50: 97–102.

    PubMed  CAS  Google Scholar 

  37. Gutierrez L, Magee AI, Marshall CJ, Hancock JF. Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J 1989; 8: 1093–1098.

    PubMed  CAS  Google Scholar 

  38. Lerner E, Qian Y, Hamilton A, Sebti S. Disruption of oncogenic K-ras4B processing and signaling by a potent geranylgeranyltransferase I inhibitor. J Biol Chem 1995; 270: 26770–26773.

    Article  PubMed  CAS  Google Scholar 

  39. Reiss Y, Stradley SJ, Gierasch LM, Brown MS, Goldstein JL. Sequence requirements for peptide recognition by rat brain p21 gas protein farnesyltransferase. Proc Natl Acad Sci USA 1991; 88: 732–736.

    Article  PubMed  CAS  Google Scholar 

  40. Cox AD, Hisaka MM, Buss JE, Der CJ. Specific isoprenoid modification is required for function of normal, but not oncogenic, Ras protein. Mol Cell Biol 1992; 12: 2606–2615.

    PubMed  CAS  Google Scholar 

  41. Bernhard EJ, Kao G, Cox AD, Sebti SM, Hamilton AD, Muschel RJ, McKenna WG. The farnesyltransferase inhibitor FTI-277 radiosensitizes H-Ras-transformed rat embryo fibroblasts. Cancer Res 1996; 56: 1727–1730.

    PubMed  CAS  Google Scholar 

  42. McGuire TF, Qian Y, Vogt A, Hamilton AD, Sebti SM. Platelet-derived growth factor receptor tyrosine phosphorylation requires protein geranylgeranylation but not farnesylation. J Biol Chem 1996; 271: 27402–27407.

    Article  PubMed  CAS  Google Scholar 

  43. Vogt A, Qian Y, McGuire TF, Hamilton AD, Sebti SM. Protein geranylgeranylation, not farnesylation, is required for the G1 to S phase transition in mouse fibroblasts. Oncogene 1996; 13: 1991–1999.

    PubMed  CAS  Google Scholar 

  44. Thompson TC, Southgate J, Kitchener G, Land H. Multistage carcinogenesis induced by Ras and myc oncogenes in a reconstituted organ. Cell 1989; 56: 917–930.

    Article  PubMed  CAS  Google Scholar 

  45. Thompson TC, Truong LD, Timme TL, Kadmon D, McCune BK, Flanders KC, et al. Transgenic models for the study of prostate cancer. Cancer 1993; 71: S1165 - S1171.

    Article  Google Scholar 

  46. Lefkovits I. Limiting dilution analysis. Immunol Methods 1979; 355–370.

    Google Scholar 

  47. Thilly WG, DeLuca JG, Furth EE, Hoppe HI, Kaden DA, Krolewski JJ, et al. Gene-locus mutation analysis in diploid human lymphoblast lines, in Chemical Mutagens Vol. 6 ( Serres FJD, Hollaender A, eds.), Plenum, New York, 1980, pp. 331–364.

    Chapter  Google Scholar 

  48. Grenman R, Burk D, Virolainen E, Buick RN, Church J, Schwartz DR. Clonogenic cell assay for anchorage-dependent squamous carcinoma cell lines using limiting dilution. Intl J Cancer 1989; 44: 131–136.

    Article  CAS  Google Scholar 

  49. Fertil B, Malaise EP. Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy. Intl J Rad One Biol Phys 1981; 7: 621–629.

    Article  CAS  Google Scholar 

  50. Steel GG. Cellular senitivity to low dose-rate irradiation focuses the problem of tumour radioresistance. Radiother Oncol 1991; 20: 71–83.

    Article  PubMed  CAS  Google Scholar 

  51. Thames HD, Schultheiss TE, Hendry JH, Tucker SL, Dubray BM, Brock WA. Can modest escalations of dose be detected as increased tumor control? Int J Rad Onc 1992; 22: 241–246.

    Article  CAS  Google Scholar 

  52. West CM, Davidson SE, Burt PA, Hunter RD. The intrinsic radiosensitivity of cervical carcinoma: correlations with clinical data. Intl J Rad Onc 1995; 31: 841–846.

    Article  CAS  Google Scholar 

  53. Thornton S, Walsh B, Bennett S, Robbins J, Foulcher E, Morgan G, et al. Both in vitro and in vivo irradiation are associated with induction of macrophage-derived fibroblast growth factors. Clin Exp ImmunoI 1996; 103: 67–73.

    Article  CAS  Google Scholar 

  54. Morrison RS, Yamaguchi F, Saya H, Bruner JM, Yahanda AM, Donehower LA, Berger M. Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas. J Neuro-Oncol 1994; 18: 207–216.

    Article  CAS  Google Scholar 

  55. Yamanaka Y, Friess H, Buehler M, Beger HG, Uchida E, Onda M, et al. Overexpression of acidic and basic fibroblast growth factors in human pancreatic cancer correlates with advanced tumor stage. Cancer Res 1993; 53: 5289–5296.

    PubMed  CAS  Google Scholar 

  56. Nanus DM, Schmitz-Drager BJ, Motzer RJ, Lee AC, Vlamis V, Cordon-Cardo C, et al. Expression of basic fibroblast growth factor in primary human renal tumors: correlation with poor survival. J Natl Cancer Inst 1993; 85: 1597–1599.

    Article  PubMed  CAS  Google Scholar 

  57. Takahashi JSH, Yasuda Y, Ito N, Ohta M, Jaye M, Fukumoto MO, et al. Gene expression of fibroblast growth factor receptors in the tissues of human gliomas and meningiomas. Biochem Biophys Res Commun 1991; 177: 1–7.

    Article  PubMed  CAS  Google Scholar 

  58. Jensen RL. Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review. Surgical Neurol 1998; 49: 189–195.

    Article  CAS  Google Scholar 

  59. Joy A, Moffett J, Neary K, Mordechai E, Stachowiak EK, Coons S, et al. Nuclear accumulation of FGF2 is associated with proliferation of human astrocytes and glioma cells. Oncogene 1997; 14: 171–183.

    Article  PubMed  CAS  Google Scholar 

  60. Chinot O. [Biological profiles of malignant gliomasl. Pathologie Biologie 1995; 43: 224–232.

    PubMed  CAS  Google Scholar 

  61. Haimovitz-Friedman A, Vlodaysky I. Chaudhuri A, Witte L, Fuks Z. Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells. Cancer Res 1991; 51: 2552–2558.

    PubMed  CAS  Google Scholar 

  62. Haimovitz-Friedman A, Balaban N, McLoughlin M, Ehleiter D, Michaeli J, Vlodaysky I, Fuks Z. Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. Cancer Res 1994; 54: 2591–2597.

    PubMed  CAS  Google Scholar 

  63. Langley R, Bump E, Quartuccio S, Medeiros D, Braunhut S. Radiation-induced apoptosis in microvascular endothelial cells. Br J Cancer 1997; 75: 666–672.

    Article  PubMed  CAS  Google Scholar 

  64. Ding I, Huang K, Wang X, Greig JR, Miller RW, Okunieff P. Radioprotection of hematopoietic tissue by fibroblast growth factors in fractionated radiation experiments. Acta Oncologica 1997; 36: 337–340.

    Article  PubMed  CAS  Google Scholar 

  65. Ding I, Huang K, Snyder ML, Cook J, Zhang L, Wersto N, Okunieff P. Tumor growth and tumor radio-sensitivity in mice given myeloprotective doses of fibroblast growth factors. J Natl Cancer lust 1996; 88: 1399–1404.

    Article  CAS  Google Scholar 

  66. Okunieff P, Abraham EH, Moini M, Snyder ML, Gloe TR, Capogrossi MC, Ding I. Basic fibroblast growth factor radioprotects bone marrow and not RIF1 tumor. Acta Oncol 1995; 34: 435–438.

    Article  PubMed  CAS  Google Scholar 

  67. Tee PG, Travis EL. Basic fibroblast growth factor does not protect against classical radiation pneumonitis in two strains of mice. Cancer Res 1995; 55: 298–302.

    PubMed  CAS  Google Scholar 

  68. Jung M, Kern FG, Jorgensen TJ, McLeskey SW, Blair OC, Dritschilo A. Fibroblast growth factor-4 enhanced G2 arrest and cell survival following ionizing radiation. Cancer Res 1994; 54: 5194–5197.

    PubMed  CAS  Google Scholar 

  69. Jaye M, Schlessinger J, Dionne C. Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signal transduction. Biochim Biophvs Acta 1992; 1135: 185–199.

    Article  CAS  Google Scholar 

  70. Ullrich A, SchlessingerJ. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61: 203–212.

    Article  PubMed  CAS  Google Scholar 

  71. Zhan XPCHX, Friesel R, Maciag T. Association of fibroblast growth factor receptor-1 with c-src correlates with association between c-src and cortactin. J Biol Chem 1994; 269: 20221–20224.

    PubMed  CAS  Google Scholar 

  72. Vainikka S, Joukov VWS, Bergman M, Pelicci PG, Alitalo K. Signal transduction by fibroblast growth factor receptor-4 (FGF4). J Biol Chem 1994; 269: 18320–18326.

    PubMed  CAS  Google Scholar 

  73. Shi EKM, Xu J, Wang F, Hou J, McKeehan WL. Control of basic fibroblast growth factor receptor kinase signal transduction by heterodimerization of combinatorial splice variants. Mol Cell Biol 1993; 13: 3907–3918.

    PubMed  CAS  Google Scholar 

  74. Kouhara H, Hadari YR, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I, Schlessinger J. A lipid-anchored Grb2-binding protein that links FGF receptor activation to the Ras/MAPK signaling pathway. Cell 1997; 89: 693–702.

    Article  PubMed  CAS  Google Scholar 

  75. Renko N, Quarto N, Morimoto T, Rifkin D. Nuclear and cytoplasmic localization of different basic fibroblast growth factor species. J Cell Physiol 1990; 144: 108–114.

    Article  PubMed  CAS  Google Scholar 

  76. Prats H, Kaghad M, Prats AC, Klagsbrun M, Lelias JM, Liauzun P, Chalon P, et al. High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG. Proc Natl Acad Sci USA 1989; 86: 1836–1840.

    Article  PubMed  CAS  Google Scholar 

  77. Vagner STC, Galy B, Audigier S, Gensac MC, Amalric F, Bayard F, et al. Translation of CUG- but not AUG-initiated forms of human fibroblast growth factor 2 is activated in transformed and stressed cells. J Cell Biol 1996; 135: 1391–1402.

    Article  PubMed  CAS  Google Scholar 

  78. Couderc B, Prats H, Bayard F, Amalric F. Potential oncogenic effects of basic fibroblast growth factor requires cooperation between CUG and AUG-initiated forms. Cell Regul 1991; 2: 708–718.

    Google Scholar 

  79. Bugler BAF, Prats H. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol 1991; 11: 543–547.

    Google Scholar 

  80. Bikfalvi A, Klein S, Pintucci G, Quarto NMP, Rifkin DB. Differential modulation of cell phenotype by different molecular weight forms of basic fibroblast growth factor: possible intracellular signaling by the high molecular forms. J Cell Biol 1995; 129: 233–243.

    Article  PubMed  CAS  Google Scholar 

  81. Cohen-Jonathan E, Toulas C, Monteil S, Couderc B, Maret A, Bard JJ, et al. Radioresistance induced by the high molecular forms of the basic fibroblast growth factor is associated with an increased G2 delay and a hyperphosphorylation of p34CDC2 in HeLa cells. Cancer Res 1997; 57: 1364–1370.

    PubMed  CAS  Google Scholar 

  82. Stachowiak M, Moffett JMP, Tucholski J, Stachowiak E. Growth factor regulation of cell growth and proliferation in the nervous system. A new intracrine nuclear mechanism. Mol Neurohiol 1997; 15: 257–283.

    Article  CAS  Google Scholar 

  83. Bernhard EJ, McKenna WG. Hamilton AD, Sebti SM. Qian Y, Wu J, Muschel RJ. Inhibiting Ras prenylation increases the radiosensitivity of human tumor cell lines with activating mutations of Ras oncogenes. Cancer Res 1998; 58: 1754–1761.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bernhard, E.J. et al. (2001). Prenyltransferase Inhibitors as Radiosensitizers. In: Sebti, S.M., Hamilton, A.D. (eds) Farnesyltransferase Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-013-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-013-1_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9606-2

  • Online ISBN: 978-1-59259-013-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics