Advertisement

Targeting Antiapoptotic Genes Upregulated by Androgen Withdrawal Using Antisense Oligodeoxynucleotides to Enhance Androgen-and Chemo-Sensitivity in Prostate Cancer

  • Martin E. Gleave
  • Hideaki Miyake
  • Colleen Nelson
  • Paul Rennie
  • Simon Leung
Part of the Contemporary Cancer Research book series (CCR)

Abstract

Androgen withdrawal is the only effective form of systemic therapy for men with advanced disease, producing symptomatic and/or objective response in 80% of patients. Unfortunately, androgen independent (AI) progression and death occurs within a few years in the majority of these cases (6). Prostate cancer is highly chemoresistant, with objective response rates of 10% and no demonstrated survival benefit (28). Hormone refractory prostate cancer (HRPC) is therefore the main obstacle to improving the survival and quality of life in patients with advanced disease, and novel therapeutic strategies that target the molecular basis of androgen and chemoresistance are required.

Keywords

Prostate Cancer LNCaP Cell Human Prostate Cancer Hormone Refractory Prostate Cancer Androgen Ablation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boise, L., M. Gonzalez-Garcia, C. Postema, L. Ding, T. Lindsten, L. Turka, 1993. bcl-x, a bc1–2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597–608.Google Scholar
  2. 2.
    Bruchovsky N., P. S. Rennie, A. J. Coldman, S. L. Goldenberg, M. To, and D. Lawson. 1990. Effects of androgen withdrawal on the stem cell composition of the Shionogi carcinoma. Cancer Res. 50: 2275–2282.PubMedGoogle Scholar
  3. 3.
    Colombel, M., F. Symmans, S. Gil, K. M. O’Toole, D. Choplin, and M. Benson. 1993. Detection of the apoptosis-suppressing oncoprotein Bc1–2 in hormone-refractory human prostate cancers. Am. J. Pathol 143: 390–400.PubMedGoogle Scholar
  4. 4.
    Craft, N., Y. Shostak, M. Carey, and C. Sawyers. 1999. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat. Med 5: 280–285.PubMedCrossRefGoogle Scholar
  5. 5.
    Crooke, S. T. 1993. Therapeutic applications of oligonucleotides. Annu. Rev. Pharmacol. Toxicol 32: 329–376.CrossRefGoogle Scholar
  6. 6.
    Denis, L. and G. P. Murphy. 1993. Overview of phase III trials on combined androgen treatment in patients with metastatic prostate cancer. Cancer 72: 3888–3895.PubMedCrossRefGoogle Scholar
  7. 7.
    Figueroa, J. A., S. De Raad, L. Tadlock, V. O. Speights, and J. J. Rinehart. 1998. Differential expression of insulin-like growth factor binding proteins in high versus low Gleason score prostate cancer. J. Urol 159: 1379–1383.PubMedCrossRefGoogle Scholar
  8. 8.
    Gleave, M. E. and J. T. Hsieh. 1997. Animal models in prostate cancer, in The Principles and Practice of Genitourinary Oncology ( Raghavan, D., H. Scher, S. Leibel, and P. H. Lange, eds.), Philadelphia: J B Lippincott Co., Philadelphia, pp. 367–378.Google Scholar
  9. 9.
    Gleave, M. E., J. T. Hsieh, H.-C. Wu, and L. W. K. Chung. 1992. Serum PSA levels in mice bearing human prostate LNCaP tumor are determined by tumor volume and endocrine and growth factors. Cancer Res. 52: 1598–1605.PubMedGoogle Scholar
  10. 10.
    Gleave, M. E., A. Tolcher, H. Miyake, E. Beraldi, and J. Goldie. 1999. Antisense Bc1–2 oligos delay progression to androgen-independence after castration in the LNCaP prostate tumor model. Clinical Cancer Research 5: 2891–2898.PubMedGoogle Scholar
  11. 11.
    Halder, S., A. Basu, and C. M. Croce. 1997. Bc12 is the guardian of microtubule integrity. Cancer Res. 57: 229–233.Google Scholar
  12. 12.
    Ho, S-H. 1998. Lack of association between enhanced TRPM-2/clusterin expression and increased apoptotic activity in sex-hormone-induced prostatic dysplasia of the noble rat. Am. J. Pathol 153: 131–139.PubMedCrossRefGoogle Scholar
  13. 13.
    Horoszewicz, J., S. Leong, T. Chu, Z. Wajsman, M. Friedman, L. Papsidero, 1980. The LNCaP cell line-a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res 37: 115–132.PubMedGoogle Scholar
  14. 14.
    Isaacs, J. T., N. Wake, D. S. Coffey, and A. A. Sandberg. 1982. Genetic instability coupled to clonal selection as a mechanism for progression in prostatic cancer. Cancer Res. 42: 2353.PubMedGoogle Scholar
  15. 15.
    Jansen, B., H. Schlagbauer-Wadi, B. D. Brown, R. N. Bryan, A. van Elsas, and M. Muller. 1998. bc1–2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat. Med 4: 232–234.Google Scholar
  16. 16.
    Jones, J. I. and D. R. Clemmons. 1995. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev 16: 3–34.PubMedGoogle Scholar
  17. 17.
    Krajewska, M., S. Krajewski, J. I. Epstein, A. Shabaik, J. Sauvageot, K. Song, S. Kitada, and J. C. Reed. 1996. Immunohistochemical analysis of bcl-2, bax, bcl-x, and mcl-1 expression in prostate cancer. Am. J. Pathol 148: 1567–1576.PubMedGoogle Scholar
  18. 18.
    Kyprianou, N., H. F. English, and J. T. Isaacs. 1990. Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res. 50: 3748–3753.PubMedGoogle Scholar
  19. 19.
    McDonnell, T. J., P. Troncoso, S. M. Brisby, C. L. Logothetis, L. W. K. Chung, and J. T. Hsieh. 1992. Expression of the protooncogene Bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 52: 6940–6944.PubMedGoogle Scholar
  20. 20.
    Miyake, H., A. Tolcher, and M. E. Gleave. 1999. Antisense Bcl-2 oligodeoxynucleotides delay progression to androgen-independence after castration in the androgen dependent Shionogi tumor model. Cancer Res. 59: 4030–4034.PubMedGoogle Scholar
  21. 21.
    Miyaki, H., A. Tolcher, and M. E. Gleave. 2000. Antisense Bcl-2 oligodeoxynucleotides enhance taxol chemosensitivity and synergistically delays progression to androgen-independence after castration in the androgen dependent Shionogi tumor model. JNCI 92: 34–41.Google Scholar
  22. 22.
    Miyake, H., P. Rennie, C. Nelson, and M. E. Gleave. 2000. TRPM/2 clusterin is an antiapoptotic protein that helps mediate hormone independence in prostate cancer. Cancer Res. 60: 170–176.PubMedGoogle Scholar
  23. 22a.
    Miyake, H., C. Nelson, P. Rennie, M. Gleave. 2000. Overexpression of IGFBP-5 helps accelerate progression to androgen independence in the human prostate LNCaP tumor model through activation of P13K pathway. Endocrinology 141: 2257–2265.PubMedCrossRefGoogle Scholar
  24. 23.
    Monia, B. P., J. F. Johnston, T. Geiger, M. Muller, and D. Fabbro. 1996. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat. Med 2: 668–675.PubMedCrossRefGoogle Scholar
  25. 24.
    Montpetit, M. L., K. R. Lawless, and M. Tennis wood. 1986. Androgen-repressed messages in the rat ventral prostate. Prostate 8: 25–36.PubMedCrossRefGoogle Scholar
  26. 25.
    Nickerson, T., M. Pollak, and H. Huynh. 1998. Castration-induced apoptosis in rat ventral prostate is associated with increased expression of genes encoding insulin-like growth factor binding proteins 2, 3, 4 and 5. Endocrinology 139: 807–810.PubMedCrossRefGoogle Scholar
  27. 26.
    Nickerson, T., H. Miyake, M. E. Gleave, and M. Pollak. 1999. Castration-induced apoptosis of androgen-dependent Shionogi carcinoma is associated with increased expression of genes encoding insulin-like growth factor binding proteins. Cancer Res. 59: 3392–3395.PubMedGoogle Scholar
  28. 27.
    Patterson, R., M. Gleave, E. Jones, J. Zubovits, S. L. Goldenberg, and L. D. Sullivan. 1999. Immunohistochemical analysis of radical prostatectomy specimens after 8 months of neoadjuvant hormone therapy. Mol. Urol 3: 277–286.Google Scholar
  29. 28.
    Oh, W. K. and P. W. Kantoff. 1998. Management of hormone refractory prostate cancer: current standards and future prospects. J. Urol 160: 1220–1229.PubMedCrossRefGoogle Scholar
  30. 29.
    Raffo, A. J., H. Periman, M. W. Chen, J. S. Streitman, and R. Buttyan. 1995. Over-expression of bc1–2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. 55: 4438–4445.PubMedGoogle Scholar
  31. 30.
    Rosenberg, M. E. and J. Silkensen. 1995. Clusterin. Physiologic and pathophysiologic considerations. Int. J. Biochem. Cell. Biol 27: 633–645.PubMedCrossRefGoogle Scholar
  32. 31.
    Saijo, Y., L. Perlaky, H. Wang, and H. Busch. 1994. Pharmacokinetics, tissue distribution, and stability of antisense oligodeoxynucleotide phosphorothioate ISIS 3466 in mice. Oncol. Res 6: 243–249.PubMedGoogle Scholar
  33. 32.
    Sato, T., M. Hanada, S. Bodnig, S. Ine, N. Iwana, L. H. Boise, 1994. Interactions among members of the bcl-2 protein family analysed with a yeast two-hybrid systems. Proc. Nat. Acad. Sci. USA 91: 9238–9242.PubMedCrossRefGoogle Scholar
  34. 33.
    Sato, N., M. D. Sadar, N. Bruchovsky, F. Saatcioglu, P. S. Rennie, S. Sato, 1997. Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between androgen receptor and AP- lc-Jun in the human prostate cancer cell line LN CaP. J. Biol. Chem. 272: 17,485–17, 494.Google Scholar
  35. 34.
    Sensibar, J. A. 1995. Prevention of cell death induced by tumor necrosis factor in a LNCaP cells by overexpression of sulfated glycoprotein-2 (clusterin). Cancer Res. 55: 2431–2437.PubMedGoogle Scholar
  36. 35.
    Smith, M. R., Y. Abubakr, R. Mohammad, T. Xie, M. Hamdan, and A. al-Katib. 1995. Antisense oligodeoxyribonucleotide down-regulation of bcl-2 gene expression inhibits growth of the low-grade non-Hodgkin’s lymphoma cell line WSU-FSCCL. Cancer Gene Ther. 2: 207–212.PubMedGoogle Scholar
  37. 36.
    Tsujimoto, Y. and C. M. Croce. 1986. Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc. Nat. Acad. Sci. USA 83: 5214–5218.PubMedCrossRefGoogle Scholar
  38. 37.
    Webb, A. 1997. BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349: 1137–1141.PubMedCrossRefGoogle Scholar
  39. 38.
    Zieger, A., G. H. Luedke, D. Fabbro, K.-H. Altman, R. A. Stahel, and U. ZangemeisterWittke. 1997. Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the BcI-2 coding sequence. JNCI 89: 1027–1036.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Martin E. Gleave
  • Hideaki Miyake
  • Colleen Nelson
  • Paul Rennie
  • Simon Leung

There are no affiliations available

Personalised recommendations