Stromal-Epithelial Interaction

From Bench to Bedside
  • Leland W. K. Chung
  • Haiyen E. Zhau
Part of the Contemporary Cancer Research book series (CCR)


Even as we hail the arrival of the 21st century, we must realize that prostate cancer and prostate cancer metastasis will soon threaten a greater percentage of the US population than ever before (43). Prostate cancer and all its associated costs will be on the rise in the next decades, impacting the health industry and the productivity of the general economy as the baby boomers of World War II add to the general trends of the aging population. Faced with this uncertain future, the NIH and Congress have increased funding for prostate cancer research in recent years in the expectation that researchers will conduct translational research from bench to bedside. The opportunity exists to reduce the incidence of prostatic diseases through innovative prevention trials, to delay disease progression, and to treat men with hormone refractory, recurrent, and metastatic lymph node or bone diseases by specific hormonal, radiation, and chemotherapeutic strategies with clearly defined molecular targets. Future endeavors to identify additional critical molecular targets and develop therapeutic approaches exploiting these targets and processes have begun. Our intentions here are to review and summarize:
  1. 1.

    Our past research developing a molecular understanding of stromal and epithelial interaction in prostate growth and development.

  2. 2.

    The establishment of human prostate cancer progression models addressing the reciprocal roles of stromal and epithelial interaction and the expression by tumor epithelium of androgen independent and metastatic characteristics in host animals.

  3. 3

    The use of human prostate cancer models to screen for therapeutic agents that can block local tumor growth and its distant metastases.

  4. 4.

    The dissection of genetic and phenotypic changes of prostate cancer cells during disease progression, and the categorization and validation of novel biomarkers to predict clinical prostate cancer development and disease progression, and

  5. 5.

    The designing of Phase I clinical trials, based on preclinical animal studies, to translate the findings from bench to the bedside for therapeutic targeting of men who have hormone-refractory primary prostate cancer and metastases to lymph nodes and skeleton.



Prostate Cancer Androgen Receptor Prostate Cancer Cell Prostate Tumor Human Prostate Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abruzzese, R. V., D. Godin, M. Burcin, V. Mehta, M. French, Y. Li, 1999. Ligand-dependent regulation of plasmid-based transgene expression in vivo. Human Gene Therapy 10: 1499–1507.PubMedCrossRefGoogle Scholar
  2. 2.
    Akakura, K., N. Bruchovsky, S. L. Goldenberg, P. S. Rennie, A. R. Buckley, and L. D. Sullivan. 1993. Effect of intermittent androgen suppression on androgen-dependent tumors: apoptosis and serum prostate-specific antigen. Cancer 71: 2782.PubMedCrossRefGoogle Scholar
  3. 3.
    Arap, W., R. Pasqualini, and E. Ruoslahti. 1998. Cancer treatment by targeting drug delivery to tumor vasculature in a mouse model. Science 279: 377–380.PubMedCrossRefGoogle Scholar
  4. 4.
    Barrack, E. R. and D. S. Coffey. 1982. Biologic properties of the nuclear matrix: steroid hormone binding. Recent Prog. Horm. Res. 38: 133–195.PubMedGoogle Scholar
  5. 5.
    Baselga, J., L. Norton, J. Albanell, Y. M. Kim, and J. Mendelsohn. 1998. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res. 58: 2825–2831.PubMedGoogle Scholar
  6. 6.
    Bayne, C. W., F. Donnelly, K. Chapman, P. Bollina, A. C. Buck, P. Bollina, 1998. A novel co-culture model for benign prostatic hyperplasia expressing both isoforms of 5-reductase. J. Clin. Endocrinol. Metab. 83: 206–213.PubMedCrossRefGoogle Scholar
  7. 7.
    Berezney, R. and D. S. Coffey. 1975. Nuclear protein matrix: association with newly synthesized DNA. Science 189: 291–293.PubMedCrossRefGoogle Scholar
  8. 8.
    Bhatia-Gaur R., A. A. Donjacour, P. J. Sciavolino, M. Kim, N. Desai, P. Young, 1999. Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 13: 966–977.PubMedCrossRefGoogle Scholar
  9. 9.
    Brooks, P. C., A. M. P. Montgomery, M. Rosenfeld, 1994. Integrin av(33 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164.PubMedCrossRefGoogle Scholar
  10. 10.
    Bruchovsky N., R. Snoek, P. S. Rennie, K. Akakura, S. L. Goldenberg, and M. Gleave. 1996. Control of tumor progression by maintenance of apoptosis. Prostate Suppl. 6: 13–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Camps, J. L., S. M. Chang, T. C. Hsu, M. R. Freeman, S. J. Hong, H. Y. E. Zhau, 1990. Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc. Natl. Acad. Sci. USA 87 (1): 75–79.PubMedCrossRefGoogle Scholar
  12. 12.
    Chang, S.-M. and L. W. K. Chung. 1989. Interaction between prostatic fibroblast and epithelial cells in culture: role of androgen. Endocrinology 125 (5): 2719–2727.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen, M. E., S. H. Lin, L. W. K. Chung, and R. A. Sikes. 1998. Isolation and characterization of PAGE-1 and GAGE-7. J. Biol. Chem. 273: 17, 618–17, 625.Google Scholar
  14. 14.
    Chen, T., R. W. Cho, P. J. Stork, and M. J. Weber. 1999. Elevation of cyclic adenosine 3,5-monophosphate potentiates activation of mitogen-activated protein kinase by growth factors in LNCaP prostate cancer cells. Cancer Res. 59: 213–218.Google Scholar
  15. 15.
    Chung, L. W. K. and R. Davis. 1996. Prostate epithelial differentiation is dictated by its surrounding stroma. Mol. Biol. Rep. 23: 13–19.PubMedCrossRefGoogle Scholar
  16. 16.
    Chung, L. W. K., M. E. Gleave, J. T. Hsieh, 1991. Reciprocal mesenchyme-epithelial interaction affecting prostate tumor growth and hormonal responsiveness. Cancer Surv. 11: 91–121.PubMedGoogle Scholar
  17. 17.
    Chung, L. W. K. 1993. Implications of stromal-epithelial interaction in human prostate cancer growth, progression and differentiation. Semin. Cancer Biol. 4: 183–192.PubMedGoogle Scholar
  18. 18.
    Chung, L. W. K., H. Y. E. Zhau, and T. T. Wu. 1997. Development of human prostate cancer models for chemoprevention and experimental therapeutics studies. J. Cell. Biochem. (Suppl. 28/29): 174–181.Google Scholar
  19. 19.
    Chung, L. W. K., N. G. Anderson, B. L. Neubauer, G. R. Cunha, T. C. Thompson, and A. K. Rocco. 1981. Tissue interactions in prostate development: roles of sex steroids, in Prostatic Cells: Structure and Function, Alan R. Liss, New York, 177–203.Google Scholar
  20. 20.
    Clemens, P. R., S. Kochanek, Y. Sunada, S. Chan, H. H. Chen, K. P. Campbell, 1996. In vitro muscle gene transfer of full length dystrophies with an adenoviral vector that lacks all viral genes. Gene Ther. 3: 965–972.PubMedGoogle Scholar
  21. 20a.
    Cox, M. E., P. D. Deeble, S. Lakhani, and S. J. Parsons. 1999. Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression. Cancer Res. 59: 3821–3830.PubMedGoogle Scholar
  22. 21.
    Cunha, G. R., L. W. K. Chung, J. M. Shannon, O. Taguchi, and H. Fujii. 1983. Hormone-induced morphogenesis and growth: role of mesenchymal-epithelial interactions. Recent Prog. Horm. Res. 39: 559–598.PubMedGoogle Scholar
  23. 22.
    Cunha, G. R. and L. W. K. Chung. 1981. Stromal-epithelial interactions. I. Introduction of prostatic phenotype of urothelium of testicular feminized (Tfm/y) mice. J. Steroid Biochem. 14: 1317–1321.PubMedCrossRefGoogle Scholar
  24. 23.
    Curatolo, C., G. M. Ludovico, M. Correal, A. Pagliovolo, I. Abbate, M. E. Cirrilo, 1992. Advanced prostate follow-up with PSA, PAP, osteocalcin and bone alkaline phosphatase. Eur. Urol. 1: 105–107.Google Scholar
  25. 23a.
    El Etreby, U. F., Y. Liang, M. H. Johnson, and R. W. Lewis. 2000. Antitumor activity of mifepristone in the human LNCaP, LNCap-C4 and LNCap-C4–2 prostate cancer models in nude mice. Prostate 42: 99–106.PubMedCrossRefGoogle Scholar
  26. 24.
    Eliceiri, B. P. and D. A. Cheresh. 1999. The role of av integrins during angiogenesis: insights into potential mechanism of action and clinical development. J. Clin. Investig. 103: 1227–1230.PubMedCrossRefGoogle Scholar
  27. 25.
    Gao, J. and J. T. Isaacs. 1998. Development of an androgen receptor-null model for identifying the initiation site for androgen stimulation of proliferation and suppression of programmed (apoptotic death) death of PC-82 human prostate cancer cells. Cancer Res. 58: 3299–3306.PubMedGoogle Scholar
  28. 26.
    Gardner, T. A., S. C. Ko, C. Kao, T. Shirakawa, J. Cheon, A. Gotoh, 1998. Exploiting stromal-epithelial interaction for model development and new strategies of gene therapy for prostate cancer and osteosarcoma metastases. Gene Ther. Mol. Biol. 2: 41–58.Google Scholar
  29. 27.
    Gleave, M. E. and L. W. K. Chung. 1995. Stromal-epithelial interaction affecting prostatic tumour growth and humoral responsiveness. Endocrine-Related Cancer 2: 243–265.CrossRefGoogle Scholar
  30. 28.
    Gleave, M. E., J. T. Hsieh, A. C. von Eschenbach, and L. W. K. Chung. 1992. Prostate and bone fibroblasts induce human prostate cancer growth in vivo: Implications for bidirectional tumor-stromal cell interaction in prostate carcinoma growth and metastasis. J. Urol. 147: 1151–1159.PubMedGoogle Scholar
  31. 29.
    Goldman, C. K., B. E. Rogers, J. T. Douglas, B. A. Sosnowski, W. Ying, G. P. Siegal, 1997. Targeted gene delivery to Kaposi’s sarcoma cells via the fibroblast growth factor receptor. Cancer Res. 57: 1447–1451.PubMedGoogle Scholar
  32. 30.
    Gotoh, A., S. C. Ko, T. Shirakawa, J. Cheon, C. Kao, T. Miyamoto, 1998. Development of prostate-specific antigen promoter-based gene therapy for androgen independent human prostate cancer. J. Urol. 160: 220–229.PubMedCrossRefGoogle Scholar
  33. 31.
    Gotoh, A., C. Kao, S. C. Ko, K. Hamada, T. J. Liu, and L. W. K. Chung. 1997. Cytotoxic effects of recombinant adenovirus p53 and cell-cycle regulator genes (p21WAFI/°’Pl and p161Nx4) in human prostate cancers. J. Urol. 158: 636–641.PubMedCrossRefGoogle Scholar
  34. 32.
    Grant, E. S., K. W. Batchelor, and F. K. Habib. 1996. Androgen-independence of primary epithelial cell cultures of the prostate is associated with a down-regulation of androgen receptor gene expression. Prostate 29: 339–349.PubMedCrossRefGoogle Scholar
  35. 32a.
    Greenberg, N. M., F. J. DeMayo, M. J. Finegold, D. Medina, 1995. Prostate cancer in a transgenic mouse. Proc. Natl. Acad. Sci. 92: 3439–3443.PubMedCrossRefGoogle Scholar
  36. 33.
    Herman, J. R., H. L. Adler, E. Aguilar-Cordova, A. Rojas-Martinez, S. Woo, T. L. Timme, 1999. In situ gene therapy for adenocarcinoma of the prostate: a phase 1 clinical trial. Human Gene Therapy 10: 1239–1249.Google Scholar
  37. 34.
    Hitt, M. M., R. J. Parks, and F. L. Graham. 1999. Structure and genetic organization of adenovirus vectors, in The Development of Human Gene Therapy, Cold Spring Harbor Laboratory, NY, pp. 61–86.Google Scholar
  38. 35.
    Hyytinen, E.-R., G. N. Thalmann, H. Y. E. Zhau, R. Karhu, 0.-P. Kallioniemi, L. W. K. Chung, 1997. Genetic changes associated with the acquisition of androgen independent growth, tumorigenicity and metastatic potential in a prostate cancer model. Br. J. Cancer 75: 190–195.PubMedCrossRefGoogle Scholar
  39. 36.
    Ido, A., 1995. Gene therapy for hepatoma cells using a retrovirus vector carrying herpes simplex virus thymidine kinase gene under the control of human alpha-fetoprotein gene promoter. Cancer Res. 55: 105–109.Google Scholar
  40. 37.
    Isaacs, J. T. 1999. The biology of hormone refractory prostate cancer. Urol. Clin. N. Am. 26: 263–273.CrossRefGoogle Scholar
  41. 38.
    Knudsen, K. E., W. K. Cavenee, and K. C. Arden. 1999. D-type cyclins complex with androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res. 59: 2297–2301.PubMedGoogle Scholar
  42. 39.
    Ko, S.-C., A. Tord, S.-J. Kim, T. A. Gardner, A. Kwon, H. K. Kim, 2000. The treatment of malignant meningiomas using osteocalcin promoter based gene therapy in experimental models. Neurosurgery (submitted).Google Scholar
  43. 40.
    Ko, S.-C., J. Cheon, C. Kao, A. Gotoh, T. Shirakawa, R. A. Sikes, 1996. Osteocalcin promoter-based toxic gene therapy for the treatment of osteosarcoma in experimental models. Cancer Res. 56: 4614–4619.PubMedGoogle Scholar
  44. 41.
    Koeneman, K. S., C. Kao, S. C. Ko, L. Yang, Y. Wada, D. A. Kallmes, 1999. Osteocalcin directed gene therapy for prostate cancer bone metastasis. World J. Urol. (in press).Google Scholar
  45. 42.
    Koeneman, K. S., F. Yeung, and L. W. K. Chung. 1999. Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39: 246–261.PubMedCrossRefGoogle Scholar
  46. 43.
    Landis, S. H., T. Murray, S. Bolden, and P. A. Wingo. 1999. Cancer Statistics. Cancer J. Clin. 49: 8–31.CrossRefGoogle Scholar
  47. 44.
    Levy, R. J., C. Gundberg, and R. Scheinman. 1983. The identification of the vitamin K-dependent bone protein osteocalcin as one of the a-carboxyglutamic acid containing proteins present in calcified atherosclerotic plaque and mineralized heart valves. Atherosclerosis 46: 49–56.PubMedCrossRefGoogle Scholar
  48. 45.
    McCormick, F. 1999. Cancer therapy based on p53. Cancer J. Scientif. Am. 5: 139–144.Google Scholar
  49. 46.
    Miyake, H., A. Tolcher, and M. Gleave. 1999. Anti-sense bc12 oligodeoxynucleotides inhibit progression to androgen-independence after castration in a Shionogi tumor model. Cancer Res. 59: 4030–4034.PubMedGoogle Scholar
  50. 47.
    Nagy, A., 1998. Synthesis and biologic evaluation of cytotoxic analogs of somatostatin. Pro. Natl. Acad. Sci. USA 95: 1794–1799.CrossRefGoogle Scholar
  51. 48.
    Newton, S. A., E. J. Reeves, H. Gralnick, S. Mohla, 1995. Inhibition of experimental metastasis of human breast carcinoma cells in athymic nude mice by anti-a5ß1 fibronectin receptor integrin antibodies. Int. J. Oncol. 6: 1063–1070.PubMedGoogle Scholar
  52. 49.
    Ou, Y., T. A. Gardner, S. C. Ko, H. Y. E. Zhau, C. Kao, and L. W. K. Chung. 1999. Expression of osteocalcin in canine metastatic prostate cancer: an ideal prostate cancer animal model for osteocalcin promoter-based toxic gene therapy (AUA 94th Annual Meeting, Dallas, TX), p. 131.Google Scholar
  53. 50.
    Panda, D., H. P. Miller, K. Islam, and L. Wilson. 1997. Stabilization of microtubule dynamics by estramustine by binding to novel site in tubulin: a possible mechanistic basis for its anti-tumor action. Proc. Natl. Acad. Sci. USA 94: 10,560–10, 564.Google Scholar
  54. 51.
    Pang, S., S. Taneja, K. Dardashti, P. Cohan, R. Kaboo, M. Sokoloff, 1995. Prostate tissue specificity of the prostate-specific antigen promoter isolated from a patient with prostate cancer. Human Gene Ther. 6: 1417.CrossRefGoogle Scholar
  55. 52.
    Pasqualini, R., E. Koivunen, and E. Ruoslahti. 1997. av integrins as receptors for tumor targeting by circulating ligands. Nat. Biotechnol. 15: 542–546.Google Scholar
  56. 52a.
    Perez-Stable, C., N. H. Altman, P. P. Mehta, L. J. Deftos, and B. A. Roos. 1997. Prostate cancer progression, metastasis, and gene expression in transgenic mice. Cancer Res. 57: 900–906.PubMedGoogle Scholar
  57. 53.
    Pienta, K. J. and D. C. Smith. 1997. Paclitaxel, estramustine, and etoposide in the treatment of hormone-refractory prostate cancer. Semin. Oncol. 24(Supp1.15): S-15-S-77.Google Scholar
  58. 54.
    Podsypanina, K., L. H. Ellenson, A. Nemes, J. Gu, M. Tamura, K. M. Yamada, 1999. Mutations of Pten/Mmac 1 in mice causes neoplasia in multiple organ systems. Proc. Natl. Acad. Sci. USA 96: 1563–1568.PubMedCrossRefGoogle Scholar
  59. Replogle-Schwab, R., K. J. Pienta, and R. H. Getzenberg. 1996. The utilization of nuclear matrix proteins for cancer diagnosis. Crit. Rev. in Eukaryot. Gene Expr. 6: 103–113.Google Scholar
  60. 55a.
    Robertson, C. N., K. M. Roberson, A. Pinero, J. M. Jaynes, and D. F. Paulson. 1998. Peptidyl membrane-interactive molecules are cytotoxic to prostate cancer cells in vitro. World J. Urol. 16: 405–409.PubMedCrossRefGoogle Scholar
  61. 56.
    Ross, F. P., J. Chappel, J. I. Alvarez, D. Sander, W. T. Butler, M. C. Farach-Carson, 1993. Interactions between the bone matrix proteins OPN and BSP and the osteoclast integrin av(33 potentiate bone resorption. J. Biochem. (Tokyo) 268: 9901–9907.Google Scholar
  62. 57.
    Rowley, D. R. 1999. What might a stromal response mean to prostate cancer progression? Cancer Metast. Rev. 17: 411–419.CrossRefGoogle Scholar
  63. 58.
    Saunder, J. and C. M. Tarby. 1999. Opportunities for novel therapeutic agents acting at chemokine receptors. Drug Discovery Today 4: 80–92.CrossRefGoogle Scholar
  64. 59.
    Scher, H. I., Z. F. Zhang, L. Cohen, and W. K. Kelly. 1995. Hormonally relapsed prostate cancer: lessons from the flutamide withdrawal syndrome. Advances in Urol. 8: 61–95.Google Scholar
  65. 60.
    Scher, H. I. and L. W. K. Chung. 1994. Bone metastases: Improving the Therapeutic Index, in Seminars in Oncology on Prostate Cancer 21: 630–656.Google Scholar
  66. 61.
    Schreiber-Aqus, N., Y. Meng, T. Hoang, H. Hou, K. Chen, R. Greenberg, 1998. Role of Mxi-1 in aging organ systems and the regulation of normal and neoplastic growth. Nature 393: 483–487.CrossRefGoogle Scholar
  67. 62.
    Simons, J. W. and F. F. Marshall. 1998. The future of gene therapy in the treatment of urologic malignancies. Urol. Clin. N. Am. 25: 23: 28.Google Scholar
  68. 63.
    Sokoloff, M. H. and L. W. K. Chung. 1999. Targeting angiogenic pathways involving tumor-stromal interaction to treat advanced human prostate cancer. Cancer Metastasis 17: 307–315.CrossRefGoogle Scholar
  69. 64.
    Steiner, M. S. and J. R. Gingrich. 2000. Gene therapy for prostate cancer: where are we now? J. Urol. (in press)Google Scholar
  70. 65.
    Thalmann, G. N., R. A. Sikes, R. E. Devoll, J. A. Kiefer, R. Markwalder, I. Klima, 1999. Osteopontin: possible role in prostate cancer progression. Clin. Cancer Res. 5: 2271–2277.PubMedGoogle Scholar
  71. 66.
    Thalmann, G. N., R. A. Sikes, T. T. Wu, A. DeGeorges, S.-M. Chang, M. Ozen, 2000. The LNCaP progression model of human prostate cancer: Androgen-independence and osseous metastasis. The Prostate 44: 91–103.Google Scholar
  72. 67.
    Thalmann, G., P. Anezinis, S.-M. Chang, H. Y. E. Zhau, C. Hall, S. Pathak, 1994. The LNCaP mouse model of human prostate cancer: androgen independent cancer progression and osseous metastasis. Cancer Res. 54: 2577–2581.Google Scholar
  73. 68.
    Thalmann, G. N., P. Anezinis, R. Devoll, C. Farach-Carson, and L. W. K. Chung. 1997. Experimental approaches to skeletal metastasis of human prostate cancer, in Principles and Practice of Genitourinary Oncology, pp. 409–416, Lippincott and Raven, PA.Google Scholar
  74. 69.
    Tilley, W. D., G. Buchanan, T. E. Hickey, and J. M. Bentel. 1996. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin. Cancer Res. 2: 277–285.PubMedGoogle Scholar
  75. 70.
    Tlsty, T. D. 1998. Cell-adhesion dependent influences on genomic instability and carcinogenesis. Curr. Opin. Cell Biol. 10: 647–653.PubMedCrossRefGoogle Scholar
  76. 71.
    Valkov, N. I., J. L. Gump, and D. M. Sullivan. 1997. Quantitative immunofluorescence and immunoelectron microscopy of the topoismerage II-associated with nuclear matrices from wild-type drug-resistant Chinese hamster ovary cell lines. J. Cell. Biochem. 67: 112–130.PubMedCrossRefGoogle Scholar
  77. 72.
    Vile, R. G. and I. R. Hart. 1993. Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res. 53: 3860–3864.PubMedGoogle Scholar
  78. 73.
    Visakorpi, T., E. Hyytinen, P. Koivisto, M. Tanner, R. Keinanen, C. Palmberg, 1995. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet. 9: 401–406.Google Scholar
  79. 74.
    Vldscholte, J., C. Ris-Stalpers, G. G. J. M. Kuiper, 1990. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to antiandrogens. BBRC 175: 534–543.Google Scholar
  80. 75.
    Waltregny, D., A. Bellaheene, I. V. Riet, L. W. Fisher, M. Young, P. Feunandez, 1998. Prognostic value of bone sialoprotein expression in clinically localized human prostate cancer. J. Natl. Cancer Inst. 90: 1000–1007.PubMedCrossRefGoogle Scholar
  81. 76.
    Wood, D. W., W. Wu, G. Belfort, 1999. A genetic system yields self-cleaving integrins for bioseparations. Nat. Biotech. 17: 889–892.CrossRefGoogle Scholar
  82. 77.
    Wu, H. S., J. T. Hsieh, M. E. Gleave, N. M. Brown, S. Pathak, and L. W. K. Chung. 1994. Derivation of androgen independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int. J. Cancer 57: 406–412.Google Scholar
  83. 78.
    Wu, T. T., R. A. Sikes, Q. Cui, G. N. Thalmann, C. Kao, C. F. Murphy, 1998. Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int. J. Cancer 77: 887–894.Google Scholar
  84. 79.
    Yoshida, Y. and H. Hamada. 1997. Adenovirus-mediated inducible gene expression through tetracycline-controllable transactivator with nuclear localization signal. Biochem. Biophys. Res. Commun. 230: 426–430.PubMedCrossRefGoogle Scholar
  85. 80.
    Young, K., 1998. Identification of a calcium channel modulator using a high-throughput yeast two-hybrid screen. Nat. Biotechnol. 16: 946–950.PubMedCrossRefGoogle Scholar
  86. 81.
    Yu, D. C., Y. Chen, M. Seng, J. Dilley, and D. R. Henderson. 1999. The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res. 59: 4200–4203.PubMedGoogle Scholar
  87. 82.
    Zhao, M., H. K. Kleinman, M. Mokotoff. 1994. Synthetic laminin-like peptides and pseudopeptides as potential anti-metastatic agents. J. Med. Chem. 37: 3383–3388.PubMedCrossRefGoogle Scholar
  88. 83.
    Zhau, H. Y. E., S. M. Chang, B. Q. Chen, Y. Wang, H. Zhang, C. Kao, 1996. Androgen-repressed phenotype in human prostate cancer. Proc. Natl. Acad. Sci. USA 93: 15,152–15, 157.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Leland W. K. Chung
  • Haiyen E. Zhau

There are no affiliations available

Personalised recommendations