Human Gene Therapy for Urological Oncology

  • Fernando Ferrer
  • Jonathan W. Simons
  • Ronald Rodriguez
Part of the Contemporary Cancer Research book series (CCR)


Gene therapy is the pharmacologic use of the digital code in recombinant genetic materials (DNA or RNA) to reverse, ameliorate, or cure human disease. In this context, gene therapy can be applied to organs or cells in vivo, or to tissue removed ex vivo and subsequently administered to the patient after the cells have been genetically modified. Early gene therapeutics were based on the ex vivo paradigm. This was caused by low efficiencies of gene transfer which required selection of transfected clones with a coselectable marker gene, and regulatory concerns about monitoring effects of gene transfer on cells prior to infusion into patients. Donated bone-marrow hematopoietic cells were engineered to produce adenosine deaminase (ADA), in order to correct ADA gene deficiency and reverse a severe underlying immune deficiency syndrome (SCIDS) (17). With continued advances in gene vectors and delivery systems, it is likely that in vivo approaches will become more clinically practicable. Dividing current gene therapeutic strategies into ex vivo and in vitro facilitates discussion on their current state of research and development in urological oncology.


Prostate Cancer Gene Therapy Gene Transfer Human Prostate Cancer Cancer Gene Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Austin, E. A. and B. E. Huber. 1993. A first step in the development of gene therapy for colorectal carcinoma: cloning, sequencing, and expression of Escherichia coli cytosine deaminase. Mol. Pharmacol. 43: 380–387.PubMedGoogle Scholar
  2. 2.
    Bergelson, J. M., J. Cunningham, G. Droguett, et al. 1997. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275: 1320–1323.Google Scholar
  3. 3.
    Chambers, C. A., M. Kuhns, and J. Allison. 1999. Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates primary and secondary peptide-specific CD4(+) T cell responses. Proc. Natl. Acad. Sci. USA 96: 8603–8608.PubMedCrossRefGoogle Scholar
  4. 4.
    Chao, J. and L. Chao. 1997. Experimental kallikrein gene therapy in hypertension, cardiovascular and renal diseases. Pharmacol. Res. 35: 517–522.PubMedCrossRefGoogle Scholar
  5. 5.
    Christ, G. J. and A. Melman. 1998. The application of gene therapy to the treatment of erectile dysfunction. Int. J. Impot. Res. 10: 111–112.PubMedCrossRefGoogle Scholar
  6. 6.
    Chung, L. W., C. Kao, R. Sikes, and H. Zhau. 1997. Human prostate cancer progression models and therapeutic intervention. Hinyokika Kiyo 43: 815–820.PubMedGoogle Scholar
  7. 7.
    Dranoff, G. 1998. Cancer gene therapy: connecting basic research with clinical inquiry. J. Clin. Oncol. 16: 2548–2556.PubMedGoogle Scholar
  8. 8.
    Garban, H., D. Marquez, T. Magee, et al. 1997. Cloning of rat and human inducible penile nitric oxide synthase. Application for gene therapy of erectile dysfunction. Biol. Reprod. 56: 954–963.PubMedCrossRefGoogle Scholar
  9. 9.
    Gotoh, A., S. Ko, T. Shirakawa, et al. 1998. Development of prostate-specific antigen promoter-based gene therapy for androgen-independent human prostate cancer. J. Urol. 160: 220–229.PubMedCrossRefGoogle Scholar
  10. 10.
    Greenberg, N. M., F. DeMayo, P. Sheppard, et al. 1994. The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in transgenic mice. Mol. Endocrinol. 8: 230–239.PubMedCrossRefGoogle Scholar
  11. 11.
    Greenfield, E. A., K. Nguyen, and V. Kuchroo. 1998. CD28/B7 costimulation: a review. Crit. Rev. Immunol. 18: 389–418.PubMedCrossRefGoogle Scholar
  12. 12.
    Hall, S. J., M. Sanford, G. Atkinson, and S. Chen. 1998. Induction of potent antitumor natural killer cell activity by herpes simplex virus-thymidine kinase and ganciclovir therapy in an orthotopic mouse model of prostate cancer. Cancer Res. 58: 3221–3225.PubMedGoogle Scholar
  13. 13.
    Heise, C., A. Sampson-Johannes, A. Williams, et al. 1997. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents (see comments). Nat. Med. 3: 639–645.PubMedCrossRefGoogle Scholar
  14. 14.
    Holtl, L., C. Rieser, C. Papesh, R. Ramoner, G. Bartsch, and M. Thurnher. 1998. CD83+ blood dendritic cells as a vaccine for immunotherapy of metastatic renal-cell cancer. Lancet 352: 1358.PubMedCrossRefGoogle Scholar
  15. 15.
    Holtl, L., C. Rieser, C. Papesh, R. Ramoner, M. Herold, H. Klocker, C. Radmayr, A. Stenzl, G. Bartsch, and M. Thurnher. (1999). Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J. Urol. 161: 777–782.PubMedCrossRefGoogle Scholar
  16. 16.
    Hung, K., R. Hayashi, A. Lafond-Walker, C. Lowenstein, D. Pardoll, and H. Levitsky. 1998. The central role of CD4(+) T cells in the antitumor immune response. J. Exp. Med. 188: 2357–2368.PubMedCrossRefGoogle Scholar
  17. 17.
    Kantoff, P. W., D. Kohn, H. Mitsuya, et al. 1996. Correction of adenosine deaminase deficiency in cultured human T and B cells by retrovirus-mediated gene transfer. Proc. Natl. Acad. Sci. USA 83: 6563–6567.CrossRefGoogle Scholar
  18. 18.
    Kirn, D. H. and F. McCormick. 1996. Replicating viruses as selective cancer therapeutics. Mol. Med. Today 2: 519–527.PubMedCrossRefGoogle Scholar
  19. 19.
    Kirn, D., T. Hermiston, and F. McCormick. 1998. ONYX-015: clinical data are encouraging (letter). Nat. Med. 4: 1341–1342.PubMedCrossRefGoogle Scholar
  20. 20.
    Koeneman, K. S., F. Yeung, and L. Chung. 1999. Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39: 246–261.PubMedCrossRefGoogle Scholar
  21. 21.
    Kwon, E. D., A. Hurwitz, B. Foster, et al. 1997. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc. Natl. Acad. Sci. USA 94: 8099–9103.PubMedCrossRefGoogle Scholar
  22. 22.
    Larchian, W. A., K. Roberson, C. Robertson, E. Gilboa, W. Heston, and W. Fair. 1997. Liposomal mediated gene transfer in bladder cancer cells. J. Urol. 157: 1196A.CrossRefGoogle Scholar
  23. 23.
    Martiniello-Wilks, R., J. Garcia-Aragon, M. Daja, et al. 1998. In vivo gene therapy for prostate cancer: preclinical evaluation of two different enzyme-directed prodrug therapy systems delivered by identical adenovirus vectors. Hum. Gene Ther. 9: 1617–1626.PubMedCrossRefGoogle Scholar
  24. 24.
    Mathias, P., T. Wickham, M. Moore, and G. Nemerow. 1994. Multiple adenovirus serotypes use alpha v integrins for infection. J. Virol. 68: 6811–6814.PubMedGoogle Scholar
  25. 25.
    Moisset, P. A., D. Skuk, I. Asselin, et al. 1998. Successful transplantation of genetically corrected DMD myoblasts following ex vivo transduction with the dystrophin minigene. Biochem. Biophys. Res. Commun. 247: 94–99.PubMedCrossRefGoogle Scholar
  26. 26.
    O’Keefe, D. S., S. Su, D. Bacich, et al. 1998. Mapping, genomic organization and promoter analysis of the human prostate-specific membrane antigen gene (In Process Citation). Biochim. Biophys. Acta 1443: 113–127 (MEDLINE record in process).Google Scholar
  27. 27.
    Palucka, K. and J. Banchereau. 1999. Linking innate and adaptive immunity. Nat. Med. 5: 868–870.PubMedCrossRefGoogle Scholar
  28. Pardoll, D. M. 1998. Cancer vaccines. Nat. Med. (5 Suppl. 4): 525–531.Google Scholar
  29. 29.
    Rodriguez, R., E. Schuur, H. Lim, et al. 1997. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57: 2559–2563.PubMedGoogle Scholar
  30. 30.
    Rodriguez, R., H. Lim, L. Bartkowski, et al. 1998. Identification of diphtheria toxin via screening as a potent cell cycle and p53-independent cytotoxin for human prostate cancer therapeutics. Prostate 34: 259–269.PubMedCrossRefGoogle Scholar
  31. 31.
    Salgaller, M. L., B. Tjoa, P. Lodge, et al. 1998. Dendritic cell-based immunotherapy of prostate cancer. Crit. Rev. Immunol. 18: 109–119.PubMedCrossRefGoogle Scholar
  32. 32.
    Sanda, M. G., S. Ayyagari, E. Jaffee, J. Epstein, S. Clift, L. Cohen, et al. 1994. Demonstration of a rational strategy for human prostate cancer gene therapy. J. Urol. 151: 622–628.PubMedGoogle Scholar
  33. 33.
    Schuur, E. R., G. Henderson, L. Kmetec, et al. 1996. Prostate-specific antigen expression is regulated by an upstream enhancer. J. Biol. Chem. 271: 7043–7051.PubMedCrossRefGoogle Scholar
  34. 34.
    Shan, J. D., K. Porvari, M. Ruokonen, et al. 1997. Steroid-involved transcriptional regulation of human genes encoding prostatic acid phosphatase, prostate-specific antigen, and prostate-specific glandular kallikrein. Endocrinology 138: 3764–3770.PubMedCrossRefGoogle Scholar
  35. 35.
    Shirakawa, T., S. Ko, T. Gardner, J. Cheon, T. Miyamoto, A. Gotoh, L. Chung, and C. Kao. 1998. In vivo suppression of osteosarcoma pulmonary metastasis with intravenous osteocalcin promoter-based toxic gene therapy. Cancer Gene Ther. 5: 274–280.PubMedGoogle Scholar
  36. 36.
    Simons, J. W., E. Jaffee, C. Weber, H. Levitsky, W. Nelson, M. Carducci, et al. 1997. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res. 57: 1537–1546.PubMedGoogle Scholar
  37. 37.
    Simons, J. W. and B. Mikhak. 1998. Ex-vivo gene therapy using cytokine-transduced tumor vaccines: molecular and clinical pharmacology. Semin. Oncol. 25: 661–676.PubMedGoogle Scholar
  38. 38.
    Simons, J. W., B. Mikhak, J. Chang, A. DeMarzo, M. Carducci, M. Lim, et al. 1999. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. 59: 5160–5168.PubMedGoogle Scholar
  39. Small, E. J., D. Reese, and N. Vogelzang. 1999. Hormone-refractory prostate cancer: an evolving standard of care. Semin. Oncol. (5 Suppl. 17) 266: 1–7.Google Scholar
  40. 40.
    Thurnher, M., C. Reiser, L. Holtl, et al. 1998. Dendritic cell based immunotherapy of renal cell carcinoma. Urol. Int. 61: 67–71.PubMedCrossRefGoogle Scholar
  41. 41.
    Troy, A. J., P. Davidson, C. Atkinson, et al. 1999. CD1A dendritic cells predominate in transitional cell carcinoma of bladder and kidney but are minimally activated. J. Urol. 161: 1962–1967.PubMedCrossRefGoogle Scholar
  42. 42.
    Vieweg, J., F. Rosenthal, R. Bannerji, W. Heston, W. Fair, B. Gansbacher, and E. Gilboa. 1994. Immunotherapy of prostate cancer in the Dunning rat model: use of cytokine gene modified tumor vaccines. Cancer Res. 54: 1760–1765.PubMedGoogle Scholar
  43. 43.
    Walker, J. R., K. McGeagh, P. Sundaresan, T. Jorgensen, S. Rabkin, and R. Martuza. 1999. Local and systemic therapy of human prostate adenocarcinoma with the conditionally replicating herpes simplex virus vector G207. Hum. Gene Ther. 10: 2237–2243.PubMedCrossRefGoogle Scholar
  44. 44.
    Whitsett, J. A., C. Dey, B. Stripp, et al. 1992. Human cystic fibrosis transmembrane conductance regulator directed to respiratory epithelial cells of transgenic mice. Nat. Genet. 2: 13–20.PubMedCrossRefGoogle Scholar
  45. 45.
    Yu, D. C., Y. Chen, M. Seng, J. Dilley, and D. Henderson. 1999. The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xeno-grafts. Cancer Res. 59: 4200–4203.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Fernando Ferrer
  • Jonathan W. Simons
  • Ronald Rodriguez

There are no affiliations available

Personalised recommendations