Molecular Pathways Underlying Prostate Cancer Progression

The Role of Caveolin-1
  • Timothy C. Thompson
  • Terry L. Timme
  • Likun Li
  • Chengzen Ren
  • Alexei Goltsov
  • Salahaldin Tahir
  • Guang Yang
Part of the Contemporary Cancer Research book series (CCR)


In recent years, efforts to detect and treat prostate cancer have increased dramatically throughout the United States, resulting in approximately a threefold increase in the reported incidence of the disease and a dramatic rise in the number of radical prostatectomies and irradiation therapy treatments (20,24).The incidence of prostate cancer has begun to decline (a probable result of saturation by prostate cancer screening), and age-adjusted mortality from prostate cancer (as well as other malignancies) has also declined by approx 5% from 1990 to 1995 (20,39). Unfortunately, the mortality rate remains exceedingly high—a somewhat surprising condition in light of the increased utilization of potentially curative treatment modalities over the last decade. One possible explanation for the low impact of prostate cancer therapy thus far is that occult metastases were present at the time of treatment. The treatments currently used for presumably localized disease are indeed exclusively local treatments that are designed to ablate the primary tumor either surgically or through radiation. Metastatic disease at the time of treatment would therefore continue to progress. The reported failure rate, within 5 yr as indicated by rising prostate specific antigen levels for patients undergoing radical prostatectomy, ranges from 20% (30) to 57% (55), indicating the presence of either local tumor recurrence and/or occult metastasis at the time of treatment. The assessment of prostate cancer in regard to stage of disease is complicated by the lack of reliable, specific tests that differentiate localized disease from early metastatic disease, and the highly complex presentation of the local tumor.


Benign Prostatic Hyperplasia Prostate Cancer Cell Radical Prostatectomy Metastatic Prostate Cancer Occult Metastasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bubendorf, L., J. Kononen, P. Koivisto, P. Schraml, H. Moch, T. C. Gasser, et al. 1999. Survey of gene amplifications during prostate cancer progression by high-throughput fluorescence in situ hybridization on tissue microarrays. Cancer Res. 59: 803–806.PubMedGoogle Scholar
  2. 2.
    Buttyan, R., I. S. Sawczuk, M. C. Benson, J. D. Siegal, and C. A. Olsson. 1987. Enhanced expression of the c-myc protooncogene in high-grade human prostate cancers. Prostate 11: 327–337.PubMedCrossRefGoogle Scholar
  3. 3.
    Coffey, D. S. 1986. Endocrine control of normal and abnormal growth of the prostate, in Urologic Endocrinology, (Rajfer J., ed.), WB Saunders, Philadelphia, PA, pp. 170–195.Google Scholar
  4. 4.
    Egawa, S., D. Kadmon, G. J. Miller, P. T. Scardino, and T. C. Thompson. 1992. Alterations in mRNA levels for growth-related genes after transplantation into castrated hosts in oncogene-induced clonal mouse prostate carcinoma. Mol. Carcinog. 5: 52–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Engelman, J. A., C. C. Wykoff, S. Yasuhara, K. S. Song, T. Okamoto, and M. P. Lisanti. 1997. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J. Biol. Chem. 272: 16,374–16, 381.Google Scholar
  6. 6.
    Engelman, J. A., X. L. Zhang, F. Galbiati, and M. P. Lisanti. 1998. Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav- 1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7g31). FEBS Lett. 429: 330–336.PubMedCrossRefGoogle Scholar
  7. 7.
    Epstein, J., M. Carmichael, A. Partin, and P. Walsh. 1994. Small high grade adenocarcinoma of the prostate in radical prostatectomy specimens performed for nonpalpable disease: pathogenetic and clinical implications. J. Urol. 151: 1587–1592.PubMedGoogle Scholar
  8. 8.
    Fielding, P. E. and C. J. Fielding. 1995. Plasma membrane caveolae mediate the efflux of cellular free cholesterol. Biochemistry 34: 14, 288–14, 292.Google Scholar
  9. 9.
    Fleming, W. H., A. Hamel, R. MacDonald, E. Ramsey, N. M. Pettigrew, B. Johnston, et al. 1986. Expression of the c-myc protooncogene in human prostatic carcinoma and benign prostatic hyperplasia. Cancer Res. 46: 1535–1538.PubMedGoogle Scholar
  10. 10.
    Galbiati, F., D. Volonte, J. A. Engelman, G. Watanabe, R. Burk, R. G. Pestell, et al. 1998. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J. 17: 6633–6648.PubMedCrossRefGoogle Scholar
  11. 11.
    Gleason, D. 1997. Histologic grading and clinical staging of prostatic carcinoma, in Urologic pathology: The Prostate, (Tannenbaum M., ed.), Lea & Febiger, Philadelphia, pp. 171–197.Google Scholar
  12. 12.
    Hall, S. J. and T. C. Thompson. 1997. Spontaneous but not experimental metastatic activities differentiate primary tumor-derived vs metastasis-derived mouse prostate cancer cell lines. Clin. Exp. Metastasis 15: 630–638.PubMedCrossRefGoogle Scholar
  13. 13.
    Harder, T. and K. Simons. 1997. Caveolae, DIGs, and the dynamics of sphingolipidcholesterol microdomains. Curr. Opin. Cell Biol. 9: 534–542.PubMedCrossRefGoogle Scholar
  14. 14.
    Hiramatsu, M., M. Kashimata, N. Minami, A. Sato, and M. Murayama. 1988. Androgenic regulation of epidermal growth factor in the mouse ventral prostate. Biochem. Int. 17: 311–317.PubMedGoogle Scholar
  15. 15.
    Huang, D. C. S., L. A. O’Reilly, A. Strasser, and S. Cory. 1997. The anti-apoptosis function of Bc1–2 can be genetically separated from its inhibitory effect on cell cycle entry. EMBO J. 16: 4628–4638.PubMedCrossRefGoogle Scholar
  16. 16.
    Hurlstone, A. F., G. Reid, J. R. Reeves, J. Fraser, G. Strathdee, M. Rahilly, et al. 1999. Analysis of the CAVEOLIN-1 gene at human chromosome 7g31.1 in primary tumours and tumour-derived cell lines. Oncogene 18: 1881–1890.PubMedCrossRefGoogle Scholar
  17. 17.
    Jenkins, R. B., J. Qian, M. M. Lieber, and D. G. Bostwick. 1997. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res. 57: 524–531.PubMedGoogle Scholar
  18. 18.
    Kyprianou, N., H. F. English, and J. T. Isaacs. 1988. Activation of a Ca2+-Mg2+-dependent endonuclease as an early event in castration-induced prostatic cell death. Prostate 13: 103–117.PubMedCrossRefGoogle Scholar
  19. 19.
    Kyprianou, N. and J. T. Isaacs. 1987. Biological significance of measurable androgen levels in the rat ventral prostate following castration. Prostate 10: 313–324.PubMedCrossRefGoogle Scholar
  20. 20.
    Landis, S. H., T. Murray, S. Bolden, and P. A. Wingo. 1999. Cancer Statistics, 1999. CA Cancer J. Clin. 49: 8–31.Google Scholar
  21. 21.
    Lavie, Y., G. Fiucci, and M. Liscovitch. 1998. Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J. Biol. Chem. 273: 32,380–32, 383.Google Scholar
  22. 22.
    Lee, S. W., C. L. Reimer, P. Oh, D. B. Campbell, and J. E. Schnitzer. 1998. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16: 1391–1397.PubMedCrossRefGoogle Scholar
  23. 23.
    Li, J., C. Yen, D. Liaw, K. Podsypanina, S. Bose, S. I. Wang, et al. 1997. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.PubMedCrossRefGoogle Scholar
  24. 24.
    Lu-Yan, G., D. McLarren, J. Wasson, and J. Wennberg. 1993. An assessment of radical prostatectomy time trends, geographic variation and outcomes. The prostate patient outcomes research Team,. JAMA 269: 2633–2636.CrossRefGoogle Scholar
  25. 25.
    Maehama, T. and J. E. Dixon. 1998. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273: 13,375–13, 378.Google Scholar
  26. 26.
    Martikainen, P. and J. Isaacs. 1990. Role of calcium in the programmed death of rat prostatic glandular cells. Prostate 17: 175–187.PubMedCrossRefGoogle Scholar
  27. 27.
    McKeehan, W., M. Kan, J. Hou, F. Wang, P. Adams, and P. Mansson. 1991. Heparin-binding (fibroblast) growth factor/receptor gene expression in the prostate, in Molecular and Cellular Biology of Prostate Cancer (Karr, J., D. S. Coffey, R. G. Smith, and D. J. Tindall, eds.). Plenum Press, New York, pp. 115–126.Google Scholar
  28. 28.
    Nasu, Y., T. L. Timme, G. Yang, C. H. Bangma, L. Li, C. Ren, et al. 1998. Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells. Nat. Med. 4: 1062–1064.PubMedCrossRefGoogle Scholar
  29. 29.
    Nupponen, N. N., L. Kakkola, P. Koivisto, and T. Visakorpi. 1998. Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am. J. Pathol. 153: 141–148.PubMedCrossRefGoogle Scholar
  30. 30.
    Ohori, M., J. R. Goad, T. M. Wheeler, J. A. Eastham, T. C. Thompson, and P. T. Scardino. 1994. Can radical prostatectomy alter the progression of poorly differentiated prostate cancer? J. Urol. 152: 1843–1849.PubMedGoogle Scholar
  31. 31.
    Okamoto, T., A. Schlegel, P. E. Scherer, and M. P. Lisanti. 1998. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273: 5419–5422.PubMedCrossRefGoogle Scholar
  32. 32.
    Qian, J., D. G. Bostwick, S. Takahashi, T. J. Borell, J. F. Herath, M. M. Lieber, et al. 1995. Chromosomal anomalies in prostatic intraepithelial neoplasia and carcinoma detected by fluorescence in situ hybridization. Cancer Res. 55: 5408–5414.PubMedGoogle Scholar
  33. 33.
    Sager, R., S. Sheng, A. Anisowicz, G. Sotiropoulou, Z. Zou, G. Stenman, et al. 1994. RNA genetics of breast cancer: maspin as paradigm. Cold Sprg. Hrbr. Symp. Quant. Biol. 59: 537–546.CrossRefGoogle Scholar
  34. 34.
    Sakr, W. A., J. A. Macoska, P. Benson, D. J. Grignon, S. R. Wolman, J. E. Pontes, et al. 1994. Allelic loss in locally metastatic, multisampled prostate cancer. Cancer Res. 54: 3273–3277.PubMedGoogle Scholar
  35. 35.
    Shabsigh, A., D. T. Chang, D. F. Heitjan, A. Kiss, C. A. Olsson, P. J. Puchner, et al. 1998. Rapid reduction in blood flow to the rat ventral prostate gland after castration: preliminary evidence that androgens influence prostate size by regulating blood flow to the prostate gland and prostatic endothelial cell survival. Prostate 36: 201–206.PubMedCrossRefGoogle Scholar
  36. 36.
    Shaul, P. W. and R. G. Anderson. 1998. Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol. 275: L843–851.PubMedGoogle Scholar
  37. 37.
    Shinoura, N., Y. Yoshida, M. Nishimura, Y. Muramatsu, A. Asai, T. Kirino, et al. 1999. Expression level of Bc1–2 determines anti-or proapoptotic function. Cancer Res. 59: 4119–4128.PubMedGoogle Scholar
  38. 38.
    Stambolic, V., A. Suzuki, J. L. de la Pompa, G. M. Brothers, C. Mirtsos, T. Sasaki, et al. 1998. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95: 29–39.PubMedCrossRefGoogle Scholar
  39. 39.
    Stanford, J., R. Stephenson, L. Coyle, J. Cerhan, R. Correa, J. Eley, et al. 1999. Prostate Cancer Trends 1973–1995, SEER Program. National Cancer Institute. NIH Pub. No. 99–4543, Bethesda, MD.Google Scholar
  40. 40.
    Steck, P. A., M. A. Pershouse, S. A. Jasser, W. K. Yung, H. Lin, A. H. Ligon, et al. 1997. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10g23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15: 356–362.PubMedCrossRefGoogle Scholar
  41. 41.
    Suzuki, H., D. Freije, D. R. Nusskern, K. Okami, P. Cairns, D. Sidransky, et al. 1998. Interfocal heterogeneity of PTEN/MMAC 1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 58: 204–209.PubMedGoogle Scholar
  42. 42.
    Szallasi, Z. 1998. Bioinformatics. Gene expression patterns and cancer. Nat. Biotechnol. 16: 1292–1293.PubMedCrossRefGoogle Scholar
  43. 43.
    Tamura, M., J. Gu, K. Matsumoto, S. Aota, R. Parsons, and K. M. Yamada. 1998. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280: 1614–1617.PubMedCrossRefGoogle Scholar
  44. 44.
    Tenniswood, M. P., M. L. Montpetit, and J. G. Leger. 1990. Epithelial-stromal interactions and cell death in the prostate, in The prostate as an endocrine gland ( Farnsworth, W. E. and R. J. Ablin, eds.), CRC Press, Boca Raton, FL. pp. 187–204.Google Scholar
  45. 45.
    Thompson, T., T. Timme, L. Li, A. Goltsov, and G. Yang. 1999. Caveolin-1: a complex and provocative therapeutic target in prostate cancer and potentially other malignancies. Emerging Therapeutic Targets 3: 337–346.CrossRefGoogle Scholar
  46. 46.
    Thompson, T., T. Timme, and I. Sehgal. 1996. The role of p53 in prostate cancer progression, in Accomplishments in cancer research, 1996 ( Fortner, J. and P. Sharp, eds.), Lippincott-Raven Publishers, Philadelphia, pp. 280–289.Google Scholar
  47. 47.
    Thompson, T. C., S. H. Park, T. L. Timme, C. Ren, J. A. Eastham, L. A. Donehower, et al. 1995. Loss of p53 function leads to metastasis in ras+myc-initiated mouse prostate cancer. Onco gene 10: 869–879.Google Scholar
  48. 48.
    Thompson, T. C., J. Southgate, G. Kitchener, and H. Land. 1989. Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 56: 917–930.PubMedCrossRefGoogle Scholar
  49. 49.
    Thompson, T. C., T. L. Timme, and I. Sehgal. 1998. Oncogenes, growth factors, and hormones in prostate cancer, in Hormones and growth factors in development and neoplasia, ( Dickson, R. B. and D. S. Salomon. eds.), Wiley-Liss, Inc., New York, pp. 327–359.Google Scholar
  50. 50.
    Vairo, G., K. M. Innes, and J. M. Adams. 1996. Bc1–2 has a cell cycle inhibitory function separable from its enhancement of cell survival. Oncogene 13: 1511–1519.PubMedGoogle Scholar
  51. 51.
    van Veen, H. W. and W. N. Konings. 1997. Multidrug transporters from bacteria to man: similarities in structure and function. Semin. Cancer Biol. 8: 183–191.PubMedCrossRefGoogle Scholar
  52. 52.
    Whitmore, W. 1990. Natural history of low stage prostatic cancer and the impact of early detection. Urol. Clin. N. Am. 17: 689–700.Google Scholar
  53. 53.
    Yang, C. P., F. Galbiati, D. Volonte, S. B. Horwitz, and M. P. Lisanti. 1998. Upregulation of caveolin-1 and caveolae organelles in Taxol-resistant A549 cells. FEBS Lett. 439: 368–372.PubMedCrossRefGoogle Scholar
  54. 54.
    Yang, G., L. D. Truong, T. L. Timme, C. Ren, T. M. Wheeler, S. H. Park, et al. 1998. Elevated expression of caveolin is associated with prostate and breast cancer. Clin. Cancer Res. 4: 1873–1880.PubMedGoogle Scholar
  55. 55.
    Zeitman, A., R. Edelstein, J. Coen, R. Babayan, and R. Krane. 1994. Radical prostatectomy for adenocarcinoma of the prostate: the influence of preoperative and pathologic findings on biochemical disease-free outcome. Urology 43: 828–833.CrossRefGoogle Scholar
  56. 56.
    Zuck, B., C. Goepfert, A. Nedlin-Chittka, K. Sohrt, K. D. Voigt, and C. Knabbe. 1992. Regulation of fibroblast growth factor-like protein(s) in the androgen-responsive human prostate carcinoma cell line LNCaP. J. Steroid Biochem. Mol. Biol. 41: 659–663.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Timothy C. Thompson
  • Terry L. Timme
  • Likun Li
  • Chengzen Ren
  • Alexei Goltsov
  • Salahaldin Tahir
  • Guang Yang

There are no affiliations available

Personalised recommendations