Substrate Specificity of MMPs

  • Hideaki Nagase
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Matrix metalloproteinases (MMPs) are secreted or cell surface-bound zinc metalloendopeptidases that act on extracellular matrix (ECM) macromolecules. Thus, isolated MMPs have been tested against various components of ECM. Based on similarities in primary structure and the abilities to cleave ECM components, MMPs are grouped into collagenases, gelatinases, stromelysins, membrane-type MMP(MT-MMPs), and others which do not belong to those subgroups. Most MMPs consist of four typical domain structures: propeptide, catalytic, linker region, and a C-terminal hemopexin-like domains. The catalytic domain share structural similarity with interstitial collagenase (MMP-1). The propeptide domain has least similarities among MMPs, all but except MMP-23 (1) have the so-called cysteine switch sequence motif, PRCG[V/N]PD, whose cysteinyl residue ligates the catalytic zinc atom of the active site as the fourth ligand and maintain inactive proenzyme. Another conserved sequence is the zinc binding motif HEXGHXXGXXH, in which three histidines bind to Zn2+. Three dimensional structures of the catalytic domains of MMPs [MMP-1 (2–6), MMP-3 (7–9), MMP-7 (10), MMP-8 (11,12), MMP-14 (13)] indicate that the polypeptide fold of the catalytic domains are essentially identical, although their substrate specificities are sufficiently different when peptide substrates were tested (14). In addition, the action of MMPs on natural protein substrates is not only dectated by the subsite requirement of the catalytic domains, but it is often influenced by the domains other than the catalytic domain. This chapter describes activities of MMPs on natural substrates and substrate specificity based on synthetic substrates.


Substrate Specificity Catalytic Domain Synthetic Substrate Interstitial Collagen Collagenolytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gururajan, R., Grenet, J., Lahti, J. M., and Kidd, V. J. (1998) Isolation and characterization of two novel metalloproteinase genes linked to the Cdc21 locus on human chromosome 1p36.3. Genomics 52, 101–106.PubMedGoogle Scholar
  2. 2.
    Lovejoy, B., Cleasby, A., Hassell, A. M., Longley, K., Luther, M. A., Weigl, D., et al. (1994) Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263, 375–377.PubMedGoogle Scholar
  3. 3.
    Borkakoti, N., Winkler, F. K., Williams, D. H., D’Arcy, A., Broadhurst, M. J., Brown, P. A., et al. (1994) Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Nat. Struct. Biol. 1, 106–110.PubMedGoogle Scholar
  4. 4.
    Spurlino, J. C., Smallwood, A. M., Carlton, D. D., Banks, T. M., Vavra, K. J., Johnson, J. S., et al. (1994) 1.56 A structure of mature truncated human fibroblast collagenase. Proteins 19, 98–109.Google Scholar
  5. 5.
    Moy, F. J., Chanda, P. K., Cosmi, S., Pisano, M. R., Urbano, C., Wilhelm, J., et al. (1998) High-resolution solution structure of the inhibitor-free catalytic fragment of human fibroblast collagenase determined by multidimensional NMR. Biochemistry 37, 1495–1504.PubMedGoogle Scholar
  6. 6.
    McCoy, M. A., Dellwo, M. J., Schneider, D. M., Banks, T. M., Falvo, J., Vavra, K. J., et al. (1997) Assignments and structure determination of the catalytic domain of human fibroblast collagenase using 3D double and triple resonance NMR spectroscopy. J. Biomol. NMR 9, 11–24.PubMedGoogle Scholar
  7. 7.
    Gooley, P. R., O’Connell, J. F., Marcy, A. I., Cuca, G. C., Salowe, S. P., Bush, B. L., et al. (1994) The NMR structure of the inhibited catalytic domain of human stromelysin-1. Nat. Struct. Biol. 1, 111–118.PubMedGoogle Scholar
  8. 8.
    Becker, J. W., Marcy, A. I., Rokosz, L. L., Axel, M. G., Burbaum, J. J., Fitzgerald, P. M., et al. (1995) Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci. 4, 1966–1976.PubMedGoogle Scholar
  9. 9.
    Dhanaraj, V., Ye, Q. Z., Johnson, L. L., Hupe, D. J., Ortwine, D. F., Dunbar, J. B., Jr., et al. (1996) X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily. Structure 4, 375–386.PubMedGoogle Scholar
  10. 10.
    Browner, M. F., Smith, W. W., and Castelhano, A. L. (1995) Matrilysin-inhibitor complexes: common themes among metalloproteases. Biochemistry 34, 6602–6610.PubMedGoogle Scholar
  11. 11.
    Bode, W., Reinemer, P., Huber, R., Kleine, T., Schnierer, S., and Tschesche, H. (1994) The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 13, 1263–1269.PubMedGoogle Scholar
  12. 12.
    Stams, T., Spurlino, J. C., Smith, D. L., Wahl, R. C., Ho, T. F., Qoronfleh, M. W., et al. (1994) Structure of human neutrophil collagenase reveals large S1’ specificity pocket. Nat. Struct. Biol. 1, 119–123.PubMedGoogle Scholar
  13. 13.
    Fernandez-Catalan, C., Bode, W., Huber, R., Turk, D., Calvete, J. J., Lichte, A., et al. (1998) Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase a receptor. EMBO J. 17, 5238–5248.PubMedGoogle Scholar
  14. 14.
    Nagase, H. and Fields, G. B. (1996) Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40, 399–416.PubMedGoogle Scholar
  15. 15.
    Harris, E. D., Jr., and Krane, S. M. (1974) Collagenases. N. Engl. J. Med. 291, 557–563.PubMedGoogle Scholar
  16. 16.
    Harris, E. D., Jr., and Krane, S. M. (1972) An endopeptidase from rheumatoid synovial tissue culture. Biochim. Biophys. Acta 258, 566–576.PubMedGoogle Scholar
  17. 17.
    Sopata, I. and Dancewicz, A. M. (1974) Presence of a gelatin-specific proteinase and its latent form in human leucocytes. Biochim. Biophys. Acta 370, 510–523.PubMedGoogle Scholar
  18. 18.
    Galloway, W. A., Murphy, G., Sandy, J. D., Gavrilovic, J., Cawston, T. E., and Reynolds, J. J. (1983) Purification and characterization of a rabbit bone metalloproteinase that degrades proteoglycan and other connective-tissue components. Biochem. J. 209, 741–752.PubMedGoogle Scholar
  19. 19.
    Chin, J. R., Murphy, G., and Werb, Z. (1985) Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. Biosynthesis, isolation, characterization, and substrates. J. Biol. Chem. 260, 12367–12376.PubMedGoogle Scholar
  20. 20.
    Okada, Y., Nagase, H., and Harris, E. D., Jr. (1986) A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization. J. Biol. Chem. 261, 14245–14255.PubMedGoogle Scholar
  21. 21.
    Clark, I. M., and Cawston, T. E. (1989) Fragments of human fibroblast collagenase. Purification and characterization. Biochem. J. 263, 201–206.PubMedGoogle Scholar
  22. 22.
    Murphy, G., Allan, J. A., Willenbrock, F., Cockett, M. I., O’Connell, J. P., and Docherty, A. J. P. (1992) The role of the C-terminal domain in collagenase and stromelysin specificity. J. Biol. Chem. 267, 9612–9618.PubMedGoogle Scholar
  23. 23.
    Knäuper, V., Osthues, A., DeClerck, Y. A., Langley, K. E., Blaser, J., and Tschesche, H. (1993) Fragmentation of human polymorphonuclear-leucocyte collagenase. Biochem. J. 291, 847–854.PubMedGoogle Scholar
  24. 24.
    Knäuper, V., Cowell, S., Smith, B., López-Otín, C., O’Shea, M., Morris, H., et al. (1997) The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J. Biol. Chem. 272, 7608–7616.PubMedGoogle Scholar
  25. 25.
    Hirose, T., Patterson, C., Pourmotabbed, T., Mainardi, C. L., and Hasty, K. A. (1993) Structure-function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity. Proc. Natl. Acad. Sci. USA 90, 2569–2573.PubMedGoogle Scholar
  26. 26.
    Lovejoy, B., Hassell, A. M., Luther, M. A., Weigl, D., and Jordan, S. R. (1994) Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself. Biochemistry 33, 8207–8217.PubMedGoogle Scholar
  27. 27.
    Li, J., Brick, R, O’Hare, M. C., Skarzynski, T., Lloyd, L. F., Curry, V. A., et al. (1995) Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller. Structure 3, 541–549.PubMedGoogle Scholar
  28. 28.
    Bode, W. (1995) A helping hand for collagenases: the haemopexin-like domain. Structure 3, 527–530.PubMedGoogle Scholar
  29. 29.
    Welgus, H. G., Jeffrey, J. J., and Eisen, A. Z. (1981) Human skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates. J. Biol. Chem. 256, 9516–9521.PubMedGoogle Scholar
  30. 30.
    Gomis-Ruth, F. X., Gohlke, U., Betz, M., Knauper, V., Murphy, G., López-Otín, C., et al. (1996) The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain. J. Mol. Biol. 264, 556–566.PubMedGoogle Scholar
  31. 31.
    de Souza, S. J., Pereira, H. M., Jacchieri, S., and Brentani, R. R. (1996) Collagen/collagenase interaction: Does the enzyme mimic the conformation of its own substrate? FASEB J. 10, 927–930.PubMedGoogle Scholar
  32. 32.
    Billinghurst, R. C., Dahlberg, L., Ionescu, M., Reiner, A., Bourne, R., Rorabeck, C., et al. (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J. Clin. Invest. 99, 1534–1545.PubMedGoogle Scholar
  33. 33.
    Krane, S. M., Byrne, M. H., Lemaitre, V., Henriet, P., Jeffrey, J. J., Witter, J. P., et al. (1996) Different collagenase gene products have different roles in degradation of type I collagen. J. Biol. Chem. 271, 28509–28515.PubMedGoogle Scholar
  34. 34.
    Lemaître, V., Jungbluth, A., and Eeckhout, Y. (1997) The recombinant catalytic domain of mouse collagenase-3 depolymerizes type I collagen by cleaving its aminotelopeptides. Biochem. Biophys. Res. Commun. 230, 202–205.PubMedGoogle Scholar
  35. 35.
    Enghild, J. J., Salvesen, G., Brew, K., and Nagase, H. (1989) Interaction of human rheumatoid synovial collagenase (matrix metalloproteinase 1) and stromelysin (matrix metalloproteinase 3) with human a 2-macroglobulin and chicken ovostatin. Binding kinetics and identification of matrix metalloproteinase cleavage sites. J. Biol. Chem. 264, 8779–8785.PubMedGoogle Scholar
  36. 36.
    Okada, Y., Morodomi, T., Enghild, J. J., Suzuki, K., Yasui, A., Nakanishi, I., et al. (1990) Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur. J. Biochem. 194, 721–730.PubMedGoogle Scholar
  37. 37.
    Morodomi, T., Ogata, Y., Sasaguri, Y., Morimatsu, M., and Nagase, H. (1992) Purification and characterization of matrix metalloproteinase 9 from U937 monocytic leukaemia and HT1080 fibrosarcoma cells. Biochem. J. 285, 603–611.PubMedGoogle Scholar
  38. 38.
    Senior, R. M., Griffin, G. L., Fliszar, C. J., Shapiro, S. D., Goldberg, G. I., and Welgus, H. G. (1991) Human 92- and 72-kilodalton type IV collagenases are elastases. J. Biol. Chem. 266, 7870–7875.PubMedGoogle Scholar
  39. 39.
    Gronski, T. J., Jr., Martin, R. L., Kobayashi, D. K., Walsh, B. C., Holman, M. C., Huber, M., et al. (1997) Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J. Biol. Chem. 272, 12189–12194.PubMedGoogle Scholar
  40. 40.
    Collier, I. E., Krasnov, P. A., Strongin, A. Y., Birkedal-Hansen, H., and Goldberg, G. I. (1992) Alanine scanning mutagenesis and functional analysis of the fibronectin-like collagen-binding domain from human 92-kDa type IV collagenase. J. Biol. Chem. 267, 6776–6781.PubMedGoogle Scholar
  41. 41.
    Banyai, L., Tordai, H., and Patthy, L. (1994) The gelatin-binding site of human 72 kDa type IV collagenase (gelatinase A). Biochem. J. 298, 403–407.PubMedGoogle Scholar
  42. 42.
    Allan, J. A., Docherty, A. J. P., and Murphy, G. (1994) The binding of gelatinases A and B to type I collagen yields both high and low affinity sites. Ann. N.Y. Acad. Sci. 732, 365–366.PubMedGoogle Scholar
  43. 43.
    Steffensen, B., Wallon, U. M., and Overall, C. M. (1995) Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen. J. Biol. Chem. 270, 11555–11566.PubMedGoogle Scholar
  44. 44.
    Allan, J. A., Docherty, A. J. P., Barker, P. J., Huskisson, N. S., Reynolds, J. J., and Murphy, G. (1995) Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem. J. 309, 299–306.PubMedGoogle Scholar
  45. 45.
    Murphy, G., Nguyen, Q., Cockett, M. I., Atkinson, S. J., Allan, J. A., Knight, C. G., et al. (1994) Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant. J. Biol. Chem. 269, 6632–6636.PubMedGoogle Scholar
  46. 46.
    Shipley, J. M., Doyle, G. A., Fliszar, C. J., Ye, Q. Z., Johnson, L.L., Shapiro, S.D., et al. (1996) The structural basis for the elastolytic activity of the 92-kDa and 72-kDa gelatinases. Role of the fibronectin type II-like repeats. J. Biol. Chem. 271, 4335–4341.PubMedGoogle Scholar
  47. 47.
    Aimes, R. T., and Quigley, J.P. (1995) Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J. Biol. Chem. 270, 5872–5876.PubMedGoogle Scholar
  48. 48.
    Giannelli, G., Falkmarzillier, J., Schiraldi, O., Stetler-Stevenson, W. G., and Quaranta, V. (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277, 225–228.PubMedGoogle Scholar
  49. 49.
    Gunja-Smith, Z., Nagase, H., and Woessner, J. F., Jr. (1989) Purification of the neutral proteoglycan-degrading metalloproteinase from human articular cartilage tissue and its identification as stromelysin matrix metalloproteinase-3. Biochem. J. 258, 115–119.PubMedGoogle Scholar
  50. 50.
    Nicholson, R., Murphy, G., and Breathnach, R. (1989) Human and rat malignant-tumorassociated mRNAs encode stromelysin-like metalloproteinases. Biochemistry 28, 5195–5203.PubMedGoogle Scholar
  51. 51.
    Murphy, G., Cockett, M. I., Ward, R. V., and Docherty, A. J. P. (1991) Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP). Biochem. J. 277, 277–279.PubMedGoogle Scholar
  52. 52.
    Nagase, H. (1995) Human stromelysins 1 and 2. Methods Enzymol. 248, 449–470.PubMedGoogle Scholar
  53. 53.
    Harrison, R. K., Chang, B., Niedzwiecki, L., and Stein, R. L. (1992) Mechanistic studies on the human matrix metalloproteinase stromelysin. Biochemistry 31, 10757–10762.PubMedGoogle Scholar
  54. 54.
    Suzuki, K., Enghild, J. J., Morodomi, T., Salvesen, G., and Nagase, H. (1990) Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry 29, 10261–10270.Google Scholar
  55. 55.
    Knäuper, V., Wilhelm, S. M., Seperack, P. K., DeClerck, Y. A., Langley, K. E., Osthues, A., et al. (1993) Direct activation of human neutrophil procollagenase by recombinant stromelysin. Biochem. J. 295, 581–586.PubMedGoogle Scholar
  56. 56.
    Knäuper, V., Murphy, G., and Tschesche, H. (1996) Activation of human neutrophil procollagenase by stromelysin 2. Eur. J. Biochem. 235, 187–191.PubMedGoogle Scholar
  57. 57.
    Nakamura, H., Fujii, Y., Ohuchi, E., Yamamoto, E., and Okada, Y. (1998) Activation of the precursor of human stromelysin 2 and its interactions with other matrix metalloproteinases. Eur. J. Biochem. 253, 67–75.PubMedGoogle Scholar
  58. 58.
    Ogata, Y., Enghild, J. J., and Nagase, H. (1992) Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J. Biol. Chem. 267, 3581–3584.PubMedGoogle Scholar
  59. 59.
    Knäuper, V., López-Otfn, C., Smith, B., Knight, G., and Murphy, G. (1996) Biochemical characterization of human collagenase-3. J. Biol. Chem. 271, 1544–1550.PubMedGoogle Scholar
  60. 60.
    Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., et al. (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells [see comments]. Nature 370, 61–65.PubMedGoogle Scholar
  61. 61.
    Butler, G. S., Will, H., Atkinson, S. J., and Murphy, G. (1997) Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur. J. Biochem. 244, 653–657.PubMedGoogle Scholar
  62. 62.
    Takino, T., Sato, H., Shinagawa, A., and Seiki, M. (1995) Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J. Biol. Chem. 270, 23013–23020.PubMedGoogle Scholar
  63. 63.
    Pei, D. (1999) Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. J. Biol. Chem. 274, 8925–8932.PubMedGoogle Scholar
  64. 64.
    Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A., and Goldberg, G. I. (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem. 270, 5331–5338.PubMedGoogle Scholar
  65. 65.
    Butler, G. S., Butler, M. J., Atkinson, S. J., Will, H., Tamura, T., Vanwestrum, S. S., et al. (1998) The TIMP2 membrane type 1 metalloproteinase receptor regulates the concentration and efficient activation of progelatinase A-a kinetic study. J. Biol. Chem. 273, 871–880.PubMedGoogle Scholar
  66. 66.
    Kinoshita, T., Sato, H., Akiko, Okada, Ohuchi, E., Imai, K., Okada, Y., et al. (1998) TIMP2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J. Biol. Chem. 273, 16098–16103.PubMedGoogle Scholar
  67. 67.
    Ohuchi, E., Imai, K., Fujii, Y., Sato, H., Seiki, M., and Okada, Y. (1997) Membrane type l matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem. 272, 2446–2451.PubMedGoogle Scholar
  68. 68.
    D’Ortho, M. P., Will, H., Atkinson, S., Butler, G., Messent, A., Gavrilovic, J., et al. (1997) Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. Eur. J. Biochem. 250, 751–757.PubMedGoogle Scholar
  69. 69.
    Woessner, J. F., Jr., and Taplin, C. J. (1988) Purification and properties of a small latent matrix metalloproteinase of the rat uterus. J. Biol. Chem. 263, 16918–16925.PubMedGoogle Scholar
  70. 70.
    Murphy, G., Segain, J. P., O’Shea, M., Cockett, M., Ioannou, C., Lefebvre, O., et al. (1993) The 28-kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J. Biol. Chem. 268, 15435–15441.PubMedGoogle Scholar
  71. 71.
    Noel, A., Santavicca, M., Stoll, I., L’Hoir, C., Staub, A., Murphy, G., et al. (1995) Identification of structural determinants controlling human and mouse stromelysin-3 proteolytic activities. J. Biol. Chem. 270, 22866–22872.PubMedGoogle Scholar
  72. 72.
    Pei, D., Majmudar, G., and Weiss, S. J. (1994) Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J. Biol. Chem. 269, 25849–25855.PubMedGoogle Scholar
  73. 73.
    Banda, M. J., and Werb, Z. (1981) Mouse macrophage elastase. Purification and characterization as a metalloproteinase. Biochem. J. 193, 589–605.PubMedGoogle Scholar
  74. 74.
    Cossins, J., Dudgeon, T. J., Catlin, G., Gearing, A. J., and Clements, J. M. (1996) Identification of MMP-18, a putative novel human matrix metalloproteinase. Biochem. Biophys. Res. Commun. 228, 494–498.PubMedGoogle Scholar
  75. 75.
    Sedlacek, R., Mauch, S., Kolb, B., Schatzlein, C., Eibel, H., Peter, H. H., et al. (1998) Matrix metalloproteinase MMP-19 (RASI 1) is expressed on the surface of activated peripheral blood mononuclear cells and is detected as an autoantigen in rheumatoid arthritis. Immunobiology 198, 408–423.PubMedGoogle Scholar
  76. 76.
    Pendâs, A. M., Knäuper, V., Puente, X. S., Llano, E., Mattei, M. G., Apte, S., et al. (1997) Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J. Biol. Chem. 272, 4281–4286.PubMedGoogle Scholar
  77. 77.
    Fukae, M., Tanabe, T., Uchida, T., Lee, S. K., Ryu, O. H., Murakami, C., et al. (1998) Enamelysin (matrix metalloproteinase-20)—localization in the developing tooth and effects of pH and calcium on amelogenin hydrolysis. J. Dent. Res. 77, 1580–1588.PubMedGoogle Scholar
  78. 78.
    Llano, E., Pendâs, A. M., Knäuper, V., Sorsa, T., Salo, T., Salido, E., et al. (1997) Identification and structural and functional characterization of human enamelysin (MMP20). Biochemistry 36, 15101–15108.PubMedGoogle Scholar
  79. 79.
    Yang, M. Z., Murray, M. T., and Kurkinen, M. (1997) A novel matrix metalloproteinase gene (XMMP) encoding vitronectin-like motifs is transiently expressed in Xenopus laevis early embryo development. J. Biol. Chem. 272, 13527–13533.PubMedGoogle Scholar
  80. 80.
    Yang, M. Z. and Kurkinen, M. (1998) Cloning and characterization of a novel matrix metalloproteinase (MMP), CMMP, from chicken embryo fibroblasts—CMMP, Xenopus XMMP, and human MMP-19 have a conserved unique cysteine in the catalytic domain. J. Biol. Chem. 273, 17893–17900.PubMedGoogle Scholar
  81. 81.
    Gururajan, R., Lahti, J. M., Grenet, J., Easton, J., Gruber, I., Ambros, P. F., et al. (1998) Duplication of a genomic region containing the Cdc211–2 and MMP21–22 genes on human chromosome 1p36.3 and their linkage to dlz2. Genome Res. 8, 929–939.PubMedGoogle Scholar
  82. 82.
    Velasco, G., Pendâs, A. M., Fueyo, A., Knäuper, V., Murphy, G., and López-Otín, C. (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J. Biol. Chem. 274, 4570–4576.PubMedGoogle Scholar
  83. 83.
    Nagase, H., Enghild, J. J., Suzuki, K., and Salvesen, G. (1990) Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate. Biochemistry 29, 5783–5789.PubMedGoogle Scholar
  84. 84.
    Imper, V. and Van Wart, H. E. (1998) Substrate specificity and mechanisms of substrate recognition of the matrix metalloproteinases. Matrix Metalloproteinases (Parks, W. C., and Mecham, R. P., eds) pp. 219–242, Academic Press, San Diego.Google Scholar
  85. 85.
    Grams, F., Reinemer, P., Powers, J. C., Kleine, T., Pieper, M., Tschesche, H., et al. (1995) X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur. J. Biochem. 228, 830–841.PubMedGoogle Scholar
  86. 86.
    Netzel-Arnett, S., Sang, Q. X., Moore, W. G., Navre, M., Birkedal-Hansen, H., and Van Wart, H. E. (1993) Comparative sequence specificities of human 72- and 92-kDa gelati-nases (type IV collagenases) and PUMP (matrilysin). Biochemistry 32, 6427–6432.PubMedGoogle Scholar
  87. 87.
    Welch, A. R., Holman, C. M., Huber, M., Brenner, M. C., Browner, M. F., and Van Wart, H. E. (1996) Understanding the P1’ specificity of the matrix metalloproteinases: effect of S1’ pocket mutations in matrilysin and stromelysin-1. Biochemistry 35, 10103–10109.PubMedGoogle Scholar
  88. 88.
    Massova, I., Fridman, R., and Mobashery, S. (1997) Structural insights into the catalytic domains of human matrix metalloprotease-2 and human matrix metalloprotease-9: implications for substrate specificities. J. Mol. Model. 3, 17–30.Google Scholar
  89. 89.
    Nagai, Y., Masui, Y., and Sakakibara, S. (1976) Substrate specificity of vetebrate collage-nase. Biochim. Biophys. Acta 445, 521–524.PubMedGoogle Scholar
  90. 90.
    Masui, Y., Takemoto, T., Sakakibara, S., Hori, H., and Nagai, Y. (1977) Synthetic substrates for vertebrate collagenase. Biochem. Med. 17, 215–221.PubMedGoogle Scholar
  91. 91.
    Weingarten, H., Martin, R., and Feder, J. (1985) Synthetic substrates of vertebrate collage-nase. Biochemistry 24, 6730–6734.PubMedGoogle Scholar
  92. 92.
    Weingarten, H., and Feder, J. (1986) Cleavage site specificity of vertebrate collagenases. Biochem. Biophys. Res. Commun. 139, 1184–1187.PubMedGoogle Scholar
  93. 93.
    Seltzer, J. L., Weingarten, H., Akers, K. T., Eschbach, M. L., Grant, G. A., and Eisen, A. Z. (1989) Cleavage specificity of type IV collagenase (gelatinase) from human skin. Use of synthetic peptides as model substrates. J. Biol. Chem. 264, 19583–19586.PubMedGoogle Scholar
  94. 94.
    Seltzer, J. L., Akers, K. T., Weingarten, H., Grant, G. A., McCourt, D. W., and Eisen, A. Z. (1990) Cleavage specificity of human skin type IV collagenase (gelatinase). Identification of cleavage sites in type I gelatin, with confirmation using synthetic peptides. J. Biol. Chem. 265, 20409–20413.PubMedGoogle Scholar
  95. 95.
    Fields, G. B., Van Wart, H. E., and Birkedal-Hansen, H. (1987) Sequence specificity of human skin fibroblast collagenase. Evidence for the role of collagen structure in determining the collagenase cleavage site. J. Biol. Chem. 262, 6221–6226.PubMedGoogle Scholar
  96. 96.
    Netzel-Arnett, S., Fields, G. B., Birkedal-Hansen, H., and Van Wart, H. E. (1991) Sequence specificities of human fibroblast and neutrophil collagenases [published erratum appears in J Biol Chem 1991 Nov 5; 266(31):21326]. J. Biol. Chem. 266, 6747–6755.Google Scholar
  97. 97.
    Niedzwiecki, L., Teahan, J., Harrison, R. K., and Stein, R. L. (1992) Substrate specificity of the human matrix metalloproteinase stromelysin and the development of continuous fluorometric assays. Biochemistry 31, 12618–12623.PubMedGoogle Scholar
  98. 98.
    Gomis-Ruth, F. X., Maskos, K., Betz, M., Bergner, A., Huber, R., Suzuki, K., et al. (1997) Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389, 77–81.PubMedGoogle Scholar
  99. 99.
    Meng, Q., Malinovskii, V., Huang, W., Hu, Y., Chung, L., Nagase, H., et al. (1999) Residue 2 of TIMP-1 is a major determinant of affinity and specificity for matrix metalloproteinases but effects of substitutions do not correlate with those of the corresponding P1’ residue of substrate. J. Biol. Chem. 274, 10184–10189.PubMedGoogle Scholar
  100. 100.
    Benbow, U., Butticè, G., Nagase, H., and Kurkinen, M. (1996) Characterization of the 46kDa intermediates of matrix metalloproteinase 3 (stromelysin 1) obtained by site-directed mutation of phenylalanine 83. J. Biol. Chem. 271, 10715–10722.PubMedGoogle Scholar
  101. 101.
    Reinemer, P., Grams, F., Huber, R., Kleine, T., Schnierer, S., Piper, M., et al. (1994) Structural implications for the role of the N terminus in the ‘superactivation’ of collage-nases. A crystallographic study. FEBS Lett. 338, 227–233.Google Scholar
  102. 102.
    Lark, M. W., Bayne, E. K., Flanagan, J., Harper, C. F., Hoerrner, L. A., Hutchinson, N. I., et al. (1997) Aggrecan degradation in human cartilage—evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J. Clin. Invest. 100, 93–106.PubMedGoogle Scholar
  103. 103.
    Hollander, A. P., Heathfield, T. F., Webber, C., Iwata, Y., Bourne, R., Rorabeck, C., et al. (1994) Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J. Clin. Invest. 93, 1722–1732.PubMedGoogle Scholar
  104. 104.
    Nicholls, A., Sharp, K. A., and Honig, B. (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296.Google Scholar
  105. 105.
    Sang, Q. A. and Douglas, D. A. (1996) Computational sequence analysis of matrix metalloproteinases. J. Protein Chem. 15, 137–160.PubMedGoogle Scholar
  106. 106.
    Sage, H., Balian, G., Vogel, A. M., and Bornstein, P. (1984) Type VIII collagen. Synthesis by normal and malignant cells in culture. Lab. Invest. 50, 219–231.PubMedGoogle Scholar
  107. 107.
    Gadher, S. J., Eyre, D. R., Duance, V. C., Wotton, S. F., Heck, L. W., Schmid, T. M. et al. (1988) Susceptibility of cartilage collagens type II, IX, X, and XI to human synovial collagenase and neutrophil elastase. Eur. J. Biochem. 175, 1–7.PubMedGoogle Scholar
  108. 108.
    Menzel, E. J. and Smolen, J. S. (1978) [Degradation of Clq, the first subcomponent of the complement sequence, by synovial collagenase from patients with rheumatoid arthritis (author’s transl)]. [German]. Wien. Klin. Wochenschr. 90, 727–730.Google Scholar
  109. 109.
    Nguyen, Q., Murphy, G., Hughes, C. E., Mort, J. S., and Roughley, P. J. (1993) Matrix metalloproteinases cleave at two distinct sites on human cartilage link protein. Biochem. J. 295, 595–598.PubMedGoogle Scholar
  110. 110.
    Fukai, F., Ohtaki, M., Fujii, N., Yajima, H., Ishii, T., Nishizawa, Y., et al. (1995) Release of biological activities from quiescent fibronectin by a conformational change and limited proteolysis by matrix metalloproteinases. Biochemistry 34, 11453–11459.PubMedGoogle Scholar
  111. 111.
    Imai, K., Shikata, H., and Okada, Y. (1995) Degradation of vironectin by matrix metalloproteinases-1, -2, -3, -7 and -9. FEBS Lett. 369, 249–251.PubMedGoogle Scholar
  112. 112.
    Chandler, S., Coates, R., Gearing, A., Lury, J., Wells, G., and Bone, E. (1995) Matrix metalloproteinases degrade myelin basic protein. Neurosci. Lett. 201, 223–226.PubMedGoogle Scholar
  113. 113.
    Desrochers, P. E., Jeffrey, J. J., and Weiss, S. J. (1991) Interstitial collagenase (matrix metalloproteinase-1) expresses serpinase activity. J. Clin. Invest. 87, 2258–2265.PubMedGoogle Scholar
  114. 114.
    Ito, A., Mukaiyama, A., Itoh, Y., Nagase, H., Thogersen, I. B., Enghild, J. J., et al. (1996) Degradation of interleukin lbeta by matrix metalloproteinases. J. Biol. Chem. 271, 14657–14660.PubMedGoogle Scholar
  115. 115.
    Gearing, A. J., Beckett, P., Christodoulou, M., Churchill, M., Clements, J. M., Crimmin, M., et al. (1995) Matrix metalloproteinases and processing of pro-TNF-alpha. J. Leukoc. Biol. 57, 774–777.PubMedGoogle Scholar
  116. 116.
    Fowlkes, J. L., Enghild, J. J., Suzuki, K., and Nagase, H. (1994) Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J. Biol. Chem. 269, 25742–25746.PubMedGoogle Scholar
  117. 117.
    Cawston, T. E. and Tyler, J. A. (1979) Purification of pig synovial collagenase to high specific activity. Biochem. J. 183, 647–656.PubMedGoogle Scholar
  118. 118.
    Siri, A., Knäuper, V., Veirana, N., Caocci, F., Murphy, G., and Zardi, L. (1995) Different susceptibility of small and large human tenascin-C isoforms to degradation by matrix metalloproteinases. J. Biol. Chem. 270, 8650–8654.PubMedGoogle Scholar
  119. 119.
    Sasaki, T., Gohring, W., Mann, K., Maurer, P., Hohenester, E., Knäuper, V., et al. (1997) Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J. Biol. Chem. 272, 9237–9243.PubMedGoogle Scholar
  120. 120.
    Imai, K., Hiramatsu, A., Fukushima, D., Pierschbacher, M. D., and Okada, Y. (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-betal release. Biochem. J. 322, 809–814.PubMedGoogle Scholar
  121. 121.
    Mast, A. E., Enghild, J. J., Nagase, H., Suzuki, K., Pizzo, S. V., and Salvesen, G. (1991) Kinetics and physiologic relevance of the inactivation of a 1-proteinase inhibitor, a 1-antichymotrypsin, and antithrombin III by matrix metalloproteinases-1 (tissue collagenase), -2 (72-kDa gelatinase/type IV collagenase), and -3 (stromelysin). J. Biol. Chem. 266, 15810–15816.PubMedGoogle Scholar
  122. 122.
    Nakagawa, H. and Debuchi, H. (1992) Inactivation of substance P by granulation tissue-derived gelatinase. Biochem.Pharmacol. 44, 1773–1777.PubMedGoogle Scholar
  123. 123.
    Mayer, U., Mann, K., Timpl, R., and Murphy, G. (1993) Sites of nidogen cleavage by pro-teases involved in tissue homeostasis and remodelling. Eur. J. Biochem. 217, 877–884.PubMedGoogle Scholar
  124. 124.
    Harrison, R., Teahan, J., and Stein, R. (1989) A semicontinuous, high-performance liquid chromatography-based assay for stromelysin. Anal. Biochem. 180, 110–113.PubMedGoogle Scholar
  125. 125.
    Sakamoto, W., Fujie, K., Kaga, M., Handa, H., Gotoh, K., Nishihira, J., et al. (1996) Degradation of T-kininogen by cathepsin D and matrix metalloproteinases. Immunopharmacology 32, 73–75.PubMedGoogle Scholar
  126. 126.
    Miyazaki, K., Hattori, Y., Umenishi, F., Yasumitsu, H., and Umeda, M. (1990) Purification and characterization of extracellular matrix-degrading metalloproteinase, matrin (pump-1), secreted from human rectal carcinoma cell line. Cancer Res. 50, 7758–7764.PubMedGoogle Scholar
  127. 127.
    Quantin, B., Murphy, G., and Breathnach, R. (1989) Pump-1 cDNA codes for a protein with characteristics similar to those of classical collagenase family members. Biochemistry 28, 5327–5334.PubMedGoogle Scholar
  128. 128.
    Sires, U. I., Murphy, G., Baragi, V. M., Fliszar, C. J., Welgus, H. G., and Senior, R. M. (1994) Matrilysin is much more efficient than other matrix metalloproteinases in the proteolytic inactivation of a 1-antitrypsin. Biochem. Biophys. Res. Commun. 204, 613–620.PubMedGoogle Scholar
  129. 129.
    Fletcher, D. S., Williams, H. R., and Lin, T.-Y. (1978) Effects of human polymorphonuclear leukocyte collagenase on sub-component Clq of the first component of human complement. Biochim. Biophys. Acta 540, 270–277.PubMedGoogle Scholar
  130. 130.
    Murphy, G., Reynolds, J. J., Bretz, U., and Baggiolini, M. (1982) Partial purification of collagenase and gelatinase from human polymorphonuclear leucocytes. Analysis of their actions on soluble and insoluble collagens. Biochem. J. 203, 209–221.PubMedGoogle Scholar
  131. 131.
    Kudo, K., Saito, A., Sudo, K., Adachi, M., Ikai, A., Ofuji, Y., et al. (1988) [The inhibitory effects of chicken ovomacroglobulin on collagenolytic activity in Bacteroides gingivalis culture supernatant, human PMN and human gingival crevicular fluid]. [Japanese]. Nippon Shishubyo Gakkai Kaishi 30, 1061–1069.Google Scholar
  132. 132.
    Desrochers, P. E., Mookhtiar, K., Van Wart, H. E., Hasty, K. A., and Weiss, S. J. (1992) Proteolytic inactivation of a 1-proteinase inhibitor and alpha 1-antichymotrypsin by oxidatively activated human neutrophil metalloproteinases. J. Biol. Chem. 267, 5005–5012.PubMedGoogle Scholar
  133. 133.
    Diekmann, O., and Tschesche, H. (1994) Degradation of kinins, angiotensine and substance P by polymorphonuclear matrix metalloproteinases MMP 8 and MMP 9. Braz. J. Med. Biol. Res. 27, 1865–1876.PubMedGoogle Scholar
  134. 134.
    Hirose, T., Reife, R. A., Smith, G. N., Jr., Stevens, R. M., Mainardi, C. L., and Hasty, K. A. (1992) Characterization of type V collagenase (gelatinase) in synovial fluid of patients with inflammatory arthritis. J. Rheumatol. 19, 593–599.PubMedGoogle Scholar
  135. 135.
    Sires, U. I., Dublet, B., Aubert-Foucher, E., van der Rest, M., and Welgus, H. G. (1995) Degradation of the COL1 domain of type XIV collagen by 92-kDa gelatinase. J. Biol. Chem. 270, 1062–1067.PubMedGoogle Scholar
  136. 136.
    Gijbels, K., Proost, P., Masure, S., Carton, H., Billiau, A., and Opdenakker, G. (1993) Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves myelin basic protein. J. Neurosci. Res. 36, 432–440.PubMedGoogle Scholar
  137. 137.
    Lyons, J. G., Birkedal-Hansen, B., Moore, W. G., O’Grady, R. L., and Birkedal-Hansen, H. (1991) Characteristics of a 95-kDa matrix metalloproteinase produced by mammary carcinoma cells. Biochemistry 30, 1449–1456.PubMedGoogle Scholar
  138. 138.
    Sanchez-Lopez, R., Alexander, C. M., Behrendtsen, O., Breathnach, R., and Werb, Z. (1993) Role of zinc-binding-and hemopexin domain-encoded sequences in the substrate specificity of collagenase and stromelysin-2 as revealed by chimeric proteins. J. Biol. Chem. 268, 7238–7247.PubMedGoogle Scholar
  139. 139.
    Chandler, S., Cossins, J., Lury, J., and Wells, G. (1996) Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-a fusion protein. Biochem. Biophys. Res. Commun. 228, 421–429.PubMedGoogle Scholar
  140. 140.
    Banda, M. J., Rice, A. G., Griffin, G. L., and Senior, R. M. (1988) a 1-proteinase inhibitor is a neutrophil chemoattractant after proteolytic inactivation by macrophage elastase. J. Biol. Chem. 263, 4481–4484.Google Scholar
  141. 141.
    Welgus, H. G., Kobayashi, D. K., and Jeffrey, J. J. (1983) The collagen substrate specificity of rat uterus collagenase. J. Biol. Chem. 258, 14162–14165.PubMedGoogle Scholar
  142. 142.
    Welgus, H. G., Grant, G. A., Sacchettini, J. C., Roswit, W. T., and Jeffrey, J. J. (1985) The gelatinolytic activity of rat uterus collagenase. J. Biol. Chem. 260, 13601–13606.PubMedGoogle Scholar
  143. 143.
    Eeckhout, Y., Riccomi, H., Cambiaso, C., Vaes, G., and Masson, P. (1976) Studies on properties common to collagen and Clq. Arch. Int. Physiol. Biochim. 84, 611–612.PubMedGoogle Scholar
  144. 144.
    Fosang, A. J., Last, K., Knauper, V., Murphy, G., and Neame, P. J. (1996) Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett. 380, 17–20.PubMedGoogle Scholar
  145. Nethery, A., and O’Grady, R. L. (1991) Interstitial collagenase from rat mammary carcinoma cells: interaction with substrates and inhibitors. Invasion Metastasis 11, 241–248.PubMedGoogle Scholar
  146. Imai, K., Ohuchi, E., Aoki, T., Nomura, H., Fujii, Y., Sato, H., et al. (1996) Membrane-type matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2. Cancer Res. 56, 2707–2710.Google Scholar
  147. 147.
    Stolow, M. A., Bauzon, D. D., Li, J., Sedgwick, T., Liang, V. C., Sang, Q. A., et al. Identification and characterization of a novel collagenase in Xenopus laevis: possible roles during frog development. Mol. Biol. Cell. 7, 1996 1471–1483.PubMedGoogle Scholar
  148. 148.
    Sasaki, T., Mann, K., Murphy, G., Chu, M. L., and Timpl, R. (1996) Different susceptibilities of fibulin-1 and fibulin-2 to cleavage by matrix metalloproteinases and other tissue pro-teases. Eur J. Biochem. 240, 427–434.PubMedGoogle Scholar
  149. 149.
    Murphy, G., Knäuper, V., Cowell, S., Hembry, R., Stanton, H., Butler, G., et al. (1999) Evaluation of some newer matrix metalloproteinases. In Ann. N.Y. Acad. Sci. 878, 25–39.Google Scholar
  150. 150.
    Welgus, H. G., Jeffrey, J. J., and Eisen, A. Z. (1981) The collagen substrate specificity of human skin fibroblast collagenase. J. Biol. Chem. 256, 9511–9515.PubMedGoogle Scholar
  151. 151.
    Hasty, K. A., Jeffrey, J. J., Hibbs, M. S., and Welgus, H. G. (1987) The collagen substrate specificity of human neutrophil collagenase. J. Biol. Chem. 262, 10048–10052.PubMedGoogle Scholar
  152. 152.
    Mitchell, P. G., Magna, H. A., Reeves, L. M., Lopresti-Morrow, L. L., Yocum, S. A., Rosner, P. J., et al. (1996) Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase- 13 from human osteoarthritic cartilage. J. Clin. Invest. 97, 761–768.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Hideaki Nagase

There are no affiliations available

Personalised recommendations