Hydroxamic Acid Matrix Metalloproteinase Inhibitors

  • Peter D. Brown
  • Alan H. Davidson
  • Alan H. Drummond
  • Andrew Gearing
  • Mark Whittaker
Part of the Cancer Drug Discovery and Development book series (CDD&D)


It is now apparent that the matrix metalloproteinases (MMPs) play a key role in the remodeling of basement membrane that is associated with tumor metastasis, growth, and angiogenesis. Thus there is considerable interest in the design of MMP inhibitors (MMPIs) (1–6) as they promise to provide a novel noncytotoxic means of treating human cancer. Furthermore, pharmacological studies of MMPIs in animal models of human disease suggest that the potential therapeutic applications will encompass other endpoints such as arthritis and multiple-sclerosis. Recently, evidence has shown that MMP inhibitors can also reduce the production of TNF-α by inhibiting a TNF-α converting enzyme (TACE) (7–9). As a consequence, this “dual activity” may be of benefit in diseases which involve both inflammation and matrix remodeling. In this chapter we review the hydroxamic acid class of MMPIs with specific reference to the research program at British Biotech and the compounds batimastat 1 (BB-94) and marimastat 2 (BB-2516) (Fig. 1). Batimastat was the first MMPI to enter human clinical trials in cancer patients. This compound has been superseded by the orally active MMPI marimastat which is now under Phase III clinical evaluation in late-stage cancer patients. Here we present an overview of the medicinal chemistry relating to batimastat and marimastat, discuss the preclinical evaluation of compounds of this class in animal models of cancer and other human diseases and review the current clinical status for marimastat.


Experimental Autoimmune Encephalomyelitis Hydroxamic Acid Malignant Ascites Secondary Amide Matrix Metalloproteinase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckett, R.P., Davidson, A.H., Drummond, A.H., Huxley, P., and Whittaker, M. (1996) Recent advances in matrix metalloproteinase inhibitor research. Drug Discovery Today, 1, 16–26.CrossRefGoogle Scholar
  2. 2.
    Beckett, R.P. (1996) Recent advances in the field of matrix metalloproteinase inhibitors. Exp. Opin. Ther. Patents, 6, 1305–1315.CrossRefGoogle Scholar
  3. 3.
    Davidson, A.H., Drummond, A.H., Galloway, W.A., and Whittaker, M. (1997) The inhibition of matrix metalloproteinase enzymes. Chem. Ind., 258–261.Google Scholar
  4. 4.
    Brown, P., and Whittaker, M. (1998) Matrix metalloproteinase inhibitors; design, development and early clinical trials. Biotech. Med., 9, 11–16.Google Scholar
  5. 5.
    Whittaker, M., and Brown, P. (1998) Recent advances in matrix metalloproteinase inhibitor research and development. Curr. Opin. Drug Disc. Dey., 1, 157–164.Google Scholar
  6. 6.
    Beckett, R.P., and Whittaker, M. (1998) Matrix metalloproteinase inhibitors 1998. Exp. Opin. Ther. Patents, 8, 259–282.CrossRefGoogle Scholar
  7. 7.
    Mohler, K.M., Sleath, P.R., Fitzner, J.N., Cerretti, D.P., Alderson, M., Kerwar, S.S., Torrance, D.S., Otten-Evans, C., Greenstreet, T., Weerawarna, K., Kronheim, S.R., Petersen, M., Gerhart, M., Kozlosky, C.J., March, C.J., and Black, R.A. (1994) Protection against a lethal dose of endotoxin by an inhibitor of tumor necrosis factor processing. Nature, 370, 218–220.PubMedCrossRefGoogle Scholar
  8. 8.
    Gearing, A.J.H., Beckett, R, Christodoulou, M., Churchill, M., Clements, J., Davidson, A.H., Drummond, A.H., Galloway, W.A., Gilbert, R., Gordon, J.L., Leber, T.M., Mangan, M., Miller, K., Nayee, R, Owen, K., Patel, S., Thomas, W., Wells, G., Wood, L.M., and Woolley K. (1994) Processing of tumor necrosis factor-a by metalloproteinases. Nature, 370, 555–557.PubMedCrossRefGoogle Scholar
  9. 9.
    McGeehan, G.M., Becherer, J.D., Bast, R.C., Boyer, C.M., Champion, B., Connolly, K.M., Conway, J.G., Furdon, R, Karp, S., Kidao, S., McElroy, A.B., Nichols, J., Pryzwansky, K.M., Schoenen, F., Sekut, L., Truesdale, A., Verghese, M., Warner, J., and Ways, J.P. (1994) Regulation of Tumor Necrosis Factor-a Processing by a Metalloproteinase Inhibitor. Nature, 370, 558–561.PubMedCrossRefGoogle Scholar
  10. 10.
    Babine, R.E., and Bender, S.L. (1997) Molecular recognition of protein-ligand complexes: Applications to drug design. Chem. Rev., 97, 1359–1472.PubMedCrossRefGoogle Scholar
  11. 11.
    Whittaker, M. (1998) Discovery of protease inhibitors using targeted libraries. Curr. Opin. Chemical Biology, 2, 386–396.CrossRefGoogle Scholar
  12. 12.
    Johnson, W.H., Roberts, N.A., and Borkakoti, N. (1987) Collagenase inhibitors: Their design and potential therapeutic use. J. Enzyme Inhibition, 2, 1–22.CrossRefGoogle Scholar
  13. 13.
    Wahl, R.C., Dunlap, R.P., and Morgan, B.A. (1989) Biochemistry and inhibition of Collagenase and Stromelysin. Ann. Rep. Med. Chem., 25, 177–184.CrossRefGoogle Scholar
  14. 14.
    Johnson, W.H. (1990) A new class of disease-modifying antirheumatic drugs. Drug News and Perspectives, 3, 453–458.Google Scholar
  15. 15.
    Henderson, B., Docherty, A.J.P., and Beeley, N.R.A. (1990) Design of Inhibitors of Articular Cartilage Destruction. Drugs of the future, 15, 495–508.Google Scholar
  16. 16.
    Schwartz, M.A. and van Wart, H. (1992) Synthetic Inhibitors of Bacterial and Mammalian Interstitial Collagenases, in Progress in Medicinal Chemistry; Ellis G.P., Luscombe D.K., Eds., Elsevier Science Publishers BV.: The Netherlands, 29, 271–334.Google Scholar
  17. 17.
    Moore, W.M. and Spilburg, C.A. (1986) Peptide hydroxamic acids inhibit skin collagenase. Biochem. Biophys. Res. Comm., 136, 390–395.PubMedCrossRefGoogle Scholar
  18. 18.
    Moore, W.M. and Spilburg, C.A. (1986) Purification of human collagenases with a hydroxamic acid affinity column. Biochem., 25, 5189–5195.CrossRefGoogle Scholar
  19. 19.
    Odake, S., Okayama, T., Obata, M., Morikawa, T., Hattori, S., Hori, S., and Nagai, Y. (1990) Vertebrate collagenase inhibitor I. Tripeptidyl hydroxamic acids. Chem. Pharm. Bull., 38, 1007–1011.PubMedCrossRefGoogle Scholar
  20. 20.
    Odake, S., Okayama, T., Obata, M., Morikawa, T., Hattori, S., Hori, H., and Nagi, Y. (1991) Vertebrate collagenase inhibitor II. Tetrapeptidyl hydroxamic acids. Chem. Pharm. Bull., 39, 1489–1494.PubMedCrossRefGoogle Scholar
  21. 21.
    Odake, S., Morita, Y., Morikawa, T., Yoshida, N., Hori, H. and Nagai Y. (1994) Inhibition of matrix metalloproteinases by peptidyl hydroxamic acids. Biochem. Biophys. Res. Comm., 199, 1442–1446.PubMedCrossRefGoogle Scholar
  22. 22.
    Floyd, C.D. and Lewis, C.N. (1996) Synthesis of hydroxamic acid derivatives. PCT Patent WO9626223.Google Scholar
  23. 23.
    Floyd, C.D., Lewis, C.N., Patel, S.R., and Whittaker, M. (1996) A method for the synthesis of hydroxamic acids on solid phase. Tetrahedron Lett., 37, 8045–8048.CrossRefGoogle Scholar
  24. 24.
    Floyd, C.D., Lewis, C., Patel, S., and Whittaker, M. (1996) The automated synthesis of organic compounds-some newcomers have some success. ISLAR 96 Proc., pp 51–76.Google Scholar
  25. 25.
    Floyd, C.D., Lewis, C.N., Patel, S.R., and Whittaker, M. (1996) Automated synthesis of organic compounds-A success story. Screening Forum, 4, 3–6.Google Scholar
  26. 26.
    Richter, L.S., and Desai, M.C. (1997) A TFA-cleavable linkage for solid-phase synthesis of hydroxamic acids. Tetrahedron Lett., 38, 321–322.CrossRefGoogle Scholar
  27. 27.
    Bauer, U., Ho, W-B., and Koskinen, A.M.P. (1997) A novel linkage for the solid-phase synthesis of hydroxamic acids. Tetrahedron Lett., 38, 7233–7236.CrossRefGoogle Scholar
  28. 28.
    Gordeev, M.F., Hui, H.C., Gordon, E.M., and Patel, D.V. (1997) A general and efficient solid phase synthesis of quinazoline-2,4-diones. Tetrahedron Lett., 38, 1729–1732.CrossRefGoogle Scholar
  29. 29.
    Mellor, S.L., McGuire, C., and Chan, W.C. (1997) N-Fmoc-aminooxy-2-chlorotrityl polystyrene resin: A facile solid-phase methodology for the synthesis of hydroxamic acids. Tetrahedron Lett., 38, 3311–3314.CrossRefGoogle Scholar
  30. 30.
    Ngu, K. and Patel, D.V. (1997) A new and efficient solid phase synthesis of hydroxamic acids. J. Org. Chem., 62, 7088–7089.PubMedCrossRefGoogle Scholar
  31. 31.
    Groneberg, R.G., Neuenschwander, K.W., Djuric, S.W., McGeehan, G.M., Burns, C.J., London, S.M., Morrissette, M.M., Salvino, J.M., Scotese, A.C., and Ullrich, J.W. (1997) Substituted (aryl, heteroaryl, arylmethyl or heteroarylmethyl) hydroxamic acid compounds. PCT Patent, WO9724117.Google Scholar
  32. 32.
    Patel, D. and Ngu, K. (1998) PCT Patent Application, WO 9818754.Google Scholar
  33. 33.
    Salvino, J.M., Morton, G.L., Mason, H.J., and Labaudiniere. (1998) PCT Patent Application, WO9829376.Google Scholar
  34. 34.
    Bode, W., Reinemer, P., Huber, R., Kleine, T., Schmierer, S., and Tschesche, H. (1994) The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J., 13, 1263–1269.PubMedGoogle Scholar
  35. 35.
    Dickens, J.P., Donald, D.K., Kneen, G., and McKay, W.R. (1986), European Patent Application, EP-214,639-A.Google Scholar
  36. 36.
    Campion, C., Davidson, A.H., Dickens, J.P., and Crimmin, M.J. (1990) PCT Patent Application, WO9005719.Google Scholar
  37. 37.
    Ngo, J., Graul, A., and Castaner, J. (1996) Batimastat. Drugs Future, 21, 1215–1220.Google Scholar
  38. 38.
    Crimmin, M.J., Ayscough, A.P., and Beckett, R.P. (1994) PCT Patent Application, WO9424140.Google Scholar
  39. 39.
    Porter, J.R., Beeley, N.R.A., Boyce, B.A., Mason, B., Millican, A., Millar, K., Leonard, J., Morphy, J.R., and O’Connell, J.P. (1994) Potent and selective inhibitors of gelatinase-A 1. Hydroxamic acid derivatives. Bioorg. Med. Chem. Lett., 4, 2741–2746.CrossRefGoogle Scholar
  40. 40.
    Tomczuk, B.E., Gowravaram, M.R., Johnson, J.S., Delecki, D., Cook, E.R., Ghose, A.K., Mathiowetz, A.M., Spurlino, J.C., Rubin, B., Smith, D.L., Pulvino, T., and Wahl, R.C. (1995) Hydroxamate inhibitors of the matrix metallo-proteinases (MMPs) containing novel P1’ heteroatom based modifications. Bioorg. Med. Chem. Lett., 5, 343–348.CrossRefGoogle Scholar
  41. 41.
    Wahl, R.C., Pulvino, T.A., Mathiowetz, A.M., Ghose, A.K., Johnson, J.S., Delecki, D., Cook, E.R., Gainor, J.A., Gowravaram, M.R., and Tomczuk, B.E. (1995) Hydroxamate inhibitors of human gelatinase B (92 kDa), Bioorg. Med. Chem. Lett., 5, 349–352.CrossRefGoogle Scholar
  42. 42.
    Gowravaram, M.R., Tomczuk, B.E., Johnson, J.S., Delecki, D., Cook, E.R., Ghose, A.K., Mathiowetz, A.M., Spurlino, J.C., Rubin, B., Smith, D.L., Pulvino, T., and Wahl, R.C. (1995) Inhibition of matrix metalloproteinases by hydroxamates containing heteroatombased modifications of the P1’ group, J. Med. Chem., 38, 2570–2581.PubMedCrossRefGoogle Scholar
  43. 43.
    Miller, A., Beckett, P.R., Martin, F.M., and Whittaker, M. (1995) PCT Patent Application, W09532944.Google Scholar
  44. 44.
    Miller, A., Askew, M., Beckett, R.P., Bellamy, C.L., Bone, E.A., Coates, R.E., Davidson, A.H., Drummond, A.H., Huxley, P., Martin, F.M., Saroglou, L., Thompson, A.J., van Dijk, S.E., and Whittaker, M. (1997) Inhibition of matrix metalloproteinases: An examination of the S1’ pocket. Bioorg. Med. Chem. Lett., 7, 193–198.CrossRefGoogle Scholar
  45. 45.
    Whittaker, M., Beckett, R.P., Spavold, Z.M., and Martin, F.M. (1998) PCT Patent Application, W09824759.Google Scholar
  46. 46.
    Galardy, R.E. (1993) GalardinTM, Drugs of the Future, 18, 1109–1111.Google Scholar
  47. 47.
    Levy, D.E., Lapierre, F., Liang, W., Ye, W., Lange, C.W., Li, X., Brobelny, D., Casa-bonne, M., Tyrrell, D., Holme, K., Nadzan, A., and Galardy, R.E. (1998) Matrix metalloproteinase inhibitors: A structure-activity study. J. Med. Chem., 41, 199–223.PubMedCrossRefGoogle Scholar
  48. 48.
    Plattner, J.J., and Norbeck, D.W. (1990) In Drug Discovery Technologies, eds. Clark, C.R. & Moos, W.H., ( Ellis Horwood Ltd, Chichester, U.K.), pp. 92–126.Google Scholar
  49. 49.
    Singh, J., Conzentino, P., Cundy, K., Gainor, J.A., Gilliam, C.L., Gordon, T.D., Johnson, J.A., Morgan, B.A., Schneider, E.D., Wahl, R.C., and Whipple, D.A. (1995) Relationship between structure and bioavailability in a series of hydroxamate based metalloproteinase inhibitors. Bioorg. Med. Chem. Lett., 5, 337–342.CrossRefGoogle Scholar
  50. 50.
    Davidson, A.H., Dickens, J.P., and Crimmin, M.J. (1990) PCT Patent Application, W09005716.Google Scholar
  51. 51.
    Campion, C., Davidson, A.H., Dickens, J.P., and Crimmin, M.J. (1991) PCT Patent Application, W09102716.Google Scholar
  52. 52.
    Crimmin, M.J., Beckett, P.R., and Davis, M.H. (1994) PCT Patent Application, W09421625.Google Scholar
  53. 53.
    Crimmin, M.J., and Beckett, R.P. (1995) PCT Patent Application, W09509841.Google Scholar
  54. 54.
    Klaassen, C.D., and Watkins, J.B. (1984) Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacol. Rev., 36, 1–67.PubMedGoogle Scholar
  55. 55.
    Dickens, S.P., Crimmin, M.S., and Beckett, R.P. (1994) PCT Patent Application, W09402446.Google Scholar
  56. 56.
    Dickens, J.P., Crimmin, M.J., and Beckett, R.P. (1994) PCT Patent Application, W09402447.Google Scholar
  57. 57.
    Conradi, R.A., Hilgers, A.R., Ho, N.F.H., and Burton, P.S. (1992) The influence of peptide structure on transport across Caco-2 cells. II. Peptide bond modification which results in improved permeability. Pharm. Res., 9, 435–439.PubMedCrossRefGoogle Scholar
  58. 58.
    Grams, F., Crimmin, M., Hinnes, L., Huxley, P., Pieper, M., Tschesche, H., and Bode, W. (1995) Structure determination and analysis of human neutrophil collagenase complexed with a hyroxamate inhibitor. Biochemistry, 34, 14012–14020.PubMedCrossRefGoogle Scholar
  59. 59.
    Jones, R.L. (1964) Steric inhibition of hydrogen-bonding in a secondary amide. Spectrochimica Acta, 20, 1879–1882.CrossRefGoogle Scholar
  60. 60.
    Jacobson, I.C., Reddy, P.G., Wasserman, Z.R., Harman, K.D., Covington, M.B., Amer, E.C., Copeland, R.A., Decicco, C.P., and Magolda, R.L. (1998) Structure-based design and synthesis of a series of hydroxamic acids with a quatemary-hydroxy group in Pl as inhibitors of matrix metalloproteinases. Bioorg. Med. Chem. Lett., 8, 837–842.PubMedCrossRefGoogle Scholar
  61. 61.
    Betz, M., Huxley, P., Davies, S.J., Mushtaq, Y., Pieper, M., Tschesche, H., Bode, W., and Gomis-ruth, F.X. (1997) 1.9-A crystal structure of the catalytic domain of human neutrophil collagenase (matrix metalloproteinse-8) complexed with a peptidomimetic hydroxamate primed-side inhibitor with a distinct selectivity profile. Eur. J. Biochem., 247, 356–363.PubMedCrossRefGoogle Scholar
  62. 62.
    Xue, C-B., He, X., Roderick, J., DeGrado, W.F., Cherney, R.J., Hardman, K.D., Nelson, D.J., Copeland, R.A., Jaffee, B.D., and Decicco, C.P. (1998) Design and synthesis of cyclic inhibitors of matrix metalloproteinases and TNF-a production. J. Med. Chem., 41, 1745–1748.PubMedCrossRefGoogle Scholar
  63. 63.
    Steinman, D.H., Curtin, M.L., Garland, R.B., Davidson, S.K., Heyman, H.R., Holms, J.H., Albert, D.H., Magoc, T.J., Nagy, LB., Marcotte, P.A., Li, J., Morgan, D.W., Hutchins, C., and Summers, J.B. (1998) The design, synthesis, and structure-activity relationships of a series of macrocyclic MMP inhibitors. Bioorg. Med. Chem. Lett., 8, 2087–2092.PubMedCrossRefGoogle Scholar
  64. 64.
    Pratt, L.M., Beckett, R.P., Bellamy, C.L., Corkill, D.J., Cossins, J., Courtney, P.F., Davies, S.J., Davidson, A.H., Drummond, A.H., Helfrich, K., Lewis, C.N., Mangan, M., Martin, F., Miller, K., Nayee, P., Ricketts, M.L., Thomas W., Todd, R.S., and Whittaker, M. (1998) The synthesis of novel matrix metalloproteinase inhibitors employing the Ireland-Claisen rearrangement. Bioorg. Med. Chem. Lett., 8, 1359–1364.PubMedCrossRefGoogle Scholar
  65. 65.
    MacPherson, L.J. and Parker, D.T. (1994), European Patent Application, EP-606, 046A.Google Scholar
  66. 66.
    MacPherson, L.J., Bayburt, E.K., Capparelli, M.P., Carroll, B.J., Goldstein, R., Justice, M.R., Zhu, L., Hu, S., Melton, R.A., Fryer, L., Goldberg, R.L., Doughty, J.R., Spirito, S., Blancuzzi, V., Wilson, D., O’Byrne, E.M., Ganu, V., and Parker, D.T. (1997) Discovery of CGS 27023A, a non-peptidic, potent, and orally active stromelysin inhibitor that blocks cartilage degradation in rabbits. J. Med. Chem., 40, 2525–2532.PubMedCrossRefGoogle Scholar
  67. 67.
    Miller, A., Beckett, R.P., and Whittaker, M. (1995) PCT Patent Application, WO9535275.Google Scholar
  68. 68.
    Miller, A., Beckett, R.P., and Whittaker, M. (1995) PCT Patent Application, WO9535276.Google Scholar
  69. 69.
    Broadhurst, M.J., Brown, P.A., Lawton, G., Ballantyne, N., Borkakoti, N., Bottomley, K.M.K., Cooper, M.I., Eatherton, A.J., Kilford, I.R., Malsher, P.J., Nixon, J.S., Lewis, E.J., Sutton, B.M., and Johnson, W.H. (1997) Design and synthesis of the cartilage protective agent (CPA, Ro 32–3555). Bioorg. Med. Chem. Lett., 7, 2299–2302.CrossRefGoogle Scholar
  70. 70.
    Beckett. R.P., Martin, F.M., Miller, A., Todd, R.S., and Whittaker, M. (1998) PCT Patent Application, WO 9817655.Google Scholar
  71. 71.
    Nagase, H. (1996) Matrix metalloproteinases in zinc metalloproteases in health and disease (ed Hooper, N.M.). Taylor and Francis, London.Google Scholar
  72. 72.
    Chandler, S., Miller, K.M., Clements, J.M., Lury, J., Corkill, D., Anthony, D.C.C., Adams, S.E., and Gearing, A.J.H. (1997) Matrix metalloproteinases, tumor necrosis factor and multiple sclerosis: an overview. J. Neuroimmun., 72, 155–161.CrossRefGoogle Scholar
  73. 73.
    Greenwald, R.A. and Golub, L.M. (1994) Inhibition of matrix metalloproteinases: Therapeutic potential. Ann. N.Y. Acad Sci., 732.Google Scholar
  74. 74.
    Wojtowiczpraga, S.M., Dickson, R.B., and Hawkins, M.J. (1997) Matrix metalloproteinase inhibitors. Investigational New Drugs, 15, 61–75.CrossRefGoogle Scholar
  75. 75.
    Opdenakker, G. and Van Damme, J. (1992) Cytokines and proteases in invasive processes: molecular similarities between inflammation and cancer. Cytokine, 4, 251–258.PubMedCrossRefGoogle Scholar
  76. 76.
    Sledge, G.W., Qulali, M., Goulet, R., Bone, E.A., and Fife, R. (1995) Effect of matrix metalloproteinase inhibitor batimastat on breast cancer regrowth and metastasis in athymic mice. J. Natl. Cancer Inst., 87, 1546–1550.PubMedCrossRefGoogle Scholar
  77. 77.
    Eccles, S.A., Box, G.M., Court, W.J., Bone, E.A., Thomas, W., and Brown, P.D. (1996) Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res., 56, 2815–2822.PubMedGoogle Scholar
  78. 78.
    An, Z., Wang, X., Willmott, N., Chander, S.K., Tickle, S., Docherty, A.J.P., Mountain, A., Millican, A.T., Morphy, R., Porter, J.R., Epemolu, R.O., Kubota, T., Moossa, A.R., and Hoffman, R.M. (1997) Conversion of a highly malignant colon cancer from an aggressive to a controlled disease by oral administration of a metalloproteinase inhibitor. Clin. Exp. Metastasis., 15, 184–195.PubMedCrossRefGoogle Scholar
  79. 79.
    Wang, X., Fu, X., Brown, P.D., Crimmin, M.J., and Hoffman, R.M. (1994) Matrix metalloproteinase inhibitor BB-94 (Batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice. Cancer Res., 54, 4726–4728.PubMedGoogle Scholar
  80. 80.
    Watson, S.A., Morris, T.M., Robinson, G., Crimmin, M.J., Brown, P.D., and Hardcastle, J.D. (1995) Inhibition of organ invasion by the matrix metalloproteinase inhibitor batimastat (BB-94) in two human colon carcinoma metastasis models. Cancer Res., 55, 3629–3633.PubMedGoogle Scholar
  81. 81.
    Davies, B., Brown, P.D., East, N., Crimmin, M.J., and Balkwill, F.R. (1993) A synthetic Matrix Metalloproteinase Inhibitor Decreases Tumor Burden and Prolongs Survival of Mice Bearing Human Ovarian Carcinoma Xenografts. Cancer Res., 53, 2087–2091.PubMedGoogle Scholar
  82. 82.
    Giavazzi, R., Garofalo, A., Ferri, C., Lucchini, V., Bone, E.A., Chiari, S., Brown, P.D., Nicoletti, M.I., and Taraboletti, G. (1998) Batimastat, a synthetic inhibitor of matrix metalloproteinases, potentiates the antitumor activity of cisplatin in ovarian carcinoma xenografts. Clin. Cancer Res., 4, 985–992.PubMedGoogle Scholar
  83. 83.
    Zervos, E.E., Norman, J.G., Gower, W.R., Franz, M.G., and Rosemurgy, A.S. (1997) Matrix metalloproteinase inhibition attenuates human pancreatic cancer growth in vitro and decreases mortality and tumorgenesis in vivo. J. Surgical Res., 69, 367–371.CrossRefGoogle Scholar
  84. 84.
    Knox, J.D., Bretton, L., Lynch, T., Bowden, G.T., and Nagle, R.B. (1998) Synthetic matrix metalloproteinase inhibitor, BB-94, inhibits the invasion of neoplastic human prostate cells in a mouse model. Prostate, 35, 248–254.PubMedCrossRefGoogle Scholar
  85. 85.
    Taraboletti, G., Garofalo, A., Belotti, D., Drudis, T., Borsotti, R, Scanziani, E., Brown, P.D., and Giavazzi, R. (1995) Inhibition of angiogenesis and murine hemangioma growth by Batimastat, a synthetic inhibitor of matrix metalloproteinases. J. Natl. Cancer Inst., 87, 293–298.PubMedCrossRefGoogle Scholar
  86. 86.
    Zubair, A.C., Ali, S.A., Rees, R.C., Goepel, J.R., and Goyns, M. H. (1996) Investigation of the effect of BB-94 (Batimastat) on the colonization potential of human lymphoma cells in scid mice. Cancer Lett., 107, 91–95.PubMedCrossRefGoogle Scholar
  87. 87.
    Santos, O., McDermott, C.D., Daniels, R.G., and Appelt, K. (1997) Rodent pharmacokinetic and anti-tumor efficacy studies with a series of synthetic inhibitors of matrix metalloproteinases. Clin. Exp. Metastasis, 15, 499–508.PubMedCrossRefGoogle Scholar
  88. 88.
    Di Martino, M.J., High, W., Galloway, W.A., and Crimmin, M.J. (1994) Preclinical Antiarthritic Activity of Matrix Metalloproteinase Inhibitors. Ann. N. Y. Acad. Sci., 732, 411–413.CrossRefGoogle Scholar
  89. 89.
    Di Martino, M., Wolff, C., High, W., Stoup, G., Hoffman, S., Laydon, J., Lee, J.C., Bertolini, D., Galloway, W.A., Crimmin, M.J., Davis, M., and Davies, S. (1997) Anti-arthritic activity of hydroxamic acid-based pseudopeptide inhibitors of matrix metalloproteinases and TNF-a processing. Inflamm. Rev., 46, 211–215.CrossRefGoogle Scholar
  90. 90.
    Conway, J.G., Wakefield, J.A., Brown, R.H., Marron, B.E., Sekut, L., Stimpson, S.A., McElroy, A., Menius, J.A., Jeffreys, J.J., Clark, R.L., McGeehan, G.M., and Connolly, K.M. (1995) Inhibition of cartilage and bone destruction in adjuvant arthritis in the rat by a matrix metalloproteinase inhibitor. J. Exp. Med., 182, 449–457.PubMedCrossRefGoogle Scholar
  91. 91.
    Gijbels, K., Galardy, R.E., and Steinman, L. (1994) Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteinases. J. Clin. Invest., 94, 2177–2182.PubMedCrossRefGoogle Scholar
  92. 92.
    Hewson, A.K., Smith, T., Leonard, J.P., and Cuzner, M.L. (1995) Suppression of experimental allergic encephalomyelitis in the Lewis rat by the matrix metalloproteinase inhibitor Ro31–9790. Inflamm. Res., 44, 345–349.PubMedCrossRefGoogle Scholar
  93. 93.
    Clements, J.M., Cossins, J.A., Wells, G.M.A., Corkill, D.J., Helfrich, K., Wood, L.M., Pigott, R., Stabler, G., Ward, G.A., Gearing, A.J.H., and Miller, K. M. (1997) Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumor necrosis factor-a inhibitor. J. Neuroimmunol. 74, 85–94.PubMedCrossRefGoogle Scholar
  94. 94.
    Liedtke, W., Cannella, B., Mazzaccaro, R.J., Clements, J.M., Miller, K.M., Wucherpfenning, K.W., Gearing, A.J.H., and Raine, C.S. (1998) Effective treatment of models of multiple sclerosis by matrix metalloproteinase inhibitors. Annals. Neurology, 44, 35–46.CrossRefGoogle Scholar
  95. 95.
    Matyszak, M.K. and Perry, V.H. (1996) Delayed-type hypersensitivity lesions in the central nervous system are prevented by inhibitors of matrix metalloproteinases. J. Neuroimun., 69, 141–149.CrossRefGoogle Scholar
  96. 96.
    Redford, E.J., Smith, K.J., Gregson, N.A., Davies, M., Hughes, P., Gearing, A.J.H., Miller, K., and Hughes, R.A.C. (1997) A combined inhibitor of matrix metalloproteinase activity and tumor necrosis factor-alpha processing attenuates experimental autoimmune neuritis. Brain, 120, 1895–1905.PubMedCrossRefGoogle Scholar
  97. 97.
    Wallace, G., Stansford, M.R., Whiston, R.A., and Clements, J. (1996) The MMP inhibitor BB-1101 is effective in reducing the incidence of EAN. Immunology, 89, Suppl. 1, 53.Google Scholar
  98. 98.
    Rosenberg, G.A., Estrada, E.Y., and Dencoff, J.E. (1998) Matrix metalloproteinases and TIMPS are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke, 29, 2189–2195.PubMedCrossRefGoogle Scholar
  99. 99.
    Rosenberg, G.A., and Navratil, M. (1997) Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology, 48, 921–926.PubMedCrossRefGoogle Scholar
  100. 100.
    Zempo, N., Koyama, N., Kenagy, R.D., Lea, H.J., and Clowes, A.W. (1996) Regulation of vascular smooth muscle cell migration and proliferation in vitro and in injured rat arteries by a synthetic matrix metalloproteinase inhibitor. Arteriosclerosis Thrombosis & Vascular Biology, 16, 28–33.CrossRefGoogle Scholar
  101. 101.
    Bendeck, M.P., Irvin, C., and Reidy, M.A. (1996) Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury. Circ. Res., 78, 38–43.PubMedCrossRefGoogle Scholar
  102. 102.
    Strauss, B.H., Robinson, R., Batchelor, W.B., Chisholm, R.J., Ravi, G., Natarajan, M.K., Logan, R.A., Mehta, S.R., Levy, D.E., Ezrin, A.M., and Keeley, F.W. (1996) In vivo collagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases. Circulation Research, 79, 541–550.PubMedCrossRefGoogle Scholar
  103. 103.
    Steinmann-Niggli, K., Ziswiler, R., Kung, M., and Marti, H.P. (1998) Inhibition of matrix metalloproteinases attenuates anti-thy1.1 nephritis. J. Am. Soc. Nephrology, 9, 397–407.Google Scholar
  104. 104.
    Paul, R., Lorenzyl, S., Koedel, U., Vogel, U., and Pfister, H.W. (1997) Involvement of matrix metalloproteinases in the disruption of the blood-brain barrier in bacterial meningitis Poster Presentation at 37th ICAAC Toronto Ontario Canada Sept 28-Oct 1 1997.Google Scholar
  105. 105.
    Beattie, G.J. and Smyth, J.F. (1998) Phase I study intraperitoneal metalloproteinase inhibitor BB94 in patients with malignant ascites. Clin. Cancer Res., 4, 1899–1902.PubMedGoogle Scholar
  106. 106.
    Parsons, S.L., Watson, S.A., and Steele, R.J.C. (1997) Phase I/II trial of batimastat, a matrix metalloproteinase inhibitor, in patients with malignant ascites. Eur. J. Surg. Oncol., 23, 526–531.PubMedCrossRefGoogle Scholar
  107. 107.
    Macaulay, V.M., O’Byrne, K.J., Saunders, M.P., Long, L., Gleeson, F., Mason, C.S., Harris, A.L., Brown, P., and Talbot, D.C. (1998) Phase I study of the matrix metalloproteinase inhibitor batimastat in patients with malignant pleural effusion. Clin. Cancer Res.,In Press.Google Scholar
  108. 108.
    Millar, A.W., Brown, P.D., Moore, J., Galloway, W.A., Cornish, A.G., Lenehan, T.J., and Lynch, K.P. (1998) Results of single and repeat dose studies of the oral matrix metalloproteinase inhibitor marimastat in healthy male volunteers. Br. J. Clin. Pharm., 45, 21–26.CrossRefGoogle Scholar
  109. 109.
    Wojtowiczpraga, S., Toni, J., Johnson, M., Steen, V., Marshall, J., Ness, E., Dickson, R., Sale, M., Rasmussen, H.S., Chiodo, T.A., and Hawkins, M.J. (1998) Phase I trial of marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J. Clin. Oncol., 16, 2150–2156.Google Scholar
  110. 110.
    Rubin, S.C., Hoskins, W.J., and Hakes, T.B. CA 125 levels and surgical findings in patients undergoing secondary operations for epithelial ovarian cancer. Am. J. Obstet. Gynecol., 160, 667–671, 1989.PubMedGoogle Scholar
  111. 111.
    Ward, U., Primrose, J.N., Finan, P.J., Perren, T.J., Selby, P., Purves, D.A., and Cooper, E.H. (1993) The use of tumor markers CEA, CA-195 and CA-242 in evaluating the response to chemotherapy in patients with advanced colorectal cancer. Br. J. Cancer, 67, 1132–1135.PubMedCrossRefGoogle Scholar
  112. 112.
    Nemunaitis, J., Poole, C., Primrose, J., Rosemurgy, A., Malfetano, J., Brown, P., Berrington, A., Cornish, A., Rasmussen, H., Kerr, D., Cox, D., and Millar, A. (1998) Combined analysis of studies of the effects of the matrix metalloproteinase inhibitor marimastat on serum tumor markers in advanced cancer: Selection of a biologically active and tolerable dose for longer-term studies. Clin. Cancer Res., 4, 1101–1111.PubMedGoogle Scholar
  113. 113.
    Primrose, J.N., Bleiberg, H., Daniel, E, Van Belle, S., Mansi, J.L., Seymour, M., Johnson, P.W., Neoptolemos, J.P., Baillet, M., Barker, K., Berrington, A., Brown, P.D., Millar, A.W., and Lynch, K.P. Pilot study of oral marimastat in recurrent colorectal cancer: an evaluation of biological activity by measurement of carcinoembryonic antigen. Br. J. Cancer,In Press.Google Scholar
  114. 114.
    Rosemurgy, A., Harris, J., Langleben, A., Casper, E., and Rasmussen, H.S. Marimastat in patients with advanced pancreatic cancer—a dose finding study. Am. J. Clin. Oncol.,In Press.Google Scholar
  115. 115.
    Tierney, G., Steele, R., Griffin, N., Stuart, R., Kasem, H., Lynch, K.P., Lury, J.T., Brown, P.D., Millar, A.W., and Parsons, S. A pilot study of the effects of the matrix metalloproteinase inhibitor marimastat in gastric cancer. Submitted.Google Scholar
  116. 116.
    Adams, M., and Thomas, H. (1998) A phase I study of the matrix metalloproteinase inhibitor, marimastat, administered concurrently with carboplatin, to patients with relapsed ovarian cancer. Proc. Am. Soc. Clin. Oncol., 17, 217a.Google Scholar
  117. 117.
    Carmichael, J., Ledermann, J., Woll, P.J., Gulliford, T., and Russell, R.C. (1998) Phase IB study of concurrent administration of marimastat and gemcitabine in non-resectable pancreatic cancer. Proc. Am. Soc. Clin. Oncol., 17, 232a.Google Scholar
  118. 118.
    O’Reilly, S., Mani, S., Ratain, M.J., Elza Brown, K., Johnson, S., Vogelzang, N.J., Kennedy, M.J., Donehower, R.C., and Rugg, T. (1998) Schedules of 5FU and the matrix metalloproteinase inhibitor marimastat (MAR): a phase I study. Proc. Am. Soc. Clin. Oncol., 17, 217a.Google Scholar
  119. 119.
    Gradishar, W., Sparano, J., Cobleigh, M., Kennedy, M.J., Schuchter, L., Wicks, J., and Rasmussen, H. (1998) A phase I study of marimastat in combination with doxorubicin and cyclophosphamide in patients with metastatic breast cancer. Proc. Am. Soc. Clin. Oncol., 17, 144a.Google Scholar
  120. 120.
    Anderson, I.C., Shipp, M.A., Docherty, A.J.P., and Teicher, B.A. (1996) Combination therapy including a gelatinase inhibitor and cytotoxic agent reduces local invasion and metastasis of murine Lewis lung carcinoma. Cancer Res., 56, 715–718.Google Scholar
  121. 121.
    Neri, A., Goggin, B., Kolis, S., Brekken, J., Khelemskaya, N., and Gabriel, L. (1998) Pharmacokinetics and efficacy of a novel matrix metalloproteinase inhibitor, AG3340, in single agent and combination therapy against B16–F10 melanoma tumors developing in the lung after Iv tail vein implantation in C57BL/6 mice. Proc. Am. Assoc. Cancer Res., 39, 302.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Peter D. Brown
  • Alan H. Davidson
  • Alan H. Drummond
  • Andrew Gearing
  • Mark Whittaker

There are no affiliations available

Personalised recommendations