Advertisement

Biology and Regulation of the Matrix Metalloproteinases

  • Mark D. Sternlicht
  • Lisa M. Coussens
  • Thiennu H. Vu
  • Zena Werb
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Matrix metalloproteinases (MMPs) are the predominant family of enzymes that degrade extracellular matrix and cell surface molecules. Like the proteins they modify, the MMPs and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), play a critical role in diverse physiologic and pathologic processes, including embryonic development, tissue morphogenesis, wound repair, arthritis, and cancer (1–3). Indeed, several MMPs were first cloned from cancer cell lines, and most human MMPs have been detected in one tumor cell line or another (1,4) In actual carcinomas however, the MMPs are usually expressed by the adjacent and intervening stromal cells rather than by the malignant cells themselves (1,4) Nevertheless, the overexpression of MMPs usually correlates with more aggressive tumor behavior and a poor prognosis. Moreover, cancer cells can be made even more aggressive in vitro and in vivo by MMP overexpression or TIMP down-regulation, or they can be made less aggressive by MMP down-regulation, TIMP overexpression, or the addition of exogenous MMP inhibitors. Thus several MMPs have been shown to act as key agonists during tumor invasion, metastasis, and angiogenesis (1,4) In addition, some MMPs may contribute to initial tumor development (5–9), thus raising the possible clinical utility of inhibiting select MMPs during early as well as late stages of cancer progression.

Keywords

Neutrophil Elastase Chimeric Enzyme Hinge Domain Collagenase Gene Active Site Zinc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coussens, L. M. and Werb, Z. (1996) Matrix metalloproteinases and the development of cancer. Chem. Biol 3, 895–904.PubMedCrossRefGoogle Scholar
  2. 2.
    Woessner, J. F. (1998) in Matrix Metalloproteinases (Parks, W. C. and Mecham, R. P., eds.), Academic Press, San Diego, pp. 1–14.CrossRefGoogle Scholar
  3. 3.
    Shapiro, S. D. (1998) Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Carr. Opin. Cell Biol 10, 602–608.CrossRefGoogle Scholar
  4. 4.
    Giambernardi, T. A., Grant, G. M., Taylor, G. P., Hay, R. J., Maher, V. M., McCormick, J. J., and Klebe, R. J. (1998) Overview of matrix metalloproteinase expression in cultured human cells. Matrix Biol. 16, 483–496.PubMedCrossRefGoogle Scholar
  5. 5.
    Sternlicht, M. D., Lochter, A., Sympson, C. J., Huey, B., Rougier, J. P., Gray, J. W., Pinkel, D., Bissell, M. J. and Werb, Z. (1999) The stromal proteinase MMP-3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137–146.PubMedCrossRefGoogle Scholar
  6. 6.
    Masson, R., Lefebvre, O., Noël, A., Fahime, M. E., Chenard, M. P., Wendling, C., et al. (1998) In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J. Cell Biol 140, 1535–1541.PubMedCrossRefGoogle Scholar
  7. 7.
    Wilson, C. L., Heppner, K. J., Labosky, P. A., Hogan, B. L. and Matrisian, L. M. (1997) Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc. Natl. Acad. Sci. (USA) 94, 1402–1407.CrossRefGoogle Scholar
  8. 8.
    D’Armiento, J., DiColandrea, T., Dalal, S. S., Okada, Y., Huang, M. T., Conney, A. H. and Chada, K. (1995) Collagenase expression in transgenic mouse skin causes hyperkeratosis and acanthosis and increases susceptibility to tumorigenesis. Mol. Cell. Biol 15, 5732–5739.PubMedGoogle Scholar
  9. 9.
    Rudolph-Owen, L. A., Chan, R., Muller, W. J. and Matrisian, L. M. (1998) The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res. 58, 5500–5506.PubMedGoogle Scholar
  10. 10.
    Rawlings, N. D. and Barrett, A. J. (1995) Evolutionary families of metallopeptidases. Methods Enzymol. 248, 183–228.PubMedCrossRefGoogle Scholar
  11. 11.
    Stöcker, W., Grams, F., Baumann, U., Reinemer, P., Gomis-Ruth, F. X., McKay, D. B. and Bode, W. (1995) The metzincins-topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 4, 823–840.PubMedCrossRefGoogle Scholar
  12. 12.
    Wolfsberg, T. G. and White, J. M. (1996) ADAMs in fertilization and development. Del, Biol. 180, 389–401.CrossRefGoogle Scholar
  13. 13.
    Black, R. A. and White, J. M. (1998) ADAMs: focus on the protease domain. Curt: Opin. Cell Biol 10, 654–659.CrossRefGoogle Scholar
  14. 14.
    Sternlicht, M. D. and Werb, Z. (1999) ECM proteinases, in Guidebook to the Extracellular Matrix and Adhesion Proteins ( Kreis, T. and Vale, R., eds.), Oxford University Press, New York, pp. 503–603.Google Scholar
  15. 15.
    Maeda, H. and Morihara, K. (1995) Serralysin and related bacterial proteinases. Methods Enzymol. 248, 395–413.PubMedCrossRefGoogle Scholar
  16. 16.
    Sang, Q. A. and Douglas, D. A. (1996) Computational sequence analysis of matrix metalloproteinases. J. Protein Chem 15, 137–160.PubMedCrossRefGoogle Scholar
  17. 17.
    Lepage, T. and Gache, C. (1990) Early expression of a collagenase-like hatching enzyme gene in the sea urchin embryo. EMBO J. 9, 3003–3012.PubMedGoogle Scholar
  18. 18.
    McGeehan, G., Burkhart, W., Anderegg, R., Becherer, J. D., Gillikin, J. W. and Graham, J. S. (1992) Sequencing and characterization of the soybean leaf metalloproteinase: structural and functional similarity to the matrix metalloproteinase family. Plant Physiol. 99, 1179–1183.PubMedCrossRefGoogle Scholar
  19. 19.
    Pendâs, A. M., Knäuper, V., Puente, X. S., Llano, E., Mattei, M. G., Apte, S., Murphy, G. and López-Otín, C. (1997) Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J. Biol. Chem 272, 4281–4286.PubMedCrossRefGoogle Scholar
  20. 20.
    Yang, M., Murray, M. T. and Kurkinen, M. (1997) A novel matrix metalloproteinase gene (XMMP) encoding vitronectin-like motifs is transiently expressed in Xenopus laevis early embryo development. J. Biol. Chem 272, 13527–13533.PubMedCrossRefGoogle Scholar
  21. 21.
    Gururajan, R., Grenet, J., Lahti, J. M. and Kidd, V. J. (1998) Isolation and characterization of two novel metalloproteinase genes linked to the CdC2L locus on human chromosome 1p36.3. Genomics 52, 101–106.PubMedCrossRefGoogle Scholar
  22. 22.
    Wada, K., Sato, H., Kinoh, H., Kajita, M., Yamamoto, H. and Seiki, M. (1998) Cloning of three Caenorhabditis elegans genes potentially encoding novel matrix metalloproteinases. Gene 211, 57–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Kinoshita, T., Fukuzawa, H., Shimada, T., Saito, T. and Matsuda, Y. (1992) Primary structure and expression of a gamete lytic enzyme in Chlamydomonas reinhardtii: similarity of functional domains to matrix metalloproteases. Proc. Natl. Acad. Sci. (USA) 89, 4693–4697.CrossRefGoogle Scholar
  24. 24.
    Allan, J. A., Docherty, A. J., Barker, P. J., Huskisson, N. S., Reynolds, J. J. and Murphy, G. (1995) Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem. J 309, 299–306.Google Scholar
  25. 25.
    Birkedal-Hansen, H. (1995) Proteolytic remodeling of the extracellular matrix. Curr. Opin. Cell Biol 7, 728–735.PubMedCrossRefGoogle Scholar
  26. 26.
    Van Wart, H. E. and Birkedal-Hansen, H. (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. (USA) 87, 5578–5582.CrossRefGoogle Scholar
  27. 27.
    Pei, D. and Weiss, S. J. (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375, 244–247.PubMedCrossRefGoogle Scholar
  28. 28.
    Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A. and Goldberg, G. I. (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem 270, 5331–5338.PubMedCrossRefGoogle Scholar
  29. 29.
    Cao, J., Rehemtulla, A., Conner, C., Drews, M., Bahou, W. and Zucker, S. (1999) Furin directly processes pro-gelatinase A within the secretory pathway of cells. Proc. American Association for Cancer Research 40, 520 (#3432).Google Scholar
  30. 30.
    Brooks, P. C., Strömblad, S., Sanders, L. C., von Schalscha, T. L., Aimes, R. T., StetlerStevenson, W. G., Quigley, J. P. and Cheresh, D. A. (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85, 683–693.PubMedCrossRefGoogle Scholar
  31. 31.
    Angel, P., Baumann, I., Stein, B., Delius, H., Rahmsdorf, H. J. and Herrlich, P. (1987) 12–0tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5’-flanking region. Mol. Cell. Biol 7, 2256–2266.Google Scholar
  32. 32.
    Edwards, D. R., Murphy, G., Reynolds, J. J., Whitham, S. E., Docherty, A. J., Angel, P. and Heath, J. K. (1987) Transforming growth factor beta modulates the expression of collage-nase and metalloproteinase inhibitor. EMBO J. 6, 1899–1904.PubMedGoogle Scholar
  33. 33.
    Brenner, D. A., O’Hara, M., Angel, P., Chojkier, M. and Karin, M. (1989) Prolonged activation of jun and collagenase genes by tumour necrosis factor-alpha. Nature 337, 661–663.PubMedCrossRefGoogle Scholar
  34. 34.
    Rajah, R., Nunn, S. E., Herrick, D. J., Grunstein, M. M. and Cohen, P. (1996) Leukotriene D4 induces MMP-1, which functions as an IGFBP protease in human airway smooth muscle cells. Am. J. Physiol 271, L1014 — L1022.PubMedGoogle Scholar
  35. 35.
    Bian, J. and Sun, Y. (1997) Transcriptional activation by p53 of the human type IV collage-nase (gelatinase A or matrix metalloproteinase 2) promoter. Mol. Cell. Biol 17, 6330–6338.PubMedGoogle Scholar
  36. 36.
    Tremble, P., Damsky, C. H. and Werb, Z. (1995) Components of the nuclear signaling cascade that regulate collagenase gene expression in response to integrin-derived signals. J. Cell Biol 129, 1707–1720.PubMedCrossRefGoogle Scholar
  37. 37.
    Kheradmand, F., Werner, E., Tremble, P., Symons, M. and Werb, Z. (1998) Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 280, 898–902.PubMedCrossRefGoogle Scholar
  38. 38.
    Tremble, P. M., Lane, T. F., Sage, E. H. and Werb, Z. (1993) SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway. J. Cell Biol 121, 1433–1444.PubMedCrossRefGoogle Scholar
  39. 39.
    Biswas, C., Zhang, Y., DeCastro, R., Guo, H., Nakamura, T., Kataoka, H. and Nabeshima, K. (1995) The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res. 55, 431 139.Google Scholar
  40. 40.
    Lohi, J., Lehti, K., Westermarck, J., Kähäri, V. M. and Keski-Oja, J. (1996) Regulation of membrane-type matrix metalloproteinase-1 expression by growth factors and phorbol 12myristate 13-acetate. Eur. J. Biochem 239, 239–247.PubMedCrossRefGoogle Scholar
  41. 41.
    Yu, M., Sato, H., Seiki, M., Spiegel, S. and Thompson, E. W. (1998) Elevated cyclic AMP suppresses ConA-induced MT1-MMP expression in MDA-MB-231 human breast cancer cells. Clin. Exp. Metastasis 16, 185–191.PubMedCrossRefGoogle Scholar
  42. 42.
    Gaire, M., Magbanua, Z., McDonnell, S., McNeil, L., Lovett, D. H. and Matrisian, L. M. (1994) Structure and expression of the human gene for the matrix metalloproteinase matrilysin. J. Biol. Chem 269, 2032–2040.PubMedGoogle Scholar
  43. 43.
    Rutter, J. L., Mitchell, T. I., Butticè, G., Meyers, J., Gusella, J. F., Ozelius, L. J. and Brinckerhoff, C. E. (1998) A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res. 58, 5321–5325.PubMedGoogle Scholar
  44. 44.
    Ye, S., Eriksson, P., Hamsten, A., Kurkinen, M., Humphries, S. E. and Henney, A. M. (1996) Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J. Biol. Chem 271, 13055–13060.PubMedCrossRefGoogle Scholar
  45. 45.
    Knäuper, V., Will, H., López-Otin, C., Smith, B., Atkinson, S. J., Stanton, H., Hembry, R. M. and Murphy, G. (1996) Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J. Biol. Chem 271, 17124–17131.PubMedCrossRefGoogle Scholar
  46. 46.
    Fosang, A. J., Last, K. and Maciewicz, R. A. (1996) Aggrecan is degraded by matrix metalloproteinases in human arthritis. Evidence that matrix metalloproteinase and aggrecanase activities can be independent. J. Clin. Invest 98, 2292–2299.PubMedCrossRefGoogle Scholar
  47. 47.
    Stolow, M. A., Bauzon, D. D., Li, J., Sedgwick, T., Liang, V. C., Sang, Q. A. and Shi, Y. B. (1996) Identification and characterization of a novel collagenase in Xenopus laevis: possible roles during frog development. Mol. Biol. Cell 7, 1471–1483.PubMedGoogle Scholar
  48. 48.
    Imai, K., Shikata, H. and Okada, Y. (1995) Degradation of vitronectin by matrix metalloproteinases-1, -2, -3, -7 and -9. Febs Lett. 369, 249–251.PubMedCrossRefGoogle Scholar
  49. 49.
    Ohuchi, E., Imai, K., Fujii, Y., Sato, H., Seiki, M. and Okada, Y. (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem 272, 2446–2451.PubMedCrossRefGoogle Scholar
  50. 50.
    Levi, E., Fridman, R., Miao, H. Q., Ma, Y. S., Yayon, A. and Vlodaysky, I. (1996) Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc. Natl. Acad. Sci. (USA) 93, 7069–7074.CrossRefGoogle Scholar
  51. 51.
    Sasaki, T., Mann, K., Murphy, G., Chu, M. L. and Timpl, R. (1996) Different susceptibilities of fibulin-1 and fibulin-2 to cleavage by matrix metalloproteinases and other tissue pro-teases. Eur. J. Biochem 240, 427–434.PubMedCrossRefGoogle Scholar
  52. 52.
    Mayer, U., Mann, K., Timpl, R. and Murphy, G. (1993) Sites of nidogen cleavage by pro-teases involved in tissue homeostasis and remodelling. Eur. J. Biochem 217, 877–884.PubMedCrossRefGoogle Scholar
  53. 53.
    Ochieng, J., Fridman, R., Nangia-Makker, P., Kleiner, D. E., Liotta, L. A., StetlerStevenson, W. G. and Raz, A. (1994) Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry 33, 14109–14114.PubMedCrossRefGoogle Scholar
  54. 54.
    Preece, G., Murphy, G. and Ager, A. (1996) Metalloproteinase-mediated regulation of L-selectin levels on leucocytes. J. Biol. Chem 271, 11634–11640.PubMedCrossRefGoogle Scholar
  55. 55.
    Gronski, T. J., Jr., Martin, R. L., Kobayashi, D. K., Walsh, B. C., Holman, M. C., Huber, M., Van Wart, H. E. and Shapiro, S. D. (1997) Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J. Biol. Chem 272, 12189–12194.PubMedCrossRefGoogle Scholar
  56. 56.
    Banda, M. J., Clark, E. J. and Werb, Z. (1985) Macrophage elastase: regulatory consequences of the proteolysis of non-elastin tissue substrates, in Mononuclear Phagocytes: Characteristics, Physiology and Function. ( van Furth, R., ed.), Martinus Nijhoff, The Hague, pp. 295–301.CrossRefGoogle Scholar
  57. 57.
    Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W. G. and Quaranta, V. (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277, 225–228.PubMedCrossRefGoogle Scholar
  58. 58.
    Suzuki, M., Raab, G., Moses, M. A., Fernandez, C. A. and Klagsbrun, M. (1997) Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J. Biol. Chem 272, 31730–31737.PubMedCrossRefGoogle Scholar
  59. 59.
    Aimes, R. T. and Quigley, J. P. (1995) Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J. Biol. Chem 270, 5872–5876.PubMedCrossRefGoogle Scholar
  60. 60.
    Kafienah, W., Bromme, D., Buttle, D. J., Croucher, L. J. and Hollander, A. P. (1998) Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem. J 331, 727–732.PubMedGoogle Scholar
  61. 61.
    Matsumoto, S., Katoh, M., Saito, S., Watanabe, T. and Masuho, Y. (1997) Identification of soluble type of membrane-type matrix metalloproteinase-3 formed by alternatively spliced mRNA. Biochim. Biophys. Acta 1354, 159–170.PubMedCrossRefGoogle Scholar
  62. 62.
    Murphy, G., Allan, J. A., Willenbrock, F., Cockett, M. I., O’Connell, J. P. and Docherty, A. J. (1992) The role of the C-terminal domain in collagenase and stromelysin specificity. J. Biol. Chem 267, 9612–9618.PubMedGoogle Scholar
  63. 63.
    Sanchez-Lopez, R., Alexander, C. M., Behrendtsen, O., Breathnach, R. and Werb, Z. (1993) Role of zinc-binding-and hemopexin domain-encoded sequences in the substrate specificity of collagenase and stromelysin-2 as revealed by chimeric proteins. J. Biol. Chem 268, 7238–7247.PubMedGoogle Scholar
  64. 64.
    Weingarten, H., Martin, R. and Feder, J. (1985) Synthetic substrates of vertebrate collage-nase. Biochemistry 24, 6730–6734.PubMedCrossRefGoogle Scholar
  65. 65.
    Oofusa, K., Yomori, S. and Yoshizato, K. (1994) Regionally and hormonally regulated expression of genes of collagen and collagenase in the anuran larval skin. Int. J. Dev. Biol 38, 345–350.PubMedGoogle Scholar
  66. 66.
    Knäuper, V., López-Otin, C., Smith, B., Knight, G. and Murphy, G. (1996) Biochemical characterization of human collagenase-3. J. Biol. Chem 271, 1544–1550.PubMedCrossRefGoogle Scholar
  67. 67.
    Dioszegi, M., Cannon, P. and Van Wart, H. E. (1995) Vertebrate collagenases. Methods Enzymol. 248, 413–431.PubMedCrossRefGoogle Scholar
  68. 68.
    Jeffrey, J. J. (1998) Interstitial collagenases, in Matrix Metalloproteinases ( Parks, W. C. and Mecham, R. P., eds.), Academic Press, San Diego, pp. 15–42.CrossRefGoogle Scholar
  69. 69.
    Freije, J. M., Díez-Itza, I., Balbín, M., Sanchez, L. M., Blasco, R., Tolivia, J. and López-Otín, C. (1994) Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J. Biol. Chem 269, 16766–16773.PubMedGoogle Scholar
  70. 70.
    Reboul, P., Pelletier, J. P., Tardif, G., Cloutier, J. M. and Martel-Pelletier, J. (1996) The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J. Clin. Invest 97, 2011–2019.PubMedCrossRefGoogle Scholar
  71. 71.
    Mitchell, P. G., Magna, H. A., Reeves, L. M., Lopresti-Morrow, L. L., Yocum, S. A., Rosner, P. J., Geoghegan, K. F. and Hambor, J. E. (1996) Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J. Clin. Invest 97, 761–768.PubMedCrossRefGoogle Scholar
  72. 72.
    Hasty, K. A., Jeffrey, J. J., Hibbs, M. S. and Welgus, H. G. (1987) The collagen substrate specificity of human neutrophil collagenase. J. Biol. Chem 262, 10048–10052.PubMedGoogle Scholar
  73. 73.
    Welgus, H. G., Jeffrey, J. J. and Eisen, A. Z. (1981) The collagen substrate specificity of human skin fibroblast collagenase. J. Biol. Chem 256, 9511–9515.PubMedGoogle Scholar
  74. 74.
    Gomis-Ruth, F. X., Gohlke, U., Betz, M., Knäuper, V., Murphy, G., López-Otín, C. and Bode, W. (1996) The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain. J. Mol. Biol 264, 556–566.PubMedCrossRefGoogle Scholar
  75. 75.
    Liu, X., Wu, H., Byrne, M., Jeffrey, J., Krane, S. and Jaenisch, R. (1995) A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. J. Cell Biol 130, 227–237.PubMedCrossRefGoogle Scholar
  76. 76.
    Uitto, V. J., Airola, K., Vaalamo, M., Johansson, N., Putnins, E. E., Firth, J. D., Salonen, J., López-Otín, C., Saarialho-Kere, U. and Kähäri, V. M. (1998) Collagenase-3 (matrix metalloproteinase-13) expression is induced in oral mucosal epithelium during chronic inflammation. Am. J. Pathol 152, 1489–1499.PubMedGoogle Scholar
  77. 77.
    Murphy, G. and Crabbe, T. (1995) Gelatinases A and B. Methods Enzymol. 248, 470–484.PubMedCrossRefGoogle Scholar
  78. 78.
    Yu, A. E., Murphy, A. N. and Stetler-Stevenson, W. G. (1998) 72-kDa gelatinase (gelatinase A): structure, activation, regulation, and substrate specificity, in Matrix Yletalloproteinases (Parks, W. C. and Mecham, R. P., eds.), Academic Press, San Diego, pp. 85–113.CrossRefGoogle Scholar
  79. 79.
    Vu, T. H. and Werb, Z. (1998) Gelatinase B: structure, regulation, and function, in Matrix Metalloproteinases ( Parks, W. C. and Mecham, R. P., eds.), Academic Press, San Diego, CA, pp. 115–148.CrossRefGoogle Scholar
  80. 80.
    Collier, I. E., Wilhelm, S. M., Eisen, A. Z., Marmer, B. L., Grant, G. A., Seltzer, J. L., Kronberger, A., He, C. S., Bauer, E. A. and Goldberg, G. I. (1988) H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J. Biol. Chem 263, 6579–6587.PubMedGoogle Scholar
  81. 81.
    Wilhelm, S. M., Collier, I. E., Marmer, B. L., Eisen, A. Z., Grant, G. A. and Goldberg, G. I. (1989) SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collage-nase which is identical to that secreted by normal human macrophages (published erratum appears in J Biol Chem 1990 Dec 25;265(36):22570). J. Biol. Chem 264, 17213–17221.Google Scholar
  82. 82.
    Huhtala, P., Chow, L. T. and Tryggvason, K. (1990) Structure of the human type IV collagenase gene. J. Biol. Chem 265, 11077–11082.PubMedGoogle Scholar
  83. 83.
    Huhtala, P., Tuuttila, A., Chow, L. T., Lohi, J., Keski-Oja, J. and Tryggvason, K. (1991) Complete structure of the human gene for 92-kDa type IV collagenase. Divergent regulation of expression for the 92- and 72-kilodalton enzyme genes in HT-1080 cells. J. Biol. Chem 266, 16485–16490.PubMedGoogle Scholar
  84. 84.
    Murphy, G., Nguyen, Q., Cockett, M. I., Atkinson, S. J., Allan, J. A., Knight, C. G., Willenbrock, F. and Docherty, A. J. (1994) Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant. J. Biol. Chem 269, 6632–6636.PubMedGoogle Scholar
  85. 85.
    Sang, Q. X., Birkedal-Hansen, H. and Van Wart, H. E. (1995) Proteolytic and non-proteolytic activation of human neutrophil progelatinase B. Biochim. Biophys. Acta 1251, 99–108.CrossRefGoogle Scholar
  86. 86.
    Fridman, R., Toth, M., Pena, D. and Mobashery, S. (1995) Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2). Cancer Res. 55, 2548–2555.PubMedGoogle Scholar
  87. 87.
    Mohan, R., Rinehart, W. B., Bargagna-Mohan, P. and Fini, M. E. (1998) Gelatinase B/lacZ transgenic mice, a model for mapping gelatinase B expression during developmental and injury related tissue remodeling. J. Biol. Chem 273, 25903–25914.PubMedCrossRefGoogle Scholar
  88. 88.
    Vu, T. H., Shipley, J. M., Bergers, G., Berger, J. E., Helms, J. A., Hanahan, D., Shapiro, S. D., Senior, R. M. and Werb, Z. (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422.PubMedCrossRefGoogle Scholar
  89. 89.
    Rice, A. and Banda, M. J. (1995) Neutrophil elastase processing of gelatinase A is mediated by extracellular matrix. Biochemistry 34, 9249–9256.PubMedCrossRefGoogle Scholar
  90. 90.
    Zucker, S., Conner, C., DiMassmo, B. I., Ende, H., Drews, M., Seiki, M. and Bahou, W. F. (1995) Thrombin induces the activation of progelatinase A in vascular endothelial cells. Physiologic regulation of angiogenesis. J. Biol. Chem 270, 23730–23738.PubMedCrossRefGoogle Scholar
  91. 91.
    Murphy, G., Willenbrock, F., Ward, R. V., Cockett, M. I., Eaton, D. and Docherty, A. J. (1992) The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases [published erratum appears in Biochem. J. 1992 Jun 15;284(Pt 3):935]. Biochem. J 283, 637–641.Google Scholar
  92. 92.
    Strongin, A. Y., Marmer, B. L., Grant, G. A. and Goldberg, G. I. (1993) Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J. Biol. Chem 268, 14033–14039.PubMedGoogle Scholar
  93. 93.
    Takino, T., Sato, H., Shinagawa, A. and Seiki, M. (1995) Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J. Biol. Chem 270, 23013–23020.PubMedCrossRefGoogle Scholar
  94. 94.
    Olson, M. W., Toth, M., Gervasi, D. C., Sado, Y., Ninomiya, Y. and Fridman, R. (1998) High affinity binding of latent matrix metalloproteinase-9 to the alpha2(IV) chain of collagen IV. J. Biol. Chem 273, 10672–10681.PubMedCrossRefGoogle Scholar
  95. 95.
    Yu, Q. and Stamenkovic, I. (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 13, 35–48.PubMedCrossRefGoogle Scholar
  96. 96.
    Nguyen, Q., Murphy, G., Hughes, C. E., Mort, J. S. and Roughley, P. J. (1993) Matrix metalloproteinases cleave at two distinct sites on human cartilage link protein. Biochem. J 295, 595–598.PubMedGoogle Scholar
  97. 97.
    Lark, M. W., Williams, H., Hoernner, L. A., Weidner, J., Ayala, J. M., Harper, C. F., Christen, A., Olszewski, J., Konteatis, Z., Webber, R. and et al. (1995) Quantification of a matrix metalloproteinase-generated aggrecan G1 fragment using monospecific anti-peptide serum. Biochem. J 307, 245–252.PubMedGoogle Scholar
  98. 98.
    Nagase, H. (1995) Human stromelysins 1 and 2. Methods Enzymol. 248, 449–470.PubMedCrossRefGoogle Scholar
  99. 99.
    Chin, J. R., Murphy, G. and Werb, Z. (1985) Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. Biosynthesis, isolation, characterization, and substrates. J. Biol. Chem 260, 12367–12376.PubMedGoogle Scholar
  100. 100.
    Nagase, H. (1998) Stromelysins 1 and 2, in Matrix Metalloproteinases ( Parks, W. C. and Mecham, R. P., eds.), Academic Press, San Diego, pp. 43–84.CrossRefGoogle Scholar
  101. 101.
    Muller, D., Quantin, B., Gesnel, M. C., Millon-Collard, R., Abecassis, J. and Breathnach, R. (1988) The collagenase gene family in humans consists of at least four members. Biochem. J 253, 187–192.PubMedGoogle Scholar
  102. 102.
    Lochter, A., Galosy, S., Muschler, J., Freedman, N., Werb, Z. and Bissell, M. J. (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J. Cell Biol 139, 1861–1872.PubMedCrossRefGoogle Scholar
  103. 103.
    Sympson, C. J., Talhouk, R. S., Bissell, M. J. and Werb, Z. (1995) The role of metalloproteinases and their inhibitors in regulating mammary epithelial morphology and function in vivo. Persp. Drug Discovery Design 2, 401–411.CrossRefGoogle Scholar
  104. 104.
    Lochter, A., Srebrow, A., Sympson, C. J., Terracio, N., Werb, Z. and Bissell, M. J. (1997) Misregulation of stromelysin-1 expression in mouse mammary tumor cells accompanies acquisition of stromelysin- 1-dependent invasive properties. J. Biol. Chem 272, 5007–5015.PubMedCrossRefGoogle Scholar
  105. 105.
    Mudgett, J. S., Hutchinson, N. I., Chartrain, N. A., Forsyth, A. J., McDonnell, J., Singer, I. I., Bayne, E. K., Flanagan, J., Kawka, D., Shen, C. F., Stevens, K., Chen, H., Trumbauer, M. and Visco, D. M. (1998) Susceptibility of stromelysin 1-deficient mice to collagen-induced arthritis and cartilage destruction. Arthritis Rheum. 41, 110–121.PubMedCrossRefGoogle Scholar
  106. 106.
    Sellers, A. and Woessner, J. F., Jr. (1980) The extraction of a neutral metalloproteinase from the involuting rat uterus, and its action on cartilage proteoglycan. Biochem. J 189, 521–531.PubMedGoogle Scholar
  107. 107.
    Woessner, J. F., Jr. and Taplin, C. J. (1988) Purification and properties of a small latent matrix metalloproteinase of the rat uterus. J. Biol. Chem 263, 16918–16925.PubMedGoogle Scholar
  108. 108.
    Quantin, B., Murphy, G. and Breathnach, R. (1989) Pump-1 eDNA codes for a protein with characteristics similar to those of classical collagenase family members. Biochemistry 28, 5327–5334.PubMedCrossRefGoogle Scholar
  109. 109.
    Wilson, C. L. and Matrisian, L. M. (1998) Matrilysin, in Matrix Metalloproteinases ( Parks, W. C. and Mecham, R. P., eds.), Academic Press, San Diego, pp. 149–184.CrossRefGoogle Scholar
  110. 110.
    Woessner, J. F., Jr. (1995) Matrilysin. Methods Enzymol. 248, 485–495.PubMedCrossRefGoogle Scholar
  111. 111.
    Sires, U. I., Griffin, G. L., Broekelmann, T. J., Mecham, R. P., Murphy, G., Chung, A. E., Welgus, H. G. and Senior, R. M. (1993) Degradation of entactin by matrix metalloproteinases. Susceptibility to matrilysin and identification of cleavage sites. J. Biol. Chem 268, 2069–2074.PubMedGoogle Scholar
  112. 112.
    Witty, J. P., McDonnell, S., Newell, K. J., Cannon, P., Navre, M., Tressler, R. J. and Matrisian, L. M. (1994) Modulation of matrilysin levels in colon carcinoma cell lines affects tumorigenicity in vivo. Cancer Res. 54, 4805–4812.PubMedGoogle Scholar
  113. 113.
    Powell, W. C., Knox, J. D., Navre, M., Grogan, T. M., Kittelson, J., Nagle, R. B. and Bowden, G. T. (1993) Expression of the metalloproteinase matrilysin in DU-145 cells increases their invasive potential in severe combined immunodeficient mice. Cancer Res 53, 417–422.CrossRefGoogle Scholar
  114. 114.
    Rudolph-Owen, L. A. and Matrisian, L. M. (1998) Matrix metalloproteinases in remodeling of the normal and neoplastic mammary gland. J. Mammary Gland Biol. Neoplasia 3, 177–189.PubMedCrossRefGoogle Scholar
  115. 115.
    Saarialho-Kere, U. K., Crouch, E. C. and Parks, W. C. (1995) Matrix metalloproteinase matrilysin is constitutively expressed in adult human exocrine epithelium. J. Invest. Dermatol 105, 190–196.PubMedCrossRefGoogle Scholar
  116. 116.
    Rudolph-Owen, L. A., Cannon, P. and Matrisian, L. M. (1998) Overexpression of the matrix metalloproteinase matrilysin results in premature mammary gland differentiation and male infertility. Mol. Biol. Cell 9, 421–435.PubMedGoogle Scholar
  117. 117.
    Halpert, I., Sires, U. I., Roby, J. D., Potter-Perigo, S., Wight, T. N., Shapiro, S. D., Welgus, H. G., Wickline, S. A. and Parks, W. C. (1996) Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc. Natl. Acad. Sci. (USA) 93, 9748–9753.CrossRefGoogle Scholar
  118. 118.
    Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E. and Seiki, M. (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 61–65.PubMedCrossRefGoogle Scholar
  119. 119.
    Will, H. and Hinzmann, B. (1995) cDNA sequence and mRNA tissue distribution of a novel human matrix metalloproteinase with a potential transmembrane segment. Eur. J. Biochem 231, 602–608.Google Scholar
  120. 120.
    Puente, X. S., Pendds, A. M., Llano, E., Velasco, G. and López-Otín, C. (1996) Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res. 56, 944–949.PubMedGoogle Scholar
  121. 121.
    Sato, H., Kinoshita, T., Takino, T., Nakayama, K. and Seiki, M. (1996) Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Lett. 393, 101–104.PubMedCrossRefGoogle Scholar
  122. 122.
    Pei, D. and Weiss, S. J. (1996) Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J. Biol. Chem 271, 9135–9140.PubMedCrossRefGoogle Scholar
  123. 123.
    Cao, J., Rehemtulla, A., Bahou, W. and Zucker, S. (1996) Membrane type matrix metalloproteinase 1 activates pro-gelatinase A without furin cleavage of the N-terminal domain. J. Biol. Chem 271, 30174–30180.PubMedCrossRefGoogle Scholar
  124. 124.
    Okumura, Y., Sato, H., Seiki, M. and Kido, H. (1997) Proteolytic activation of the precursor of membrane type 1 matrix metalloproteinase by human plasmin. A possible cell surface activator. FEBS Lett. 402, 181–184.PubMedCrossRefGoogle Scholar
  125. 125.
    Imai, K., Ohuchi, E., Aoki, T., Nomura, H., Fujii, Y., Sato, H., Seiki, M. and Okada, Y. (1996) Membrane-type matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2. Cancer Res. 56, 2707–2710.PubMedGoogle Scholar
  126. 126.
    Apte, S. S., Fukai, N., Beier, D. R. and Olsen, B. R. (1997) The matrix metalloproteinase14 (MMP-14) gene is structurally distinct from other MMP genes and is co-expressed with the TIMP-2 gene during mouse embryogenesis. J. Biol. Chem 272, 25511–25517.PubMedCrossRefGoogle Scholar
  127. 127.
    Zucker, S., Drews, M., Conner, C., Foda, H. D., DeClerck, Y. A., Langley, K. E., Bahou, W. F., Docherty, A. J. and Cao, J. (1998) Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor, membrane type 1-matrix metalloproteinase 1 (MT1-MMP). J. Biol. Chem 273, 1216–1222.PubMedCrossRefGoogle Scholar
  128. 128.
    Nakahara, H., Howard, L., Thompson, E. W., Sato, H., Seiki, M., Yeh, Y. and Chen, W. T. (1997) Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metallo-protease docking to invadopodia is required for cell invasion. Proc. Natl. Acad. Sci. (USA) 94, 7959–7964.CrossRefGoogle Scholar
  129. 129.
    Cowell, S., Knäuper, V., Stewart, M. L., D’Ortho, M. P., Stanton, H., Hembry, R. M., López-Otín, C., Reynolds, J. J. and Murphy, G. (1998) Induction of matrix metalloproteinase activation cascades based on membrane-type 1 matrix metalloproteinase: associated activation of gelatinase A, gelatinase B and collagenase 3. Biochem. J 331, 453–458.PubMedGoogle Scholar
  130. 130.
    Atkinson, S. J., Crabbe, T., Cowell, S., Ward, R. V., Butler, M. J., Sato, H., Seiki, M., Reynolds, J. J. and Murphy, G. (1995) Intermolecular autolytic cleavage can contribute to the activation of progelatinase A by cell membranes. J. Biol. Chem 270, 30479–30485.PubMedCrossRefGoogle Scholar
  131. 131.
    Okada, A., Bellocq, J. P., Rouyer, N., Chenard, M. P., Rio, M. C., Chambon, R and Basset, R. (1995) Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc. Natl. Acad. Sci. (USA) 92, 2730–2734.CrossRefGoogle Scholar
  132. 132.
    Ohtani, H., Motohashi, H., Sato, H., Seiki, M. and Nagura, H. (1996) Dual over-expression pattern of membrane-type metalloproteinase-1 in cancer and stromal cells in human gastrointestinal carcinoma revealed by in situ hybridization and immunoelectron microscopy. Int. J. Cancer 68, 565–570.PubMedCrossRefGoogle Scholar
  133. 133.
    Basset, R, Bellocq, J. R, Wolf, C., Stoll, I., Hutin, R, Limacher, J. M., Podhajcer, O. L., Chenard, M. R, Rio, M. C. and Chambon, R. (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348, 699–704.PubMedCrossRefGoogle Scholar
  134. 134.
    Murphy, G., Segain, J. R, O’Shea, M., Cockett, M., Ioannou, C., Lefebvre, O., Chambon, R. and Basset, R. (1993) The 28-kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J. Biol. Chem 268, 15435–15441.PubMedGoogle Scholar
  135. 135.
    Ahmad, A., Hanby, A., Dublin, E., Poulsom, R., Smith, R, Barnes, D., Rubens, R., Anglard, R. and Hart, I. (1998) Stromelysin 3: an independent prognostic factor for relapse-free survival in node-positive breast cancer and demonstration of novel breast carcinoma cell expression. Am. J. Pathol 152, 721–728.PubMedGoogle Scholar
  136. 136.
    Werb, Z. and Gordon, S. (1975) Elastase secretion by stimulated macrophages. Characterization and regulation. J. Exp. Med 142, 361–377.PubMedCrossRefGoogle Scholar
  137. 137.
    Banda, M. J. and Werb, Z. (1981) Mouse macrophage elastase. Purification and characterization as a metalloproteinase. Biochem. J 193, 589–605.PubMedGoogle Scholar
  138. 138.
    Shapiro, S. D., Griffin, G. L., Gilbert, D. J., Jenkins, N. A., Copeland, N. G., Welgus, H. G., Senior, R. M. and Ley, T. J. (1992) Molecular cloning, chromosomal localization, and bacterial expression of a murine macrophage metalloelastase. J. Biol. Chem 267, 4664–4671.PubMedGoogle Scholar
  139. 139.
    Shapiro, S. D., Kobayashi, D. K. and Ley, T. J. (1993) Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J. Biol. Chem 268, 23824–23829.PubMedGoogle Scholar
  140. 140.
    Shipley, J. M., Wesselschmidt, R. L., Kobayashi, D. K., Ley, T. J. and Shapiro, S. D. (1996) Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc. Natl. Acad. Sci. (USA) 93, 3942–3946.CrossRefGoogle Scholar
  141. 141.
    Hautamaki, R. D., Kobayashi, D. K., Senior, R. M. and Shapiro, S. D. (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004.PubMedCrossRefGoogle Scholar
  142. 142.
    Shapiro, S. D. and Senior, R. M. (1998) Macrophage metalloelastase (MMP-12), in Matrix Metalloproteinases ( Parks, W. C. and Mecham, R. R, eds.), Academic Press, San Diego, pp. 185–197.CrossRefGoogle Scholar
  143. 143.
    Dong, Z., Kumar, R., Yang, X. and Fidler, I. J. (1997) Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88, 801–810.PubMedCrossRefGoogle Scholar
  144. 144.
    Bartlett, J. D., Simmer, J. P., Xue, J., Margolis, H. C. and Moreno, E. C. (1996) Molecular cloning and mRNA tissue distribution of a novel matrix metalloproteinase isolated from porcine enamel organ. Gene 183, 123–128.PubMedCrossRefGoogle Scholar
  145. 145.
    Llano, E., Pendâs, A. M., Knäuper, V., Sorsa, T., Salo, T., Salido, E., Murphy, G., Simmer, J. R, Bartlett, J. D. and López-Otín, C. (1997) Identification and structural and functional characterization of human enamelysin (MMP-20). Biochemistry 36, 15101–15108.PubMedCrossRefGoogle Scholar
  146. 146.
    Punzi, J. S. and DenBesten, P. K. (1995) Multiple forms of a 21.5 kDa metalloproteinase in bovine enamel. J. Dent. Res 74, 95.Google Scholar
  147. 147.
    Sedlacek, R., Mauch, S., Kolb, B., Schätzlein, C., Eibel, H., Peter, H. H., Schmitt, J. and Krawinkel, U. (1998) Matrix metalloproteinase MMP-19 (RASI-1) is expressed on the surface of activated peripheral blood mononuclear cells and is detected as an autoantigen in rheumatoid arthritis. Immunobiology 198, 408–423.PubMedCrossRefGoogle Scholar
  148. 148.
    Cossins, J., Dudgeon, T. J., Catlin, G., Gearing, A. J. and Clements, J. M. (1996) Identification of MMP-18, a putative novel human matrix metalloproteinase. Biochem. Biophys. Res. Commun 228, 494–498.PubMedCrossRefGoogle Scholar
  149. 149.
    Valesco, G., Pendas, A. M., Fueyo, A., Knauper, V., Murphy, G. and Lopez-Otin, C. (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J. Biol. Chem 274, 4570–4576.CrossRefGoogle Scholar
  150. 150.
    Greene, J., Wang, M., Liu, Y. E., Raymond, L. A., Rosen, C. and Shi, Y. E. (1996) Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J. Biol. Chem 271, 30375–30380.PubMedCrossRefGoogle Scholar
  151. 151.
    Leco, K. J., Apte, S. S., Taniguchi, G. T., Hawkes, S. P., Khokha, R., Schultz, G. A. and Edwards, D. R. (1997) Murine tissue inhibitor of metalloproteinases-4 (Timp-4): cDNA isolation and expression in adult mouse tissues. FEBS Lett. 401, 213–217.PubMedCrossRefGoogle Scholar
  152. 152.
    Apte, S. S., Olsen, B. R. and Murphy, G. (1995) The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family (published erratum appears in J. Biol. Chem. (1996) 271, 2874). J. Biol. Chem 270, 14313–14318.Google Scholar
  153. 153.
    Murphy, G. and Willenbrock, F. (1995) Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol. 248, 496–510.PubMedCrossRefGoogle Scholar
  154. 154.
    Docherty, A. J., Lyons, A., Smith, B. J., Wright, E. M., Stephens, P. E., Harris, T. J., Murphy, G. and Reynolds, J. J. (1985) Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature 318, 66–69.PubMedCrossRefGoogle Scholar
  155. 155.
    Bodden, M. K., Harber, G. J., Birkedal-Hansen, B., Windsor, L. J., Caterina, N. C., Engler, J. A. and Birkedal-Hansen, H. (1994) Functional domains of human TIMP-1 (tissue inhibitor of metalloproteinases). J. Biol. Chem 269, 18943–18952.PubMedGoogle Scholar
  156. 156.
    Williamson, R. A., Carr, M. D., Frenkiel, T. A., Feeney, J. and Freedman, R. B. (1997) Mapping the binding site for matrix metalloproteinase on the N-terminal domain of the tissue inhibitor of metalloproteinases-2 by NMR chemical shift perturbation. Biochemistry 36, 13882–13889.PubMedCrossRefGoogle Scholar
  157. 157.
    Gomis-Ruth, F. X., Maskos, K., Betz, M., Bergner, A., Huber, R., Suzuki, K., Yoshida, N., Nagase, H., Brew, K., Bourenkov, G. P., Bartunik, H. and Bode, W. (1997) Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389, 77–81.PubMedCrossRefGoogle Scholar
  158. 158.
    O’Shea, M., Willenbrock, F., Williamson, R. A., Cockett, M. I., Freedman, R. B., Reynolds, J. J., Docherty, A. J. and Murphy, G. (1992) Site-directed mutations that alter the inhibitory activity of the tissue inhibitor of metalloproteinases-1: importance of the N-terminal region between cysteine 3 and cysteine 13. Biochemistry 31, 10146–10152.PubMedCrossRefGoogle Scholar
  159. 159.
    Windsor, L. J., Bodden, M. K., Birkedal-Hansen, B., Engler, J. A. and Birkedal-Hansen, H. (1994) Mutational analysis of residues in and around the active site of human fibroblast-type collagenase. J. Biol. Chem 269, 26201–26207.PubMedGoogle Scholar
  160. 160.
    Logan, S. K., Garabedian, M. J., Campbell, C. E. and Werb, Z. (1996) Synergistic transcriptional activation of the tissue inhibitor of metalloproteinases-1 promoter via functional interaction of AP-1 and Ets-1 transcription factors. J. Biol. Chem 271, 774–782.PubMedCrossRefGoogle Scholar
  161. 161.
    Stetler-Stevenson, W. G., Brown, P. D., Onisto, M., Levy, A. T. and Liotta, L. A. (1990) Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. J. Biol. Chem 265, 13933–13938.PubMedGoogle Scholar
  162. 162.
    Leco, K. J., Hayden, L. J., Sharma, R. R., Rocheleau, H., Greenberg, A. H. and Edwards, D. R. (1992) Differential regulation of TIMP-1 and TIMP-2 mRNA expression in normal and Ha-ras-transformed murine fibroblasts. Gene 117, 209–217.PubMedCrossRefGoogle Scholar
  163. 163.
    Wick, M., Bürger, C., Brüsselbach, S., Lucibello, F. C. and Müller, R. (1994) A novel member of human tissue inhibitor of metalloproteinases (TIMP) gene family is regulated during G1 progression, mitogenic stimulation, differentiation, and senescence. J. Biol. Chem 269, 18953–18960.PubMedGoogle Scholar
  164. 164.
    Wick, M., Härdnen, R., Mumberg, D., Bürger, C., Olsen, B. R., Budarf, M. L., Apte, S. S. and Müller, R. (1995) Structure of the human TIMP-3 gene and its cell cycle-regulated promoter. Biochem. J 311, 549–554.PubMedGoogle Scholar
  165. 165.
    Urfa, J. A., Ferrando, A. A., Velasco, G., Freije, J. M. and López-Otín, C. (1994) Structure and expression in breast tumors of human TIMP-3, a new member of the metalloproteinase inhibitor family. Cancer Res. 54, 2091–2094.Google Scholar
  166. 166.
    Jones, S. E., Jomary, C. and Neal, M. J. (1994) Expression of TIMP3 mRNA is elevated in retinas affected by simplex retinitis pigmentosa. FEBS Lett. 352, 171–174.PubMedCrossRefGoogle Scholar
  167. 167.
    Fariss, R. N., Apte, S. S., Olsen, B. R., Iwata, K. and Milam, A. H. (1997) Tissue inhibitor of metalloproteinases-3 is a component of Bruch’s membrane of the eye. Am. J. Pathol 150, 323–328.PubMedGoogle Scholar
  168. 168.
    Weber, B. H., Vogt, G., Pruett, R. C., Stöhr, H. and Felbor, U. (1994) Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby’s fundus dystrophy. Nature Genet. 8, 352–356.PubMedCrossRefGoogle Scholar
  169. 169.
    Felbor, U., Stöhr, H., Amann, T., Schönherr, U. and Weber, B. H. (1995) A novel Ser156Cys mutation in the tissue inhibitor of metalloproteinases-3 (TIMP3) in Sorsby’s fundus dystrophy with unusual clinical features. Hum. Mol. Genet 4, 2415–2416.PubMedCrossRefGoogle Scholar
  170. 170.
    Amour, A., Slocombe, P. M., Webster, A., Butler, M., Knight, C. G., Smith, B. J., Stephens, P. E., Shelley, C., Hutton, M., Knauper, V., Docherty, A. J. and Murphy, G. (1998) TNFalpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett. 435, 39–44.PubMedCrossRefGoogle Scholar
  171. 171.
    Bachman, K. E., Herman, J. G., Corn, P. G., Merlo, A., Costello, J. E, Cavenee, W. K., Baylin, S. B. and Graff, J. R. (1999) Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain, and other human cancers. Cancer Res. 59, 798–802.PubMedGoogle Scholar
  172. 172.
    Kataoka, H., Uchino, H., Iwamura, T., Seiki, M., Nabeshima, K. and Koono, M. (1999) Enhanced tumor growth and invasiveness in vivo by a carboxyl-terminal fragment of a-proteinase inhibitor generated by matrix metalloproteinases: a possible modulatory role in natural killer cytotoxicity. Am. J. Pathol 154, 457–468.PubMedCrossRefGoogle Scholar
  173. 173.
    Patterson, B. C. and Sang, Q. A. (1997) Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J. Biol. Chem 272, 28823–28825.PubMedCrossRefGoogle Scholar
  174. 174.
    Werb, Z. (1997) ECM and cell surface proteolysis: regulating cellular ecology. Cell 91, 439–442.PubMedCrossRefGoogle Scholar
  175. 175.
    Lukashev, M. E. and Werb, Z. (1998) ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol. 8, 437–441.PubMedCrossRefGoogle Scholar
  176. 176.
    Tlsty, T. D. (1998) Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Curr. Opin. Cell Biol 10, 647–653.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Mark D. Sternlicht
  • Lisa M. Coussens
  • Thiennu H. Vu
  • Zena Werb

There are no affiliations available

Personalised recommendations