Skip to main content

Substrate Specificity of MMPs

  • Chapter
  • 192 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Matrix metalloproteinases (MMPs) are secreted or cell surface-bound zinc metalloendopeptidases that act on extracellular matrix (ECM) macromolecules. Thus, isolated MMPs have been tested against various components of ECM. Based on similarities in primary structure and the abilities to cleave ECM components, MMPs are grouped into collagenases, gelatinases, stromelysins, membrane-type MMP(MT-MMPs), and others which do not belong to those subgroups. Most MMPs consist of four typical domain structures: propeptide, catalytic, linker region, and a C-terminal hemopexin-like domains. The catalytic domain share structural similarity with interstitial collagenase (MMP-1). The propeptide domain has least similarities among MMPs, all but except MMP-23 (1) have the so-called cysteine switch sequence motif, PRCG[V/N]PD, whose cysteinyl residue ligates the catalytic zinc atom of the active site as the fourth ligand and maintain inactive proenzyme. Another conserved sequence is the zinc binding motif HEXGHXXGXXH, in which three histidines bind to Zn2+. Three dimensional structures of the catalytic domains of MMPs [MMP-1 (2–6), MMP-3 (7–9), MMP-7 (10), MMP-8 (11,12), MMP-14 (13)] indicate that the polypeptide fold of the catalytic domains are essentially identical, although their substrate specificities are sufficiently different when peptide substrates were tested (14). In addition, the action of MMPs on natural protein substrates is not only dectated by the subsite requirement of the catalytic domains, but it is often influenced by the domains other than the catalytic domain. This chapter describes activities of MMPs on natural substrates and substrate specificity based on synthetic substrates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gururajan, R., Grenet, J., Lahti, J. M., and Kidd, V. J. (1998) Isolation and characterization of two novel metalloproteinase genes linked to the Cdc21 locus on human chromosome 1p36.3. Genomics 52, 101–106.

    PubMed  CAS  Google Scholar 

  2. Lovejoy, B., Cleasby, A., Hassell, A. M., Longley, K., Luther, M. A., Weigl, D., et al. (1994) Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263, 375–377.

    PubMed  CAS  Google Scholar 

  3. Borkakoti, N., Winkler, F. K., Williams, D. H., D’Arcy, A., Broadhurst, M. J., Brown, P. A., et al. (1994) Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Nat. Struct. Biol. 1, 106–110.

    PubMed  CAS  Google Scholar 

  4. Spurlino, J. C., Smallwood, A. M., Carlton, D. D., Banks, T. M., Vavra, K. J., Johnson, J. S., et al. (1994) 1.56 A structure of mature truncated human fibroblast collagenase. Proteins 19, 98–109.

    Google Scholar 

  5. Moy, F. J., Chanda, P. K., Cosmi, S., Pisano, M. R., Urbano, C., Wilhelm, J., et al. (1998) High-resolution solution structure of the inhibitor-free catalytic fragment of human fibroblast collagenase determined by multidimensional NMR. Biochemistry 37, 1495–1504.

    PubMed  CAS  Google Scholar 

  6. McCoy, M. A., Dellwo, M. J., Schneider, D. M., Banks, T. M., Falvo, J., Vavra, K. J., et al. (1997) Assignments and structure determination of the catalytic domain of human fibroblast collagenase using 3D double and triple resonance NMR spectroscopy. J. Biomol. NMR 9, 11–24.

    PubMed  CAS  Google Scholar 

  7. Gooley, P. R., O’Connell, J. F., Marcy, A. I., Cuca, G. C., Salowe, S. P., Bush, B. L., et al. (1994) The NMR structure of the inhibited catalytic domain of human stromelysin-1. Nat. Struct. Biol. 1, 111–118.

    PubMed  CAS  Google Scholar 

  8. Becker, J. W., Marcy, A. I., Rokosz, L. L., Axel, M. G., Burbaum, J. J., Fitzgerald, P. M., et al. (1995) Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci. 4, 1966–1976.

    PubMed  CAS  Google Scholar 

  9. Dhanaraj, V., Ye, Q. Z., Johnson, L. L., Hupe, D. J., Ortwine, D. F., Dunbar, J. B., Jr., et al. (1996) X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily. Structure 4, 375–386.

    PubMed  CAS  Google Scholar 

  10. Browner, M. F., Smith, W. W., and Castelhano, A. L. (1995) Matrilysin-inhibitor complexes: common themes among metalloproteases. Biochemistry 34, 6602–6610.

    PubMed  CAS  Google Scholar 

  11. Bode, W., Reinemer, P., Huber, R., Kleine, T., Schnierer, S., and Tschesche, H. (1994) The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 13, 1263–1269.

    PubMed  CAS  Google Scholar 

  12. Stams, T., Spurlino, J. C., Smith, D. L., Wahl, R. C., Ho, T. F., Qoronfleh, M. W., et al. (1994) Structure of human neutrophil collagenase reveals large S1’ specificity pocket. Nat. Struct. Biol. 1, 119–123.

    PubMed  CAS  Google Scholar 

  13. Fernandez-Catalan, C., Bode, W., Huber, R., Turk, D., Calvete, J. J., Lichte, A., et al. (1998) Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase a receptor. EMBO J. 17, 5238–5248.

    PubMed  CAS  Google Scholar 

  14. Nagase, H. and Fields, G. B. (1996) Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40, 399–416.

    PubMed  CAS  Google Scholar 

  15. Harris, E. D., Jr., and Krane, S. M. (1974) Collagenases. N. Engl. J. Med. 291, 557–563.

    PubMed  CAS  Google Scholar 

  16. Harris, E. D., Jr., and Krane, S. M. (1972) An endopeptidase from rheumatoid synovial tissue culture. Biochim. Biophys. Acta 258, 566–576.

    PubMed  CAS  Google Scholar 

  17. Sopata, I. and Dancewicz, A. M. (1974) Presence of a gelatin-specific proteinase and its latent form in human leucocytes. Biochim. Biophys. Acta 370, 510–523.

    PubMed  CAS  Google Scholar 

  18. Galloway, W. A., Murphy, G., Sandy, J. D., Gavrilovic, J., Cawston, T. E., and Reynolds, J. J. (1983) Purification and characterization of a rabbit bone metalloproteinase that degrades proteoglycan and other connective-tissue components. Biochem. J. 209, 741–752.

    PubMed  CAS  Google Scholar 

  19. Chin, J. R., Murphy, G., and Werb, Z. (1985) Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. Biosynthesis, isolation, characterization, and substrates. J. Biol. Chem. 260, 12367–12376.

    PubMed  CAS  Google Scholar 

  20. Okada, Y., Nagase, H., and Harris, E. D., Jr. (1986) A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization. J. Biol. Chem. 261, 14245–14255.

    PubMed  CAS  Google Scholar 

  21. Clark, I. M., and Cawston, T. E. (1989) Fragments of human fibroblast collagenase. Purification and characterization. Biochem. J. 263, 201–206.

    PubMed  CAS  Google Scholar 

  22. Murphy, G., Allan, J. A., Willenbrock, F., Cockett, M. I., O’Connell, J. P., and Docherty, A. J. P. (1992) The role of the C-terminal domain in collagenase and stromelysin specificity. J. Biol. Chem. 267, 9612–9618.

    PubMed  CAS  Google Scholar 

  23. Knäuper, V., Osthues, A., DeClerck, Y. A., Langley, K. E., Blaser, J., and Tschesche, H. (1993) Fragmentation of human polymorphonuclear-leucocyte collagenase. Biochem. J. 291, 847–854.

    PubMed  Google Scholar 

  24. Knäuper, V., Cowell, S., Smith, B., López-Otín, C., O’Shea, M., Morris, H., et al. (1997) The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J. Biol. Chem. 272, 7608–7616.

    PubMed  Google Scholar 

  25. Hirose, T., Patterson, C., Pourmotabbed, T., Mainardi, C. L., and Hasty, K. A. (1993) Structure-function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity. Proc. Natl. Acad. Sci. USA 90, 2569–2573.

    PubMed  CAS  Google Scholar 

  26. Lovejoy, B., Hassell, A. M., Luther, M. A., Weigl, D., and Jordan, S. R. (1994) Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself. Biochemistry 33, 8207–8217.

    PubMed  CAS  Google Scholar 

  27. Li, J., Brick, R, O’Hare, M. C., Skarzynski, T., Lloyd, L. F., Curry, V. A., et al. (1995) Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller. Structure 3, 541–549.

    PubMed  CAS  Google Scholar 

  28. Bode, W. (1995) A helping hand for collagenases: the haemopexin-like domain. Structure 3, 527–530.

    PubMed  CAS  Google Scholar 

  29. Welgus, H. G., Jeffrey, J. J., and Eisen, A. Z. (1981) Human skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates. J. Biol. Chem. 256, 9516–9521.

    PubMed  CAS  Google Scholar 

  30. Gomis-Ruth, F. X., Gohlke, U., Betz, M., Knauper, V., Murphy, G., López-Otín, C., et al. (1996) The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain. J. Mol. Biol. 264, 556–566.

    PubMed  CAS  Google Scholar 

  31. de Souza, S. J., Pereira, H. M., Jacchieri, S., and Brentani, R. R. (1996) Collagen/collagenase interaction: Does the enzyme mimic the conformation of its own substrate? FASEB J. 10, 927–930.

    PubMed  Google Scholar 

  32. Billinghurst, R. C., Dahlberg, L., Ionescu, M., Reiner, A., Bourne, R., Rorabeck, C., et al. (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J. Clin. Invest. 99, 1534–1545.

    PubMed  CAS  Google Scholar 

  33. Krane, S. M., Byrne, M. H., Lemaitre, V., Henriet, P., Jeffrey, J. J., Witter, J. P., et al. (1996) Different collagenase gene products have different roles in degradation of type I collagen. J. Biol. Chem. 271, 28509–28515.

    PubMed  CAS  Google Scholar 

  34. Lemaître, V., Jungbluth, A., and Eeckhout, Y. (1997) The recombinant catalytic domain of mouse collagenase-3 depolymerizes type I collagen by cleaving its aminotelopeptides. Biochem. Biophys. Res. Commun. 230, 202–205.

    PubMed  Google Scholar 

  35. Enghild, J. J., Salvesen, G., Brew, K., and Nagase, H. (1989) Interaction of human rheumatoid synovial collagenase (matrix metalloproteinase 1) and stromelysin (matrix metalloproteinase 3) with human a 2-macroglobulin and chicken ovostatin. Binding kinetics and identification of matrix metalloproteinase cleavage sites. J. Biol. Chem. 264, 8779–8785.

    PubMed  CAS  Google Scholar 

  36. Okada, Y., Morodomi, T., Enghild, J. J., Suzuki, K., Yasui, A., Nakanishi, I., et al. (1990) Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur. J. Biochem. 194, 721–730.

    PubMed  CAS  Google Scholar 

  37. Morodomi, T., Ogata, Y., Sasaguri, Y., Morimatsu, M., and Nagase, H. (1992) Purification and characterization of matrix metalloproteinase 9 from U937 monocytic leukaemia and HT1080 fibrosarcoma cells. Biochem. J. 285, 603–611.

    PubMed  CAS  Google Scholar 

  38. Senior, R. M., Griffin, G. L., Fliszar, C. J., Shapiro, S. D., Goldberg, G. I., and Welgus, H. G. (1991) Human 92- and 72-kilodalton type IV collagenases are elastases. J. Biol. Chem. 266, 7870–7875.

    PubMed  CAS  Google Scholar 

  39. Gronski, T. J., Jr., Martin, R. L., Kobayashi, D. K., Walsh, B. C., Holman, M. C., Huber, M., et al. (1997) Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J. Biol. Chem. 272, 12189–12194.

    PubMed  CAS  Google Scholar 

  40. Collier, I. E., Krasnov, P. A., Strongin, A. Y., Birkedal-Hansen, H., and Goldberg, G. I. (1992) Alanine scanning mutagenesis and functional analysis of the fibronectin-like collagen-binding domain from human 92-kDa type IV collagenase. J. Biol. Chem. 267, 6776–6781.

    PubMed  CAS  Google Scholar 

  41. Banyai, L., Tordai, H., and Patthy, L. (1994) The gelatin-binding site of human 72 kDa type IV collagenase (gelatinase A). Biochem. J. 298, 403–407.

    PubMed  CAS  Google Scholar 

  42. Allan, J. A., Docherty, A. J. P., and Murphy, G. (1994) The binding of gelatinases A and B to type I collagen yields both high and low affinity sites. Ann. N.Y. Acad. Sci. 732, 365–366.

    PubMed  CAS  Google Scholar 

  43. Steffensen, B., Wallon, U. M., and Overall, C. M. (1995) Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen. J. Biol. Chem. 270, 11555–11566.

    PubMed  CAS  Google Scholar 

  44. Allan, J. A., Docherty, A. J. P., Barker, P. J., Huskisson, N. S., Reynolds, J. J., and Murphy, G. (1995) Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem. J. 309, 299–306.

    PubMed  CAS  Google Scholar 

  45. Murphy, G., Nguyen, Q., Cockett, M. I., Atkinson, S. J., Allan, J. A., Knight, C. G., et al. (1994) Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant. J. Biol. Chem. 269, 6632–6636.

    PubMed  CAS  Google Scholar 

  46. Shipley, J. M., Doyle, G. A., Fliszar, C. J., Ye, Q. Z., Johnson, L.L., Shapiro, S.D., et al. (1996) The structural basis for the elastolytic activity of the 92-kDa and 72-kDa gelatinases. Role of the fibronectin type II-like repeats. J. Biol. Chem. 271, 4335–4341.

    PubMed  CAS  Google Scholar 

  47. Aimes, R. T., and Quigley, J.P. (1995) Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J. Biol. Chem. 270, 5872–5876.

    PubMed  CAS  Google Scholar 

  48. Giannelli, G., Falkmarzillier, J., Schiraldi, O., Stetler-Stevenson, W. G., and Quaranta, V. (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277, 225–228.

    PubMed  CAS  Google Scholar 

  49. Gunja-Smith, Z., Nagase, H., and Woessner, J. F., Jr. (1989) Purification of the neutral proteoglycan-degrading metalloproteinase from human articular cartilage tissue and its identification as stromelysin matrix metalloproteinase-3. Biochem. J. 258, 115–119.

    PubMed  CAS  Google Scholar 

  50. Nicholson, R., Murphy, G., and Breathnach, R. (1989) Human and rat malignant-tumorassociated mRNAs encode stromelysin-like metalloproteinases. Biochemistry 28, 5195–5203.

    PubMed  CAS  Google Scholar 

  51. Murphy, G., Cockett, M. I., Ward, R. V., and Docherty, A. J. P. (1991) Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP). Biochem. J. 277, 277–279.

    PubMed  CAS  Google Scholar 

  52. Nagase, H. (1995) Human stromelysins 1 and 2. Methods Enzymol. 248, 449–470.

    PubMed  CAS  Google Scholar 

  53. Harrison, R. K., Chang, B., Niedzwiecki, L., and Stein, R. L. (1992) Mechanistic studies on the human matrix metalloproteinase stromelysin. Biochemistry 31, 10757–10762.

    PubMed  CAS  Google Scholar 

  54. Suzuki, K., Enghild, J. J., Morodomi, T., Salvesen, G., and Nagase, H. (1990) Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry 29, 10261–10270.

    Google Scholar 

  55. Knäuper, V., Wilhelm, S. M., Seperack, P. K., DeClerck, Y. A., Langley, K. E., Osthues, A., et al. (1993) Direct activation of human neutrophil procollagenase by recombinant stromelysin. Biochem. J. 295, 581–586.

    PubMed  Google Scholar 

  56. Knäuper, V., Murphy, G., and Tschesche, H. (1996) Activation of human neutrophil procollagenase by stromelysin 2. Eur. J. Biochem. 235, 187–191.

    PubMed  Google Scholar 

  57. Nakamura, H., Fujii, Y., Ohuchi, E., Yamamoto, E., and Okada, Y. (1998) Activation of the precursor of human stromelysin 2 and its interactions with other matrix metalloproteinases. Eur. J. Biochem. 253, 67–75.

    PubMed  CAS  Google Scholar 

  58. Ogata, Y., Enghild, J. J., and Nagase, H. (1992) Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J. Biol. Chem. 267, 3581–3584.

    PubMed  CAS  Google Scholar 

  59. Knäuper, V., López-Otfn, C., Smith, B., Knight, G., and Murphy, G. (1996) Biochemical characterization of human collagenase-3. J. Biol. Chem. 271, 1544–1550.

    PubMed  Google Scholar 

  60. Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., et al. (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells [see comments]. Nature 370, 61–65.

    PubMed  CAS  Google Scholar 

  61. Butler, G. S., Will, H., Atkinson, S. J., and Murphy, G. (1997) Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur. J. Biochem. 244, 653–657.

    PubMed  CAS  Google Scholar 

  62. Takino, T., Sato, H., Shinagawa, A., and Seiki, M. (1995) Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J. Biol. Chem. 270, 23013–23020.

    PubMed  CAS  Google Scholar 

  63. Pei, D. (1999) Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. J. Biol. Chem. 274, 8925–8932.

    PubMed  CAS  Google Scholar 

  64. Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A., and Goldberg, G. I. (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem. 270, 5331–5338.

    PubMed  CAS  Google Scholar 

  65. Butler, G. S., Butler, M. J., Atkinson, S. J., Will, H., Tamura, T., Vanwestrum, S. S., et al. (1998) The TIMP2 membrane type 1 metalloproteinase receptor regulates the concentration and efficient activation of progelatinase A-a kinetic study. J. Biol. Chem. 273, 871–880.

    PubMed  CAS  Google Scholar 

  66. Kinoshita, T., Sato, H., Akiko, Okada, Ohuchi, E., Imai, K., Okada, Y., et al. (1998) TIMP2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J. Biol. Chem. 273, 16098–16103.

    PubMed  CAS  Google Scholar 

  67. Ohuchi, E., Imai, K., Fujii, Y., Sato, H., Seiki, M., and Okada, Y. (1997) Membrane type l matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem. 272, 2446–2451.

    PubMed  CAS  Google Scholar 

  68. D’Ortho, M. P., Will, H., Atkinson, S., Butler, G., Messent, A., Gavrilovic, J., et al. (1997) Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. Eur. J. Biochem. 250, 751–757.

    PubMed  Google Scholar 

  69. Woessner, J. F., Jr., and Taplin, C. J. (1988) Purification and properties of a small latent matrix metalloproteinase of the rat uterus. J. Biol. Chem. 263, 16918–16925.

    PubMed  CAS  Google Scholar 

  70. Murphy, G., Segain, J. P., O’Shea, M., Cockett, M., Ioannou, C., Lefebvre, O., et al. (1993) The 28-kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J. Biol. Chem. 268, 15435–15441.

    PubMed  CAS  Google Scholar 

  71. Noel, A., Santavicca, M., Stoll, I., L’Hoir, C., Staub, A., Murphy, G., et al. (1995) Identification of structural determinants controlling human and mouse stromelysin-3 proteolytic activities. J. Biol. Chem. 270, 22866–22872.

    PubMed  CAS  Google Scholar 

  72. Pei, D., Majmudar, G., and Weiss, S. J. (1994) Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J. Biol. Chem. 269, 25849–25855.

    PubMed  CAS  Google Scholar 

  73. Banda, M. J., and Werb, Z. (1981) Mouse macrophage elastase. Purification and characterization as a metalloproteinase. Biochem. J. 193, 589–605.

    PubMed  CAS  Google Scholar 

  74. Cossins, J., Dudgeon, T. J., Catlin, G., Gearing, A. J., and Clements, J. M. (1996) Identification of MMP-18, a putative novel human matrix metalloproteinase. Biochem. Biophys. Res. Commun. 228, 494–498.

    PubMed  CAS  Google Scholar 

  75. Sedlacek, R., Mauch, S., Kolb, B., Schatzlein, C., Eibel, H., Peter, H. H., et al. (1998) Matrix metalloproteinase MMP-19 (RASI 1) is expressed on the surface of activated peripheral blood mononuclear cells and is detected as an autoantigen in rheumatoid arthritis. Immunobiology 198, 408–423.

    PubMed  CAS  Google Scholar 

  76. Pendâs, A. M., Knäuper, V., Puente, X. S., Llano, E., Mattei, M. G., Apte, S., et al. (1997) Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J. Biol. Chem. 272, 4281–4286.

    PubMed  Google Scholar 

  77. Fukae, M., Tanabe, T., Uchida, T., Lee, S. K., Ryu, O. H., Murakami, C., et al. (1998) Enamelysin (matrix metalloproteinase-20)—localization in the developing tooth and effects of pH and calcium on amelogenin hydrolysis. J. Dent. Res. 77, 1580–1588.

    PubMed  CAS  Google Scholar 

  78. Llano, E., Pendâs, A. M., Knäuper, V., Sorsa, T., Salo, T., Salido, E., et al. (1997) Identification and structural and functional characterization of human enamelysin (MMP20). Biochemistry 36, 15101–15108.

    PubMed  CAS  Google Scholar 

  79. Yang, M. Z., Murray, M. T., and Kurkinen, M. (1997) A novel matrix metalloproteinase gene (XMMP) encoding vitronectin-like motifs is transiently expressed in Xenopus laevis early embryo development. J. Biol. Chem. 272, 13527–13533.

    PubMed  CAS  Google Scholar 

  80. Yang, M. Z. and Kurkinen, M. (1998) Cloning and characterization of a novel matrix metalloproteinase (MMP), CMMP, from chicken embryo fibroblasts—CMMP, Xenopus XMMP, and human MMP-19 have a conserved unique cysteine in the catalytic domain. J. Biol. Chem. 273, 17893–17900.

    PubMed  CAS  Google Scholar 

  81. Gururajan, R., Lahti, J. M., Grenet, J., Easton, J., Gruber, I., Ambros, P. F., et al. (1998) Duplication of a genomic region containing the Cdc211–2 and MMP21–22 genes on human chromosome 1p36.3 and their linkage to dlz2. Genome Res. 8, 929–939.

    PubMed  CAS  Google Scholar 

  82. Velasco, G., Pendâs, A. M., Fueyo, A., Knäuper, V., Murphy, G., and López-Otín, C. (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J. Biol. Chem. 274, 4570–4576.

    PubMed  CAS  Google Scholar 

  83. Nagase, H., Enghild, J. J., Suzuki, K., and Salvesen, G. (1990) Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate. Biochemistry 29, 5783–5789.

    PubMed  CAS  Google Scholar 

  84. Imper, V. and Van Wart, H. E. (1998) Substrate specificity and mechanisms of substrate recognition of the matrix metalloproteinases. Matrix Metalloproteinases (Parks, W. C., and Mecham, R. P., eds) pp. 219–242, Academic Press, San Diego.

    Google Scholar 

  85. Grams, F., Reinemer, P., Powers, J. C., Kleine, T., Pieper, M., Tschesche, H., et al. (1995) X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur. J. Biochem. 228, 830–841.

    PubMed  CAS  Google Scholar 

  86. Netzel-Arnett, S., Sang, Q. X., Moore, W. G., Navre, M., Birkedal-Hansen, H., and Van Wart, H. E. (1993) Comparative sequence specificities of human 72- and 92-kDa gelati-nases (type IV collagenases) and PUMP (matrilysin). Biochemistry 32, 6427–6432.

    PubMed  CAS  Google Scholar 

  87. Welch, A. R., Holman, C. M., Huber, M., Brenner, M. C., Browner, M. F., and Van Wart, H. E. (1996) Understanding the P1’ specificity of the matrix metalloproteinases: effect of S1’ pocket mutations in matrilysin and stromelysin-1. Biochemistry 35, 10103–10109.

    PubMed  CAS  Google Scholar 

  88. Massova, I., Fridman, R., and Mobashery, S. (1997) Structural insights into the catalytic domains of human matrix metalloprotease-2 and human matrix metalloprotease-9: implications for substrate specificities. J. Mol. Model. 3, 17–30.

    CAS  Google Scholar 

  89. Nagai, Y., Masui, Y., and Sakakibara, S. (1976) Substrate specificity of vetebrate collage-nase. Biochim. Biophys. Acta 445, 521–524.

    PubMed  CAS  Google Scholar 

  90. Masui, Y., Takemoto, T., Sakakibara, S., Hori, H., and Nagai, Y. (1977) Synthetic substrates for vertebrate collagenase. Biochem. Med. 17, 215–221.

    PubMed  CAS  Google Scholar 

  91. Weingarten, H., Martin, R., and Feder, J. (1985) Synthetic substrates of vertebrate collage-nase. Biochemistry 24, 6730–6734.

    PubMed  CAS  Google Scholar 

  92. Weingarten, H., and Feder, J. (1986) Cleavage site specificity of vertebrate collagenases. Biochem. Biophys. Res. Commun. 139, 1184–1187.

    PubMed  CAS  Google Scholar 

  93. Seltzer, J. L., Weingarten, H., Akers, K. T., Eschbach, M. L., Grant, G. A., and Eisen, A. Z. (1989) Cleavage specificity of type IV collagenase (gelatinase) from human skin. Use of synthetic peptides as model substrates. J. Biol. Chem. 264, 19583–19586.

    PubMed  CAS  Google Scholar 

  94. Seltzer, J. L., Akers, K. T., Weingarten, H., Grant, G. A., McCourt, D. W., and Eisen, A. Z. (1990) Cleavage specificity of human skin type IV collagenase (gelatinase). Identification of cleavage sites in type I gelatin, with confirmation using synthetic peptides. J. Biol. Chem. 265, 20409–20413.

    PubMed  CAS  Google Scholar 

  95. Fields, G. B., Van Wart, H. E., and Birkedal-Hansen, H. (1987) Sequence specificity of human skin fibroblast collagenase. Evidence for the role of collagen structure in determining the collagenase cleavage site. J. Biol. Chem. 262, 6221–6226.

    PubMed  CAS  Google Scholar 

  96. Netzel-Arnett, S., Fields, G. B., Birkedal-Hansen, H., and Van Wart, H. E. (1991) Sequence specificities of human fibroblast and neutrophil collagenases [published erratum appears in J Biol Chem 1991 Nov 5; 266(31):21326]. J. Biol. Chem. 266, 6747–6755.

    Google Scholar 

  97. Niedzwiecki, L., Teahan, J., Harrison, R. K., and Stein, R. L. (1992) Substrate specificity of the human matrix metalloproteinase stromelysin and the development of continuous fluorometric assays. Biochemistry 31, 12618–12623.

    PubMed  CAS  Google Scholar 

  98. Gomis-Ruth, F. X., Maskos, K., Betz, M., Bergner, A., Huber, R., Suzuki, K., et al. (1997) Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389, 77–81.

    PubMed  CAS  Google Scholar 

  99. Meng, Q., Malinovskii, V., Huang, W., Hu, Y., Chung, L., Nagase, H., et al. (1999) Residue 2 of TIMP-1 is a major determinant of affinity and specificity for matrix metalloproteinases but effects of substitutions do not correlate with those of the corresponding P1’ residue of substrate. J. Biol. Chem. 274, 10184–10189.

    PubMed  CAS  Google Scholar 

  100. Benbow, U., Butticè, G., Nagase, H., and Kurkinen, M. (1996) Characterization of the 46kDa intermediates of matrix metalloproteinase 3 (stromelysin 1) obtained by site-directed mutation of phenylalanine 83. J. Biol. Chem. 271, 10715–10722.

    PubMed  CAS  Google Scholar 

  101. Reinemer, P., Grams, F., Huber, R., Kleine, T., Schnierer, S., Piper, M., et al. (1994) Structural implications for the role of the N terminus in the ‘superactivation’ of collage-nases. A crystallographic study. FEBS Lett. 338, 227–233.

    CAS  Google Scholar 

  102. Lark, M. W., Bayne, E. K., Flanagan, J., Harper, C. F., Hoerrner, L. A., Hutchinson, N. I., et al. (1997) Aggrecan degradation in human cartilage—evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J. Clin. Invest. 100, 93–106.

    PubMed  CAS  Google Scholar 

  103. Hollander, A. P., Heathfield, T. F., Webber, C., Iwata, Y., Bourne, R., Rorabeck, C., et al. (1994) Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J. Clin. Invest. 93, 1722–1732.

    PubMed  CAS  Google Scholar 

  104. Nicholls, A., Sharp, K. A., and Honig, B. (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296.

    Google Scholar 

  105. Sang, Q. A. and Douglas, D. A. (1996) Computational sequence analysis of matrix metalloproteinases. J. Protein Chem. 15, 137–160.

    PubMed  CAS  Google Scholar 

  106. Sage, H., Balian, G., Vogel, A. M., and Bornstein, P. (1984) Type VIII collagen. Synthesis by normal and malignant cells in culture. Lab. Invest. 50, 219–231.

    PubMed  CAS  Google Scholar 

  107. Gadher, S. J., Eyre, D. R., Duance, V. C., Wotton, S. F., Heck, L. W., Schmid, T. M. et al. (1988) Susceptibility of cartilage collagens type II, IX, X, and XI to human synovial collagenase and neutrophil elastase. Eur. J. Biochem. 175, 1–7.

    PubMed  CAS  Google Scholar 

  108. Menzel, E. J. and Smolen, J. S. (1978) [Degradation of Clq, the first subcomponent of the complement sequence, by synovial collagenase from patients with rheumatoid arthritis (author’s transl)]. [German]. Wien. Klin. Wochenschr. 90, 727–730.

    Google Scholar 

  109. Nguyen, Q., Murphy, G., Hughes, C. E., Mort, J. S., and Roughley, P. J. (1993) Matrix metalloproteinases cleave at two distinct sites on human cartilage link protein. Biochem. J. 295, 595–598.

    PubMed  CAS  Google Scholar 

  110. Fukai, F., Ohtaki, M., Fujii, N., Yajima, H., Ishii, T., Nishizawa, Y., et al. (1995) Release of biological activities from quiescent fibronectin by a conformational change and limited proteolysis by matrix metalloproteinases. Biochemistry 34, 11453–11459.

    PubMed  CAS  Google Scholar 

  111. Imai, K., Shikata, H., and Okada, Y. (1995) Degradation of vironectin by matrix metalloproteinases-1, -2, -3, -7 and -9. FEBS Lett. 369, 249–251.

    PubMed  CAS  Google Scholar 

  112. Chandler, S., Coates, R., Gearing, A., Lury, J., Wells, G., and Bone, E. (1995) Matrix metalloproteinases degrade myelin basic protein. Neurosci. Lett. 201, 223–226.

    PubMed  CAS  Google Scholar 

  113. Desrochers, P. E., Jeffrey, J. J., and Weiss, S. J. (1991) Interstitial collagenase (matrix metalloproteinase-1) expresses serpinase activity. J. Clin. Invest. 87, 2258–2265.

    PubMed  CAS  Google Scholar 

  114. Ito, A., Mukaiyama, A., Itoh, Y., Nagase, H., Thogersen, I. B., Enghild, J. J., et al. (1996) Degradation of interleukin lbeta by matrix metalloproteinases. J. Biol. Chem. 271, 14657–14660.

    PubMed  CAS  Google Scholar 

  115. Gearing, A. J., Beckett, P., Christodoulou, M., Churchill, M., Clements, J. M., Crimmin, M., et al. (1995) Matrix metalloproteinases and processing of pro-TNF-alpha. J. Leukoc. Biol. 57, 774–777.

    PubMed  CAS  Google Scholar 

  116. Fowlkes, J. L., Enghild, J. J., Suzuki, K., and Nagase, H. (1994) Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J. Biol. Chem. 269, 25742–25746.

    PubMed  CAS  Google Scholar 

  117. Cawston, T. E. and Tyler, J. A. (1979) Purification of pig synovial collagenase to high specific activity. Biochem. J. 183, 647–656.

    PubMed  CAS  Google Scholar 

  118. Siri, A., Knäuper, V., Veirana, N., Caocci, F., Murphy, G., and Zardi, L. (1995) Different susceptibility of small and large human tenascin-C isoforms to degradation by matrix metalloproteinases. J. Biol. Chem. 270, 8650–8654.

    PubMed  CAS  Google Scholar 

  119. Sasaki, T., Gohring, W., Mann, K., Maurer, P., Hohenester, E., Knäuper, V., et al. (1997) Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J. Biol. Chem. 272, 9237–9243.

    PubMed  CAS  Google Scholar 

  120. Imai, K., Hiramatsu, A., Fukushima, D., Pierschbacher, M. D., and Okada, Y. (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-betal release. Biochem. J. 322, 809–814.

    PubMed  CAS  Google Scholar 

  121. Mast, A. E., Enghild, J. J., Nagase, H., Suzuki, K., Pizzo, S. V., and Salvesen, G. (1991) Kinetics and physiologic relevance of the inactivation of a 1-proteinase inhibitor, a 1-antichymotrypsin, and antithrombin III by matrix metalloproteinases-1 (tissue collagenase), -2 (72-kDa gelatinase/type IV collagenase), and -3 (stromelysin). J. Biol. Chem. 266, 15810–15816.

    PubMed  CAS  Google Scholar 

  122. Nakagawa, H. and Debuchi, H. (1992) Inactivation of substance P by granulation tissue-derived gelatinase. Biochem.Pharmacol. 44, 1773–1777.

    PubMed  CAS  Google Scholar 

  123. Mayer, U., Mann, K., Timpl, R., and Murphy, G. (1993) Sites of nidogen cleavage by pro-teases involved in tissue homeostasis and remodelling. Eur. J. Biochem. 217, 877–884.

    PubMed  CAS  Google Scholar 

  124. Harrison, R., Teahan, J., and Stein, R. (1989) A semicontinuous, high-performance liquid chromatography-based assay for stromelysin. Anal. Biochem. 180, 110–113.

    PubMed  CAS  Google Scholar 

  125. Sakamoto, W., Fujie, K., Kaga, M., Handa, H., Gotoh, K., Nishihira, J., et al. (1996) Degradation of T-kininogen by cathepsin D and matrix metalloproteinases. Immunopharmacology 32, 73–75.

    PubMed  CAS  Google Scholar 

  126. Miyazaki, K., Hattori, Y., Umenishi, F., Yasumitsu, H., and Umeda, M. (1990) Purification and characterization of extracellular matrix-degrading metalloproteinase, matrin (pump-1), secreted from human rectal carcinoma cell line. Cancer Res. 50, 7758–7764.

    PubMed  CAS  Google Scholar 

  127. Quantin, B., Murphy, G., and Breathnach, R. (1989) Pump-1 cDNA codes for a protein with characteristics similar to those of classical collagenase family members. Biochemistry 28, 5327–5334.

    PubMed  CAS  Google Scholar 

  128. Sires, U. I., Murphy, G., Baragi, V. M., Fliszar, C. J., Welgus, H. G., and Senior, R. M. (1994) Matrilysin is much more efficient than other matrix metalloproteinases in the proteolytic inactivation of a 1-antitrypsin. Biochem. Biophys. Res. Commun. 204, 613–620.

    PubMed  CAS  Google Scholar 

  129. Fletcher, D. S., Williams, H. R., and Lin, T.-Y. (1978) Effects of human polymorphonuclear leukocyte collagenase on sub-component Clq of the first component of human complement. Biochim. Biophys. Acta 540, 270–277.

    PubMed  CAS  Google Scholar 

  130. Murphy, G., Reynolds, J. J., Bretz, U., and Baggiolini, M. (1982) Partial purification of collagenase and gelatinase from human polymorphonuclear leucocytes. Analysis of their actions on soluble and insoluble collagens. Biochem. J. 203, 209–221.

    PubMed  CAS  Google Scholar 

  131. Kudo, K., Saito, A., Sudo, K., Adachi, M., Ikai, A., Ofuji, Y., et al. (1988) [The inhibitory effects of chicken ovomacroglobulin on collagenolytic activity in Bacteroides gingivalis culture supernatant, human PMN and human gingival crevicular fluid]. [Japanese]. Nippon Shishubyo Gakkai Kaishi 30, 1061–1069.

    Google Scholar 

  132. Desrochers, P. E., Mookhtiar, K., Van Wart, H. E., Hasty, K. A., and Weiss, S. J. (1992) Proteolytic inactivation of a 1-proteinase inhibitor and alpha 1-antichymotrypsin by oxidatively activated human neutrophil metalloproteinases. J. Biol. Chem. 267, 5005–5012.

    PubMed  CAS  Google Scholar 

  133. Diekmann, O., and Tschesche, H. (1994) Degradation of kinins, angiotensine and substance P by polymorphonuclear matrix metalloproteinases MMP 8 and MMP 9. Braz. J. Med. Biol. Res. 27, 1865–1876.

    PubMed  CAS  Google Scholar 

  134. Hirose, T., Reife, R. A., Smith, G. N., Jr., Stevens, R. M., Mainardi, C. L., and Hasty, K. A. (1992) Characterization of type V collagenase (gelatinase) in synovial fluid of patients with inflammatory arthritis. J. Rheumatol. 19, 593–599.

    PubMed  CAS  Google Scholar 

  135. Sires, U. I., Dublet, B., Aubert-Foucher, E., van der Rest, M., and Welgus, H. G. (1995) Degradation of the COL1 domain of type XIV collagen by 92-kDa gelatinase. J. Biol. Chem. 270, 1062–1067.

    PubMed  CAS  Google Scholar 

  136. Gijbels, K., Proost, P., Masure, S., Carton, H., Billiau, A., and Opdenakker, G. (1993) Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves myelin basic protein. J. Neurosci. Res. 36, 432–440.

    PubMed  CAS  Google Scholar 

  137. Lyons, J. G., Birkedal-Hansen, B., Moore, W. G., O’Grady, R. L., and Birkedal-Hansen, H. (1991) Characteristics of a 95-kDa matrix metalloproteinase produced by mammary carcinoma cells. Biochemistry 30, 1449–1456.

    PubMed  CAS  Google Scholar 

  138. Sanchez-Lopez, R., Alexander, C. M., Behrendtsen, O., Breathnach, R., and Werb, Z. (1993) Role of zinc-binding-and hemopexin domain-encoded sequences in the substrate specificity of collagenase and stromelysin-2 as revealed by chimeric proteins. J. Biol. Chem. 268, 7238–7247.

    PubMed  CAS  Google Scholar 

  139. Chandler, S., Cossins, J., Lury, J., and Wells, G. (1996) Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-a fusion protein. Biochem. Biophys. Res. Commun. 228, 421–429.

    PubMed  CAS  Google Scholar 

  140. Banda, M. J., Rice, A. G., Griffin, G. L., and Senior, R. M. (1988) a 1-proteinase inhibitor is a neutrophil chemoattractant after proteolytic inactivation by macrophage elastase. J. Biol. Chem. 263, 4481–4484.

    Google Scholar 

  141. Welgus, H. G., Kobayashi, D. K., and Jeffrey, J. J. (1983) The collagen substrate specificity of rat uterus collagenase. J. Biol. Chem. 258, 14162–14165.

    PubMed  CAS  Google Scholar 

  142. Welgus, H. G., Grant, G. A., Sacchettini, J. C., Roswit, W. T., and Jeffrey, J. J. (1985) The gelatinolytic activity of rat uterus collagenase. J. Biol. Chem. 260, 13601–13606.

    PubMed  CAS  Google Scholar 

  143. Eeckhout, Y., Riccomi, H., Cambiaso, C., Vaes, G., and Masson, P. (1976) Studies on properties common to collagen and Clq. Arch. Int. Physiol. Biochim. 84, 611–612.

    PubMed  CAS  Google Scholar 

  144. Fosang, A. J., Last, K., Knauper, V., Murphy, G., and Neame, P. J. (1996) Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett. 380, 17–20.

    PubMed  CAS  Google Scholar 

  145. Nethery, A., and O’Grady, R. L. (1991) Interstitial collagenase from rat mammary carcinoma cells: interaction with substrates and inhibitors. Invasion Metastasis 11, 241–248.

    PubMed  CAS  Google Scholar 

  146. Imai, K., Ohuchi, E., Aoki, T., Nomura, H., Fujii, Y., Sato, H., et al. (1996) Membrane-type matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2. Cancer Res. 56, 2707–2710.

    Google Scholar 

  147. Stolow, M. A., Bauzon, D. D., Li, J., Sedgwick, T., Liang, V. C., Sang, Q. A., et al. Identification and characterization of a novel collagenase in Xenopus laevis: possible roles during frog development. Mol. Biol. Cell. 7, 1996 1471–1483.

    PubMed  CAS  Google Scholar 

  148. Sasaki, T., Mann, K., Murphy, G., Chu, M. L., and Timpl, R. (1996) Different susceptibilities of fibulin-1 and fibulin-2 to cleavage by matrix metalloproteinases and other tissue pro-teases. Eur J. Biochem. 240, 427–434.

    PubMed  CAS  Google Scholar 

  149. Murphy, G., Knäuper, V., Cowell, S., Hembry, R., Stanton, H., Butler, G., et al. (1999) Evaluation of some newer matrix metalloproteinases. In Ann. N.Y. Acad. Sci. 878, 25–39.

    Google Scholar 

  150. Welgus, H. G., Jeffrey, J. J., and Eisen, A. Z. (1981) The collagen substrate specificity of human skin fibroblast collagenase. J. Biol. Chem. 256, 9511–9515.

    PubMed  CAS  Google Scholar 

  151. Hasty, K. A., Jeffrey, J. J., Hibbs, M. S., and Welgus, H. G. (1987) The collagen substrate specificity of human neutrophil collagenase. J. Biol. Chem. 262, 10048–10052.

    PubMed  CAS  Google Scholar 

  152. Mitchell, P. G., Magna, H. A., Reeves, L. M., Lopresti-Morrow, L. L., Yocum, S. A., Rosner, P. J., et al. (1996) Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase- 13 from human osteoarthritic cartilage. J. Clin. Invest. 97, 761–768.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nagase, H. (2001). Substrate Specificity of MMPs. In: Clendeninn, N.J., Appelt, K. (eds) Matrix Metalloproteinase Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-011-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-011-7_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-123-3

  • Online ISBN: 978-1-59259-011-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics