Matrix Metalloproteinase Inhibitors

Therapeutic Applications Outside of Oncology
  • Michael R. Niesman
Part of the Cancer Drug Discovery and Development book series (CDD&D)


The previous chapters in this volume describe the rationale for the therapeutic use of matrix metalloproteinase inhibitors (MMPI) in oncology and the experience to date with these agents. However, both experts and those new to the field will realize that matrix metalloproteinase (MMPs) are involved in other disease processes. Therefore, it is probable that inhibitors of MMPs will prove useful for the treatment of diseases other than cancer. This chapter is designed to provide a brief overview of the evidence suggesting the involvement of MMPs in other diseases and an update on preclinical experiments or clinical trials that indicate MMPI impede or alter the progression of these diseases. This article is by no means an exhaustive review of the large body of MMP work outside of oncology, but it is hoped that it will provide a useful starting point for investigators interested in applications of MMPI in disease processes other than cancer. Other more comprehensive reviews have been published (1–5), as has a recent volume compiling the proceedings of a recent conference dedicated to this topic (6).


Abdominal Aortic Aneurysm Retinal Detachment Abdominal Aortic Aneurysm Gingival Crevicular Fluid Retinal Neovascularization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nagase H, Woessner JF Jr. MMP Matrix metalloproteinases. J Biol Chem 1999; 274: 21491–21494.PubMedCrossRefGoogle Scholar
  2. 2.
    Jones L, Ghaneh P, Humphreys M, Neoptolemos JP. The matrix metalloproteinases and their inhibitors in the treatment of pancreatic cancer. Ann. N. Y. Acad. Sci. 1999; 880: 288–307.PubMedCrossRefGoogle Scholar
  3. 3.
    Kugler A. Matrix metalloproteinases and their inhibitors. Anticancer Res 1999; 19: 1589–1592.PubMedGoogle Scholar
  4. 4.
    DeClerck YA, Imren S, Montgomery AM, Mueller BM, Reisfeld RA, Laug WE. Proteases and protease inhibitors in tumor progression. Adv. Exp. Med. Biol. 1997; 425: 89–97.PubMedCrossRefGoogle Scholar
  5. 5.
    Beeley NR, Ansell PR, Docherty AJ. Inhibitors of matrix metalloproteinases (MMP’s). Curr. Opin. Ther. Patents 1994; 4: 7–16.Google Scholar
  6. 6.
    Greenwald RA, Zucker S, Golub LM. eds. (1999) Inhibition of Matrix Metalloproteinases: Therapeutic Applications. Annals of the New York Academy of Sciences Volume 878. New York Academy of Sciences, NY.Google Scholar
  7. 7.
    Chau T, Jolly G, Plym JM. Inhibition of articular cartilage degradation in dog and guinea pig models of osteoarthritis by the stromelysin inhibitor, BAY 12–9566. Arth. Rheum. 1998; 41 (9S), S300.Google Scholar
  8. 8.
    Zernicke RF, Wohl GR, Greenwald RA, Moak SA, Leng W, Golub LM. Administration of systemic matrix metalloproteinase inhibitors maintains bone mechanical integrity in adjuvant arthritis. J. Rheumatol. 1997; 24: 1324–1331.PubMedGoogle Scholar
  9. 9.
    Woessner JF Jr, Guanja-Smith Z. Role of metalloproteinases in human osteoarthritis. J. Rheumatol. Supp. 1991; 27: 99–101.Google Scholar
  10. 10.
    Lohmander LS, Hoerrner LA, Lark MW. Metalloproteinases, tissue inhibitor, and proteoglycan fragments in the knee synovial fluid in human osteoarthritis. Arth. Rheum. 1993; 36: 181–189.CrossRefGoogle Scholar
  11. 11.
    Leff RL. Osteoarthritis, Matrix Metalloproteinase inhibition, cartilage loss. Surrogate markers, and clinical implications. Ann. N.Y. Acad. Sci. 1999; 878: 201–207.PubMedCrossRefGoogle Scholar
  12. 12.
    Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, Rosenfeld SA, Copeland RA, Decicco CP, Wynn R, Rockwell A, Yang F. Duke JL, Solomon K, George H, Bruckner R, Nagase H, Itoh Y, Ellis DM, Ross H, Wiswail BH, Murphy K, Hillman MC Jr, Hollis GF, Amer EC, et al Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 1999; 284: 1664–1666.PubMedCrossRefGoogle Scholar
  13. 13.
    Amer EC, Pratta MA, Trzaskos JM, Decicco CP, Tortorella MD. Generation and characterization of aggrecanase. A soluble, cartilage-derived aggrecan-degrading activity. J. Biol. Chem. 1999; 274: 6594–6601.CrossRefGoogle Scholar
  14. 14.
    Manson JD Eley BM. eds. Outlines of Periodontics Wright Publisher, Elsevier, Oxford, 1996; 1–285.Google Scholar
  15. 15.
    Ryan ME, Ramamurthy NS, Golub LM. Matrix metallopteteinases and their inhibitors in periodontal treatment. Curr. Opin. Peridontol. 1996; 3: 85–96.Google Scholar
  16. 16.
    Sorsa T, Mäntylä P, Rönkä H, Kallio P, Lallis G-B, Lundqvist C, Kinane DF, Salo T, Golub LM, Teronen O, Tikanoja S. Scientific basis of a matrix metalloproteinase-8 specific chair-side test for monitoring periodontal and peri-implant health and disease. Ann. N.Y. Acad. Sci. 1999; 878: 130–140.PubMedCrossRefGoogle Scholar
  17. 17.
    Ashley RA, and SDD Clinical Research Team. Clinical Trial of a matrix metalloproteinase inhibitor in human periodontal disease. Ann. N.Y. Acad. Sci. 1999; 878: 335–346.PubMedCrossRefGoogle Scholar
  18. 18.
    Elman MJ, Fine SL. (1989) Exudative age-related macular degeneration in Retina, S.J. Ryan (ed.) Chapter 68, pp. 1103–1141.Google Scholar
  19. 19.
    Carcia CA, Ruiz RS. Ocular complications of diabetes. Clin. Symp. 1992; 44: 2–32.Google Scholar
  20. 20.
    Lee P, Wang CC, Adamis AP. Ocular neovascularization: an epidemiologic review. Surv. Ophthalmol. 1998; 43: 245–269.PubMedCrossRefGoogle Scholar
  21. 21.
    Moses MA. The regulation of neovascularization of matrix metalloproteinases and their inhibitors. Stem Cells 1997; 15: 180–189.PubMedCrossRefGoogle Scholar
  22. 22.
    Rivero ME, Garcia CR, Hagedorn M, Zhang KE, McDermott C, Bartsch DU, Ruoslahti E, Keefe KS, Appelt K, Freeman WR. Intraocular properties of AG3340, a selective matrix metalloproteinase inhibitor with antiangiogenic properties. Invest. Ophthalmol. Vis. Sci. (Suppl.) 1998; 39: S585.Google Scholar
  23. 23.
    Penn JS, Roberto KA, and Bullard LE. Inhibition of retinal neovascularization by a broad spectrum matrix metalloproteinase inhibitor in an animal model of ROP. Invest. Ophthalmol. Vis. Sci. (Suppl.) 1999; 40: S618.Google Scholar
  24. 24.
    Das A, McLamore A, Song W, McGuire PG. Retinal neovascularization is suppressed with a matrix metalloproteinase inhibitor. Arch Ophthalmol. 1999; 117: 498–503.PubMedCrossRefGoogle Scholar
  25. 25.
    Steen B, Sejersen S, Berglin L, Seregard S, Kvanta A. Martix metalloproteinases and metalloproteinase inhibitors in choroidal neovascular membranes. Invest. Ophthalmol. Vis. Sci. 1998; 39: 2194–2200.PubMedGoogle Scholar
  26. 26.
    Fini ME, Parks WC, Rinehart WB, Girard MT, Matsubara M, Cook JR, West-Mays JA, Sadow PM, Burgeson RE, Jeffrey JJ, Raizman MB, Krueger RR, Zieske JD. Role of matrix metalloproteinases in failure to re-epithelialize after corneal injury. Am. J. Pathol. Oct 1996; 149: 1287–1302.Google Scholar
  27. 27.
    Fini ME, Cook JR, Mohan R. Proteolytic mechanisms in corneal ulceration and repair. Arch. Dermatol. Res. 1998; 290:Suppl:S12–23.Google Scholar
  28. 28.
    Ye HQ, Azar DT. Expression of gelatinases A and B, and TIMPs 1 and 2 during corneal wound healing. Invest. Ophthalmol. Vis. Sci. 1998; 39: 913–921.PubMedGoogle Scholar
  29. 29.
    Hageman GS, Kirchoff-Rempe MA, Lewis GP, Fisher SK, Anderson DH. Sequestration of basic fibroblast growth factor in the primate retinal interphotoreceptor matrix. Proc Natl Acad Sci USA 1991; 88: 6706–6710.PubMedCrossRefGoogle Scholar
  30. 30.
    Ozerdem U, Cheng LY, Mach-Hofacre B, Chaidawangul S, McDermott C, Appelt K, Freeman WR. The effect of AG3340 a potent inhibitor of matrix metalloproteinases on a subacute model of proliferative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci. (suppl.) 1999; 40: S974.Google Scholar
  31. 31.
    International Conference on metalloproteinases and their inhibitors in the nervous system: physiology and disease. Banff, Alberta, Canada. Feb. 27- Mar. 3, 1999.Google Scholar
  32. 32.
    Yong VW, Krekosk CA, Forsyth PA, Bell R, Edwards DR. Martix metalloproteinases and diseases of the CNS. Trends Neurosci. 1998; 21: 75–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Clements JM, Cossins JA, Wells GM, Corkill DJ, Helfrich K, Wood LM, Pigott R, Stabler G, Ward GA, Gearing AJ, Miller KM. Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-alpha inhibitor. J. Neuroimmunol. 1997; 74: 85–94.PubMedCrossRefGoogle Scholar
  34. 34.
    Maeda A, Sobel RA. Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 1996; 55: 300–319.PubMedCrossRefGoogle Scholar
  35. 35.
    Cuzner ML, Gveric D, Strand C, Loughlin AJ, Paemen L, Opdenakker G, Newcombe J. The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J. Neuropathol. Exp. Neurol. 1996; 55: 1194–1204.PubMedCrossRefGoogle Scholar
  36. 36.
    Gijbels K, Galardy RE, Steinman L. Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases. J. Clin. Invest. 1994; 94: 2177–2182.PubMedCrossRefGoogle Scholar
  37. 37.
    Hewson AK, Smith T, Leonard JP, Cuzner ML. Suppression of experimental allergic encephalomyelitis in the Lewis rat by the matrix metalloproteinase inhibitor Ro31–9790. Inflamm Res 1995; 44: 345–349.PubMedCrossRefGoogle Scholar
  38. 38.
    Chandler S, Miller KM, Clements JM, Lury J, Corkill D, Anthony DC, Adams SE, Gearing AJ. Matrix metalloproteinases, tumor necrosis factor and multiple sclerosis: an overview. J Neuroimmunol 1997; 72: 155–161.PubMedCrossRefGoogle Scholar
  39. 39.
    Deb S, Gottschall PE. Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with beta-amyloid peptides. J. Neurochem. 1996; 66: 1641–1647.PubMedCrossRefGoogle Scholar
  40. 40.
    Miyazaki K, Hasegawa M, Funahashi K, Umeda M. A metalloproteinase inhibitor domain in Alzheimer amyloid protein precursor. Nature 1993; 362: 839–841.PubMedCrossRefGoogle Scholar
  41. 41.
    LePage RN, Fosang Ai, Fuller SJ, Murphy G, Evin G, Beyreuther K, Masters CL, Small DH. Gelatinase A possesses a beta-secretase-like activity in cleaving the amyloid protein precursor of Alzheimer’s disease. FEBS Lett. 1995; 377: 267–270.PubMedCrossRefGoogle Scholar
  42. 42.
    Robert AM, Godeau G. Action of proteolytic and glycolytic enzymes on the permeability of the blood-brain barrier. Biomedicine 1974; 21: 36–39.PubMedGoogle Scholar
  43. 43.
    Rosenberg GA, Kornfeld M, Estrada E, Kelley RO, Liotta LA, Stettler-Stevenson, WG. TIMP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenase. Brain Res. 1992; 576: 203–207.PubMedCrossRefGoogle Scholar
  44. 44.
    Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats. Inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 1998; 29: 1020–1030.PubMedCrossRefGoogle Scholar
  45. 45.
    Mun-Bryce S, Rosenberg GA. Gelatinase B modulates selective opening of the blood-brain barrier during inflammation. Am. J. Physiol. 1998; 274: R1203–1211.PubMedGoogle Scholar
  46. 46.
    Thompson RW, Baxter BT. MMP inhibition in abdominal aortic aneurysms. Rationale for a prospective randomized clinical trial. Ann. N.Y. Acad. Sci. 1999; 878: 159–178.PubMedCrossRefGoogle Scholar
  47. 47.
    Prescott MF, Sawyer WK, Von Linden-Reed J, Jeune M, Chou M, Caplan SL, Jeng AY. Effect of matrix metalloproteinase inhibition on progression of atherosclerosis and aneurysm in LDL receptor-deficient mice overexpressing MMP-3, MMP-12, and MMP-13 and on restenosis in rats after balloon injury. Ann. NY Acad. Sci. 1999; 878: 179–190.PubMedCrossRefGoogle Scholar
  48. 48.
    Loftus IM, Goodall S, Crowther M, Jones L, Bell PR, Naylor AR, Thompson MM. Increased MMP-9 activity in acute carotid plaques: therapeutic avenues to prevent stroke. Ann. N.Y. Acad. Sci. 1999; 878: 551–554.PubMedCrossRefGoogle Scholar
  49. 49.
    Newman KM, Malon AM, Shin RD, Scholes JV, Ramey WG, Tilson MD. Matrix metalloproteinases in abdominal aortic aneurysm: characterization, purification, and their possible sources. Connect. Tissue Res. 1994; 30: 265–276.PubMedCrossRefGoogle Scholar
  50. 50.
    Thompson RW, Holmes DR, Mertens RA, Liao S, Botney MD, Mecham RP, Welgus HG, Parks WC. Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J. Clin. Invest. 1995; 96: 318–326.PubMedCrossRefGoogle Scholar
  51. 51.
    McMillan WD, Patterson BK, Keen RR, Shively VP, Cipollone M, Pearce WH. In situ localization and quantification of mRNA for 92-kD type IV collagenase and its inhibitor in aneurysmal, occlusive, and normal aorta. Arterioscler. Thromb. Vasc. Biol. 1995; 15: 1139–1144.PubMedCrossRefGoogle Scholar
  52. 52.
    Lee E, Grodzinsky AJ, Libby P, Clinton SK, Lark MW, Lee RT. Human vascular smooth muscle cell-monocyte interactions and metalloproteinase secretion in culture. Arterioscler. Thromb. Vasc. Biol. 1995; 15: 2284–2289.CrossRefGoogle Scholar
  53. 53.
    Davis V, Persidskaia R, Baca-Regen L, Itoh Y, Nagase H, Persidsky Y, Ghorpade A, Baxter BT. Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 1998; 18: 1625–1633.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Michael R. Niesman

There are no affiliations available

Personalised recommendations